Abstract:
We prove asymptotics and study sign patterns for coefficients in expansions of elements in the Habiro ring which satisfy a strange identity. As an application, we prove asymptotics and discuss positivity for the generalized Fishburn numbers which arise from the Kontsevich–Zagier series associated to the colored Jones polynomial for a family of torus knots. This extends Zagier’s result on asymptotics for the Fishburn numbers.