dc.contributor.author |
Arora, Rakesh |
|
dc.contributor.author |
Fiscella, Alessio |
|
dc.contributor.author |
Mukherjee, Tuhina |
|
dc.contributor.author |
Winkert, Patrick |
|
dc.date.accessioned |
2024-04-10T06:14:50Z |
|
dc.date.available |
2024-04-10T06:14:50Z |
|
dc.date.issued |
2023-04-25 |
|
dc.identifier.issn |
14681218 |
|
dc.identifier.uri |
http://localhost:8080/xmlui/handle/123456789/3124 |
|
dc.description |
This paper published with affiliation IIT (BHU), Varanasi in open access mode. |
en_US |
dc.description.abstract |
In this paper we study quasilinear elliptic equations driven by the double phase operator involving a Choquard term of the form [Formula presented] where Lp,qa is the double phase operator given by Lp,qa(u)≔div(|∇u|p−2∇u+a(x)|∇u|q−2∇u),u∈W1,H(RN),0<μ<N, 1<p<N, [Formula presented], 0≤a(⋅)∈C0,α(RN) with α∈(0,1] and f:RN×R→R is a continuous function that satisfies a subcritical growth. Based on the Hardy–Littlewood–Sobolev inequality, the Nehari manifold and variational tools, we prove the existence of ground state solutions of such problems under different assumptions on the data. |
en_US |
dc.description.sponsorship |
INdAM-GNAMPA- Prot_20191219-143223-545
Istituto Nazionale di Alta Matematica "Francesco Severi"
Gruppo Nazionale per l'Analisi Matematica, la Probabilità e le loro Applicazioni
Fundação de Amparo à Pesquisa do Estado de São Paulo- 2019/02512-5 |
en_US |
dc.language.iso |
en |
en_US |
dc.publisher |
Elsevier Ltd |
en_US |
dc.relation.ispartofseries |
Nonlinear Analysis: Real World Applications;73 |
|
dc.subject |
Choquard term; |
en_US |
dc.subject |
Double phase operator; |
en_US |
dc.subject |
Ground state solutions; |
en_US |
dc.subject |
Nehari manifold; |
en_US |
dc.subject |
Unbounded domain |
en_US |
dc.subject |
Linear equations |
en_US |
dc.title |
Existence of ground state solutions for a Choquard double phase problem |
en_US |
dc.type |
Article |
en_US |