List of Figures

1.1 (a) A tornado with funnel shape on the plains of North Dakota, USA
(http://ww2010.atmos.uiuc.edu/(Gh)/guides/mtr/svr/torn/home.rxml)
(Courtesy: National Severe Storms Laboratory (NSSL), USA). (b) A
tornado with and unusual shape making right angle bend in the mid-
dle. (http://www.weatherstock.com/tornadocat3.html) (Courtesy: The
Weather stock, USA). 4
1.2 Naturally occurring atmospheric column vortex or dust devil formed in Arizona. (Source: https://en.wikipedia.org/wiki/Dust devil).
1.3 (a) Top view of Hurricane Irma. (Source: NOAA via the New York Times), (http://www.tampabay.com/hurricane-guide/Watch-out-Florida-Forecasters-predict-active-2018-hurricane season-166989625). (b) Vertical structure of hurricane. (Source: https://www.monolitonimbus.com.br/wp-content/uploads/2014/03/hurricane-structure-300x172.jpg). 9
3.1 Diagrammatic representation of the formation of a dust devil. Dashed curves show the direction of ambient winds blowing horizontally and then moving upward after supressing air the buffer zone, the innermost and the outermost layers being shown by solid curves. Heights of the different layers indicate that the innermost rises the most. The two dotted circles indicate the inner and the outer boundaries of the rotating annular dust devil around a low pressure zone and kept intact by centripetal acceleration.42
3.2 The diagram gives the geometry of the whirlwind modelled as an annulus, drawn by solid lines and curves, of outermost radius r_{o} and innermost radius r_{i} measured from the axis oz. The inner region of radius r_{i} inside the annulus is a region of low pressure. The annulus is filled with air and has comparatively high pressure. Inside the annulus are shown concentric cylindrical layers shown by dotted lines, differing in some respect. u, v and w represent the radial, the azimuthal and the axial velocities respectively and ω_{i} and ω_{o} are respectively the angular velocities of the innermost and the outermost surfaces of the annulus.
3.3 The diagrams $(a-d)$ represent the variation of axial velocity $w(r)$ with respect to radius, $w(r)$ has been given by Eq. (3.11) as a sum of w_{0}, w_{1} and w_{2}, where $w_{0}=0, w_{1}=-P\left(r_{o}^{2}-r^{2}\right) / 4 \mu$ and $w_{2}=-P r_{i}^{2} \log _{e}\left(\frac{r}{r_{o}}\right) / 2 \mu$ as described in the discussion. w_{1} and w_{2}, are separately plotted and later as a sum $w(r)$. The outer radius is $r_{o}=1.0 \mathrm{~m},(a) r_{i}=0.1 \mathrm{~m}$, (b) $r_{i}=0.3 \mathrm{~m},(c) r_{i}=0.5 \mathrm{~m}$ and (d) $r_{i}=0.9 \mathrm{~m}$. Other parameters used here are: dynamic viscosity $\mu=0.0000198 \mathrm{Pl}$, and $P=-0.01 \mathrm{~Pa} / \mathrm{m}$.
3.4 The diagrams $(a-d)$ represent the variation of angular velocity and corresponding azimuthal velocity with radius based on Eq. (3.15). Here the angular velocities are fixed as $\omega_{o}=20$ cycles s^{-1}, and $\omega_{i}=25$ cycles s^{-1}, the outer radius is set as $r_{o}=1.0 \mathrm{~m}$ while the inner radius has been varied in the range $r_{i}=0.1 m-0.9 m$.
3.5 The diagrams $(a-d)$ display the variation of angular velocity and corresponding azimuthal velocity with radius based on Eq. (3.15). The various parameters used for the plots are: $\omega_{o}=5$ cycles s^{-1}, $\omega_{i}=25$ cycles s $^{-1}, r_{o}=1.0 \mathrm{~m}, r_{i}=0.1 \mathrm{~m}-0.9 \mathrm{~m}$.
3.6 The diagrams $(a-d)$ display the variation of angular velocity and corresponding azimuthal velocity with radius based on Eq. (3.15). The various parameters used for the plots are: $\omega_{o}=0$ cycles s^{-1}, $\omega_{i}=25$ cycles $^{-1}, r_{o}=1.0 \mathrm{~m}, r_{i}=0.1 \mathrm{~m}-0.9 \mathrm{~m}$.
