dc.contributor.author |
Srivastava, Hari M. |
|
dc.contributor.author |
Mishra, Kush Kumar |
|
dc.contributor.author |
Upadhyay, Santosh K. |
|
dc.date.accessioned |
2022-11-25T11:24:56Z |
|
dc.date.available |
2022-11-25T11:24:56Z |
|
dc.date.issued |
2022-09 |
|
dc.identifier.issn |
22277390 |
|
dc.identifier.uri |
http://localhost:8080/xmlui/handle/123456789/1930 |
|
dc.description.abstract |
In this paper, we present a systematic study of the various characteristics and properties of some continuous and discrete fractional Bessel wavelet transforms. The method is based upon the theory of the fractional Hankel transform. © 2022 by the authors. |
en_US |
dc.description.sponsorship |
CSIR, SERB DST |
en_US |
dc.language.iso |
en_US |
en_US |
dc.publisher |
MDPI |
en_US |
dc.relation.ispartofseries |
;Volume 10, Issue 17 |
|
dc.relation.ispartofseries |
;3084 |
|
dc.subject |
Bessel function |
en_US |
dc.subject |
continuous fractional Bessel wavelet transform |
en_US |
dc.subject |
discrete fractional Bessel wavelet transform |
en_US |
dc.subject |
fractional Hankel convolution |
en_US |
dc.subject |
fractional Hankel transform |
en_US |
dc.title |
Characterizations of Continuous Fractional Bessel Wavelet Transforms |
en_US |
dc.type |
Article |
en_US |