Abstract:
The work presented in this brief describes the design of a discrete-time super-twisting algorithm based fractional-order observer for a class of non-linear fractional-order systems. The proposed observer is shown to achieve higher performance as compared to the conventional integer-order observers in terms of robustness and convergence time. It generalizes the design of observers for the class of non-linear fractional-order systems. The peaking phenomenon is observed to be less significant in the proposed approach. Chattering is suppressed with the Fractional Adams-Moulton Method, which is an implicit Euler discretization technique. The significance of the proposed observer is illustrated through a simulation example.