3.7 The diagrams $(a-d)$ represent the variation of pressure difference with radius. This is based on Eq. (3.21). This corresponds to $\omega_{o}=$ 0 cycles s^{-1}, and $\omega_{i}=25$ cycles s^{-1}. In the four cases the inner radius varies as $(a) r_{i}=0.1 \mathrm{~m},(b) r_{i}=0.3 \mathrm{~m},(c) r_{i}=0.5 \mathrm{~m}$, (d) $r_{i}=0.9 \mathrm{~m}$.
3.8 The diagrams $(a-d)$ represent the variation of pressure difference with radius. This is based on Eq. (3.21). This corresponds to $\omega_{o}=$ 5 cycles s^{-1}, and $\omega_{i}=25$ cycles s^{-1}. In the four cases the inner radius varies as $(a) r_{i}=0.1 \mathrm{~m}$, (b) $r_{i}=0.3 \mathrm{~m},(c) r_{i}=0.5 \mathrm{~m}$, (d) $r_{i}=0.9 \mathrm{~m}$.
3.9 The diagrams $(a-d)$ represent the variation of pressure difference with radius. This is based on Eq. (3.21). This corresponds to $\omega_{o}=$ 20 cycles s^{-1}, and $\omega_{i}=25$ cycles s^{-1}. In the four cases the inner radius varies as $(a) r_{i}=0.1 \mathrm{~m},(b) r_{i}=0.3 \mathrm{~m},(c) r_{i}=0.5 \mathrm{~m}$, (d) $r_{i}=0.9 \mathrm{~m}$.
3.10 The diagrams $(a-d)$ exhibit the variation of pressure difference across the innermost and the outermost layers with inner radius. This is based on Eq. (3.23). This corresponds to $\omega_{o}=0$ cycles s^{-1}, and $\omega_{i}=25$ cycles s^{-1}. In the four cases the inner radius varies as (a) $r_{i}=0.1 \mathrm{~m},(b) r_{i}=0.3 \mathrm{~m},(c) r_{i}=0.5 \mathrm{~m},(d) r_{i}=0.9 \mathrm{~m}$.
3.11 The diagrams $(a-d)$ exhibit the variation of pressure difference across the innermost and the outermost layers with inner radius. This is based on Eq. (3.23). This corresponds to $\omega_{o}=5$ cycles s^{-1}, and $\omega_{i}=25$ cycles s^{-1}. In the four cases the inner radius varies as (a) $r_{i}=0.1 \mathrm{~m}$, (b) $r_{i}=0.3 \mathrm{~m}$, (c) $r_{i}=0.5 \mathrm{~m}$, (d) $r_{i}=0.9 \mathrm{~m}$.
3.12 The diagrams $(a-d)$ exhibit the variation of pressure difference across the innermost and the outermost layers with inner radius. This is based on Eq. (3.23). This corresponds to $\omega_{o}=20$ cycles s $^{-1}$, and $\omega_{i}=25$ cycles s^{-1}. In the four cases the inner radius varies as (a) $r_{i}=0.1 \mathrm{~m}$, (b) $r_{i}=0.3 \mathrm{~m}$, (c) $r_{i}=0.5 \mathrm{~m}$, (d) $r_{i}=0.9 \mathrm{~m}$.
4.1 Schematic diagram of the formation of a whirlwind (dust-devils). Dashed curves show the direction of the ambient winds blowing horizontally and getting diverted upward by the compressed air lying in the buffer zone, the innermost and the outermost layers being shown by solid curves. Heights of the different layers indicate that the innermost layer rises the most. The two dotted circles indicate the inner and the outer boundaries of the rotating annular dust devil around a low pressure zone and kept intact by centripetal acceleration and the arrows between the annular regions indicate the direction of the inflow radial component of the wind.
