Coherency strengthening of oblate precipitates extended in the {100} plane of fcc crystals

Show simple item record

dc.contributor.author Ahmadi, M R
dc.contributor.author Sonderegger, B
dc.contributor.author Povoden-Karadeniz, E
dc.contributor.author Falahati, A
dc.contributor.author Yadav, S D
dc.contributor.author Sommitsch, C
dc.contributor.author Kozeschnik, E
dc.date.accessioned 2022-02-03T07:21:45Z
dc.date.available 2022-02-03T07:21:45Z
dc.date.issued 2022-01-16
dc.identifier.issn 25891529
dc.identifier.other 10.1016/j.mtla.2022.101328
dc.identifier.uri http://localhost:8080/xmlui/handle/123456789/1841
dc.description The authors acknowledge the Austrian Federal Government (in particular from the Bundesministerium für Verkehr, Innovation und Technologie and the Bundesministerium für Wirtschaft, Familie und Jugend) and the Styrian Provincial Government, represented by Österreichische Forschungsförderungsgesellschaft mbH and by Steirische Wirtschaftsförderungsgesellschaft mbH, within the research activities of the K2 Competence center on “Integrated Research in Materials, Processing and Product Engineering”, operated by the Materials Center Leoben Forschung GmbH in the framework of the Austrian COMET Competence center Programme. en_US
dc.description.abstract Coherency strengthening plays a major role in precipitation strengthening. The governing mechanism is based on the interaction of dislocations with the elastic strain field induced by the lattice misfit of precipitates and matrix. In the case of non-spherical precipitates, the strain field and corresponding stress field is inhomogeneous and depends on the relative orientation of the particle with respect to the Burger's vector of the dislocation. We evaluate the shear stress increment due to inhomogeneous strain fields around an oblate precipitate and suggested a model for coherency strengthening of oblate precipitates. The corresponding results for the weak and strong strengthening mechanisms demonstrate that shape-depending correction factors need to be incorporated in order to estimate the strength precisely. Afterwards, the proposed model was applied for simulation of precipitation strengthening of Inconel 718. Simulation result shows that, the selection of correct aspect ratio can lead to more accurate yield strength predictions that are close to the experimental results. en_US
dc.description.sponsorship Austrian Federal Ministries for Transport, Innovation and Technology; Austrian research funding association; Bundesministerium für Wirtschaft; Digital and Economic Affairs; IC-MPPE; Steirische Wirtschaftsf?rderungsgesellschaft mbH; Austrian Federal Ministry of Economy, Family and Youth; Österreichische Forschungsförderungsgesellschaft; Bundesministerium für Verkehr, Innovation und Technologie; Steirische Wirtschaftsförderungsgesellschaft; Bundesministerium für Digitalisierung und Wirtschaftsstandort. en_US
dc.language.iso en_US en_US
dc.publisher Elsevier B.V. en_US
dc.relation.ispartofseries Materialia;21
dc.subject Coherency strengthening en_US
dc.subject Inconel 718 en_US
dc.subject Non-spherical precipitates en_US
dc.subject Physical modeling en_US
dc.title Coherency strengthening of oblate precipitates extended in the {100} plane of fcc crystals en_US
dc.title.alternative Modeling and experimental validation en_US
dc.type Article en_US


Files in this item

This item appears in the following Collection(s)

Show simple item record

Search in IDR


Advanced Search

Browse

My Account