Abstract:
The transition from analog to digital safety-critical instrumentation and control (I&C) systems has introduced new challenges for software experts to deliver increased software reliability. Since the 1970s, researchers are continuing to propose software reliability models for reliability estimation of software. However, these approaches rely on the failure history for the assessment of reliability. Due to insufficient failure data, these models fail to predict the reliability of safety critical systems. This paper utilizes the Bayesian update methodology and proposes a framework for the reliability assessment of the safety-critical systems (SCSs). The proposed methodology is validated using experiments performed on real data of 12 safety-critical control systems of nuclear power plants. © 2019 John Wiley & Sons, Ltd.