2.45-GHz Microwave Radiation Impairs Hippocampal Learning and Spatial Memory: Involvement of Local Stress Mechanism-Induced Suppression of iGluR/ERK/ CREB Signaling

Show simple item record

dc.contributor.author Shahin, Saba
dc.contributor.author Banerjee, Somanshu
dc.contributor.author Swarup, Vivek
dc.contributor.author Singh, Surya Pal
dc.contributor.author Chaturvedi, Chandra Mohini
dc.date.accessioned 2020-01-22T10:08:37Z
dc.date.available 2020-01-22T10:08:37Z
dc.date.issued 2018-02-01
dc.identifier.issn 10966080
dc.identifier.uri http://localhost:8080/xmlui/handle/123456789/572
dc.description.abstract Microwave (MW) radiation induced oxidative stress reduces dendritic arborization, spine density and number of hippocampal pyramidal neurons and hence, impair learning and spatial memory through p53-dependent/independent apoptosis of hippocampal neuronal and nonneuronal cells. However, the mechanisms responsible for MW radiation induced impairment in memory formation remains still unknown. This study elucidates the effect of short (15 days) and long-term (30 and 60 days) low level 2.45 GHz MW radiation-induced local stress on the hippocampal spatial memory formation pathway in adult male mice. Twelve-weeks old mice were exposed to 2.45 GHz MW radiation (continuous-wave with overall average Power density of 0.0248 mW/cm2 and overall average whole body SAR value of 0.0146 W/Kg) @ 2 h/d for 15, 30, and 60 days. Learning and spatial memory was assessed by 8-arm radial maze. We have investigated the alterations in serum corticosterone level and the expression of glucocorticoid receptor, corticotropin-releasing hormone (CRH), inducible nitric oxide synthase (i-NOS), iGluRs, PSD-95-neuronal NOS (n-NOS) system, protein kinase A, protein kinase CeERK1/2-pERK1/2 in all the hippocampal subregions, viz. CA1, CA2, CA3, and DG through immunohistochemistry/ immunofluorescence and alterations in the expression of hippocampal glucocorticoid receptor, CRH-receptor 1 (CRH-R1), cAMP-response element-binding (CREB), and phosphorylated-CREB (p-CREB) through western blot analysis. We observed that 2.45 GHz MW irradiated mice showed slow learning and significantly increased number of working and reference memory errors in radial maze task. Further, 2.45 GHz MW radiation exposure increases serum corticosterone level and the expression of CRH, CRH-R1, and i-NOS, while the expression of iGluRs, n-NOS, PSD-95, protein kinase Ce, protein kinase A, ERK-p-ERK, CREB, and p-CREB decreases in above mentioned hippocampal subregions in a duration dependent manner. Our findings led us to conclude that 2.45 GHz MW radiation exposure induced local stress suppresses signaling mechanism(s) of hippocampal memory formation en_US
dc.description.sponsorship Council of Scientific and Industrial Research, India Christian Medical College, Vellore Indian Council of Medical Research en_US
dc.language.iso en_US en_US
dc.publisher Oxford University Press en_US
dc.subject Glutamate receptors en_US
dc.subject Hippocampal stress en_US
dc.subject Learning and memory formation en_US
dc.subject Microwave radiation en_US
dc.subject PSD-95 en_US
dc.subject Signaling molecules en_US
dc.title 2.45-GHz Microwave Radiation Impairs Hippocampal Learning and Spatial Memory: Involvement of Local Stress Mechanism-Induced Suppression of iGluR/ERK/ CREB Signaling en_US
dc.type Article en_US


Files in this item

This item appears in the following Collection(s)

Show simple item record

Search in IDR


Advanced Search

Browse

My Account