dc.contributor.author |
Arora, Rakesh |
|
dc.date.accessioned |
2024-03-13T09:21:03Z |
|
dc.date.available |
2024-03-13T09:21:03Z |
|
dc.date.issued |
2022-12-21 |
|
dc.identifier.issn |
00220396 |
|
dc.identifier.uri |
http://localhost:8080/xmlui/handle/123456789/2983 |
|
dc.description |
This paper published with affiliation IIT (BHU), Varanasi in open access mode. |
en_US |
dc.description.abstract |
We consider the homogeneous Dirichlet problem for the anisotropic parabolic equation ut−∑i=1NDx(|Dxu|pDxu)=f(x,t) in the cylinder Ω×(0,T), where Ω⊂RN, N≥2, is a parallelepiped. The exponents of nonlinearity pi are given Lipschitz-continuous functions. It is shown that if [Formula presented], [Formula presented] then the problem has a unique solution u∈C([0,T];L2(Ω)) with |Dxu|p∈L∞(0,T;L1(Ω)), ut∈L2(QT). Moreover, [Formula presented] The assertions remain true for a smooth domain Ω if pi=2 on the lateral boundary of QT. |
en_US |
dc.language.iso |
en |
en_US |
dc.publisher |
Academic Press Inc. |
en_US |
dc.relation.ispartofseries |
Journal of Differential Equations;349 |
|
dc.subject |
Anisotropic nonlinearity |
en_US |
dc.subject |
Global higher integrability |
en_US |
dc.subject |
Nonlinear parabolic equations |
en_US |
dc.subject |
Second-order regularity |
en_US |
dc.title |
Existence and global second-order regularity for anisotropic parabolic equations with variable growth |
en_US |
dc.type |
Article |
en_US |