Existence of ground state solutions for a Choquard double phase problem

Show simple item record

dc.contributor.author Arora, Rakesh
dc.contributor.author Fiscella, Alessio
dc.contributor.author Mukherjee, Tuhina
dc.contributor.author Winkert, Patrick
dc.date.accessioned 2024-04-10T06:14:50Z
dc.date.available 2024-04-10T06:14:50Z
dc.date.issued 2023-04-25
dc.identifier.issn 14681218
dc.identifier.uri http://localhost:8080/xmlui/handle/123456789/3124
dc.description This paper published with affiliation IIT (BHU), Varanasi in open access mode. en_US
dc.description.abstract In this paper we study quasilinear elliptic equations driven by the double phase operator involving a Choquard term of the form [Formula presented] where Lp,qa is the double phase operator given by Lp,qa(u)≔div(|∇u|p−2∇u+a(x)|∇u|q−2∇u),u∈W1,H(RN),0<μ<N, 1<p<N, [Formula presented], 0≤a(⋅)∈C0,α(RN) with α∈(0,1] and f:RN×R→R is a continuous function that satisfies a subcritical growth. Based on the Hardy–Littlewood–Sobolev inequality, the Nehari manifold and variational tools, we prove the existence of ground state solutions of such problems under different assumptions on the data. en_US
dc.description.sponsorship INdAM-GNAMPA- Prot_20191219-143223-545 Istituto Nazionale di Alta Matematica "Francesco Severi" Gruppo Nazionale per l'Analisi Matematica, la Probabilità e le loro Applicazioni Fundação de Amparo à Pesquisa do Estado de São Paulo- 2019/02512-5 en_US
dc.language.iso en en_US
dc.publisher Elsevier Ltd en_US
dc.relation.ispartofseries Nonlinear Analysis: Real World Applications;73
dc.subject Choquard term; en_US
dc.subject Double phase operator; en_US
dc.subject Ground state solutions; en_US
dc.subject Nehari manifold; en_US
dc.subject Unbounded domain en_US
dc.subject Linear equations en_US
dc.title Existence of ground state solutions for a Choquard double phase problem en_US
dc.type Article en_US


Files in this item

This item appears in the following Collection(s)

Show simple item record

Search in IDR


Advanced Search

Browse

My Account