Existence and global second-order regularity for anisotropic parabolic equations with variable growth

Show simple item record

dc.contributor.author Arora, Rakesh
dc.date.accessioned 2024-03-13T09:21:03Z
dc.date.available 2024-03-13T09:21:03Z
dc.date.issued 2022-12-21
dc.identifier.issn 00220396
dc.identifier.uri http://localhost:8080/xmlui/handle/123456789/2983
dc.description This paper published with affiliation IIT (BHU), Varanasi in open access mode. en_US
dc.description.abstract We consider the homogeneous Dirichlet problem for the anisotropic parabolic equation ut−∑i=1NDx(|Dxu|pDxu)=f(x,t) in the cylinder Ω×(0,T), where Ω⊂RN, N≥2, is a parallelepiped. The exponents of nonlinearity pi are given Lipschitz-continuous functions. It is shown that if [Formula presented], [Formula presented] then the problem has a unique solution u∈C([0,T];L2(Ω)) with |Dxu|p∈L∞(0,T;L1(Ω)), ut∈L2(QT). Moreover, [Formula presented] The assertions remain true for a smooth domain Ω if pi=2 on the lateral boundary of QT. en_US
dc.language.iso en en_US
dc.publisher Academic Press Inc. en_US
dc.relation.ispartofseries Journal of Differential Equations;349
dc.subject Anisotropic nonlinearity en_US
dc.subject Global higher integrability en_US
dc.subject Nonlinear parabolic equations en_US
dc.subject Second-order regularity en_US
dc.title Existence and global second-order regularity for anisotropic parabolic equations with variable growth en_US
dc.type Article en_US


Files in this item

This item appears in the following Collection(s)

Show simple item record

Search in IDR


Advanced Search

Browse

My Account