Abstract:
Leishmaniasis caused by obligate intracellular parasites of genus Leishmania is one of the most neglected tropical diseases threatening 350 million people worldwide. Protein kinases have drawn much attention as potential drug targets due to their important role in various cellular processes. In Leishmania sp. mitogen-activated protein kinase 4 is essential for the parasite survival because of its involvement in various regulatory, apoptotic and developmental pathways. The current study reveals the identification of natural inhibitors of L. donovani mitogen-activated protein kinase-4 (LdMPK4). We have performed in silico docking of 110 natural inhibitors of Leishmania parasite that have been reported earlier and identified two compounds Genistein (GEN) and Chrysin (CHY). The homology model of LdMPK4 was developed, followed by binding affinity studies, and pharmacokinetic properties of the inhibitors were calculated by maintaining ATP as a standard molecule. The modelled structure was deposited in the protein model database with PMDB ID: PM0080988. Molecular dynamic simulation of the enzyme-inhibitor complex along with the free energy calculations over 50 ns showed that GEN and CHY are more stable in their binding. These two molecules, GEN and CHY, can be considered as lead molecules for targeting LdMPK4 enzyme and could emerge as potential LdMPK4 inhibitors. © 2019 Raj et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.