Formulation and optimization of itraconazole polymeric lipid hybrid nanoparticles (Lipomer) using box behnken design

Show simple item record

dc.contributor.author Gajra, Balaram
dc.contributor.author Dalwadi, Chintan
dc.contributor.author Patel, Ravi
dc.date.accessioned 2020-03-09T06:35:52Z
dc.date.available 2020-03-09T06:35:52Z
dc.date.issued 2015
dc.identifier.issn 15608115
dc.identifier.uri http://localhost:8080/xmlui/handle/123456789/726
dc.description.abstract Background: The objective of the study was to formulate and to investigate the combined influence of 3 independent variables in the optimization of Polymeric lipid hybrid nanoparticles (PLHNs) (Lipomer) containing hydrophobic antifungal drug Itraconazole and to improve intestinal permeability. Method: The Polymeric lipid hybrid nanoparticle formulation was prepared by the emulsification solvent evaporation method and 3 factor 3 level Box Behnken statistical design was used to optimize and derive a second order polynomial equation and construct contour plots to predict responses. Biodegradable Polycaprolactone, soya lecithin and Poly vinyl alcohol were used to prepare PLHNs. The independent variables selected were lipid to polymer ratio (X1) Concentration of surfactant (X2) Concentration of the drug (X3). Result: The Box-Behnken design demonstrated the role of the derived equation and contour plots in predicting the values of dependent variables for the preparation and optimization of Itraconazole PLHNs. Itraconazole PLHNs revealed nano size (210 ± 1.8 nm) with an entrapment efficiency of 83 ± 0.6% and negative zeta potential of -11.7 mV and also enhance the permeability of itraconazole as the permeability coefficient (Papp) and the absorption enhancement ratio was higher. Conclusion: The tunable particle size, surface charge, and favourable encapsulation efficiency with a sustained drug release profile of PLHNs suggesting that it could be promising system envisioned to increase the bioavailability by improving intestinal permeability through lymphatic uptake, M cell of payer's patch or paracellular pathway which was proven by confocal microscopy. en_US
dc.language.iso en_US en_US
dc.publisher BioMed Central Ltd. en_US
dc.subject Box-behnken design en_US
dc.subject Drug loading en_US
dc.subject Entrapment efficiency en_US
dc.subject Optimization en_US
dc.subject Polymeric lipid hybrid nanoparticles en_US
dc.title Formulation and optimization of itraconazole polymeric lipid hybrid nanoparticles (Lipomer) using box behnken design en_US
dc.type Article en_US


Files in this item

This item appears in the following Collection(s)

Show simple item record

Search in IDR


Advanced Search

Browse

My Account