Asymptotics and sign patterns for coefficients in expansions of Habiro elements

Show simple item record

dc.contributor.author Goswami, Ankush
dc.contributor.author Jha, Abhash Kumar
dc.contributor.author Kim, Byungchan
dc.contributor.author Osburn, Robert
dc.date.accessioned 2024-04-01T06:32:00Z
dc.date.available 2024-04-01T06:32:00Z
dc.date.issued 2023-07-10
dc.identifier.uri http://localhost:8080/xmlui/handle/123456789/3042
dc.description This paper published with affiliation IIT (BHU), Varanasi in open access mode. en_US
dc.description.abstract We prove asymptotics and study sign patterns for coefficients in expansions of elements in the Habiro ring which satisfy a strange identity. As an application, we prove asymptotics and discuss positivity for the generalized Fishburn numbers which arise from the Kontsevich–Zagier series associated to the colored Jones polynomial for a family of torus knots. This extends Zagier’s result on asymptotics for the Fishburn numbers. en_US
dc.description.sponsorship Max-Planck-Institut für Mathematik Enterprise Ireland- MTR/2022/000659 Ministry of Science, ICT and Future Planning- NRF-2019R1F1A1043415 National Research Foundation of Korea en_US
dc.language.iso en en_US
dc.publisher Springer Science and Business Media Deutschland GmbH en_US
dc.relation.ispartofseries Mathematische Zeitschrift;304
dc.subject Asymptotics; en_US
dc.subject Generalized Fishburn numbers; en_US
dc.subject Habiro ring; en_US
dc.subject Strange identities en_US
dc.title Asymptotics and sign patterns for coefficients in expansions of Habiro elements en_US
dc.type Article en_US


Files in this item

This item appears in the following Collection(s)

Show simple item record

Search in IDR


Advanced Search

Browse

My Account