A combined approach for the enhancement and segmentation of mammograms using modified fuzzy C-means method in wavelet domain

Show simple item record

dc.contributor.author Srivastava, Subodh
dc.contributor.author Sharma, Neeraj
dc.contributor.author Singh, SK
dc.contributor.author and et al
dc.date.accessioned 2020-03-16T07:10:32Z
dc.date.available 2020-03-16T07:10:32Z
dc.date.issued 2014-07-01
dc.identifier.issn 09716203
dc.identifier.uri http://localhost:8080/xmlui/handle/123456789/761
dc.description.abstract In this paper, a combined approach for enhancement and segmentation of mammograms is proposed. In preprocessing stage, a contrast limited adaptive histogram equalization (CLAHE) method is applied to obtain the better contrast mammograms. After this, the proposed combined methods are applied. In the first step of the proposed approach, a two dimensional (2D) discrete wavelet transform (DWT) is applied to all the input images. In the second step, a proposed nonlinear complex diffusion based unsharp masking and crispening method is applied on the approximation coefficients of the wavelet transformed images to further highlight the abnormalities such as micro-calcifications, tumours, etc., to reduce the false positives (FPs). Thirdly, a modified fuzzy c-means (FCM) segmentation method is applied on the output of the second step. In the modified FCM method, the mutual information is proposed as a similarity measure in place of conventional Euclidian distance based dissimilarity measure for FCM segmentation. Finally, the inverse 2D-DWT is applied. The efficacy of the proposed unsharp masking and crispening method for image enhancement is evaluated in terms of signal-to-noise ratio (SNR) and that of the proposed segmentation method is evaluated in terms of random index (RI), global consistency error (GCE), and variation of information (VoI). The performance of the proposed segmentation approach is compared with the other commonly used segmentation approaches such as Otsu's thresholding, texture based, k-means, and FCM clustering as well as thresholding. From the obtained results, it is observed that the proposed segmentation approach performs better and takes lesser processing time in comparison to the standard FCM and other segmentation methods in consideration. en_US
dc.language.iso en_US en_US
dc.publisher Medknow Publications en_US
dc.subject mammogram enhancement en_US
dc.subject Mammogram segmentation en_US
dc.subject modified fuzzy c-means segmentation en_US
dc.subject mutual information en_US
dc.subject performance evaluation en_US
dc.subject wavelet based segmentation en_US
dc.title A combined approach for the enhancement and segmentation of mammograms using modified fuzzy C-means method in wavelet domain en_US
dc.type Article en_US


Files in this item

This item appears in the following Collection(s)

Show simple item record

Search in IDR


Advanced Search

Browse

My Account