4.2 The diagram shows the radial velocity $u(r)$ distribution along the
radail direction for various values of c based on Eq. (4.10). 84
4.3 The diagram based on Eq. (4.15) shows the azimuthal velocity $v(r)$ distribution along the radial coordinate r for various values of the ratio c / ν. The velocity curve, corresponding to $c / \nu=0$, describes the case for zero radial velocity. Other parameters are $\omega_{i}=25$ cycles s ${ }^{-1}$ and $\omega_{o}=5$ cycles s^{-1}.85

4.4 The diagram shows the angular velocity $\omega(r)$ distribution along the
radial coordinate r for various values of the ratio c / ν. Other param
eters are $\omega_{i}=25$ cycles s^{-1} and $\omega_{o}=5$ cycles s ${ }^{-1}$. 86
4.5 The diagram shows the axial velocity $w(r)$ distribution along the radial coordinate r for various values of the ratio c / ν based on Eq. (4.11). Other parameters used here are: dynamic viscosity $\mu(=\rho \nu)=$ 0.0000198 Pa.s., $P=-0.01 P a / m$ and $w_{o}=0$. The presence of g will simply reduce the magnitude slightly without disturbing the trends; hence it has not been under consideration.87
4.6 Diagrams based on Eq. (4.20) show the pressure $p(r, z)-p\left(r_{i}, z_{o}\right)$ distribution along the radial coordinate r for various values of the ratio c / ν. Other parameters set for the graphs are $\omega_{i}=25$ cycles s ${ }^{-1}$, $\omega_{o}=5$ cycles $\mathrm{s}^{-1}, r_{o}=1.0 \mathrm{~m}$ and (a) $r_{i}=0.2 \mathrm{~m}, r=0.2 \mathrm{~m}-1.0 \mathrm{~m}$, (b) $r_{i}=0.4 m, r=0.4 m-1.0 m$, (c) $r_{i}=0.7 m, r=0.7 m-1.0 m$.
4.7 Diagrams based on Eq. (4.20) show the pressure $p(r, z)-p\left(r_{i}, z_{o}\right)$ at the radial coordinates $r=0.8 \mathrm{~m}, 0.9 \mathrm{~m}$ given in (a) and (b) parts of the figure respectively when r_{i} varies from $0.2 m-0.7 m$ corresponding to various values of the ratio c / ν in the range $0.5-2.5$. Other parameters are $\omega_{i}=25$ cycles s^{-1} and $\omega_{o}=5{\text { cycles } s^{-1}}$. . . . 89
4.8 Diagrams based on Eq. (4.20) display plots for $p(r, z)-p\left(r_{i}, z_{o}\right)$ vs. c / ν. The various parameters are $r_{o}=1.0 \mathrm{~m}, r_{i}=0.4 \mathrm{~m}$ and $r=$ $0.6 \mathrm{~m}, 0.8 \mathrm{~m}$ respectively in (a) and (b). Other parameters are $\omega_{i}=$ 25 cycles s ${ }^{-1}$ and $\omega_{o}=5$ cycles s^{-1}90
4.9 Diagrams based on Eq. (4.20) display plots for $p(r, z)-p\left(r_{i}, z_{o}\right)$ vs. c / ν. The various parameters are $r_{o}=1.0 \mathrm{~m}, r_{i}=0.7 \mathrm{~m}$ and $r=$ $0.8 \mathrm{~m}, 0.9 \mathrm{~m}$ respectively in (a) and (b). Other parameters are $\omega_{i}=$ 25 cycles s^{-1} and $\omega_{o}=5$ cycles s^{-1}.91
4.10 Radial distribution of pressure $p(r, z)-p\left(r_{i}, z_{o}\right)$ corresponding to $c / \nu=2$ based on Eq. (4.24). Other parameters are $\omega_{i}=25$ cycles s^{-1} and $\omega_{o}=5$ cycles s^{-1}.91
5.1 The diagram is based on Eq. (5.18) and represents the variation of core radius of vortex with time with different values of the radial flow parameter A_{0} for the inviscid flow and zero axial pressure gradient. Here initial core radius $\delta\left(t_{0}\right)=1 \mathrm{~m}$112
5.2 The diagram is based on Eq. (5.20) and represents the variation of core radius of vortex with time with different values of the radial flow parameter A_{0} for the inviscid flow and non-zero axial pressure gradient. Here initial core radius $\delta\left(t_{0}\right)=1 \mathrm{~m}$. 113
5.3 Diagram is based on Eq. (5.26) represents the variation of core radius of vortex with time for different kinematic viscosities and zero axial pressure gradient. Here, initial core radius $\delta\left(t_{0}\right)=1 \mathrm{~m}$. 114
5.4 The diagram is based on Eq. (5.29) and represents the temporal variation of azimuthal velocity with radius for viscous flow and zero axial pressure gradient. 115
5.5 The diagram based on Eq. (5.27) represents the variation of core radius of vortex with time with different radial flow parameter A_{0} for the viscous flow and non-zero axial pressure gradient. Here initial core radius $\delta\left(t_{0}\right)=1 \mathrm{~m}$ and $a=1 \mathrm{~s}^{-1}$. 116
5.6 The diagram is based on Eq. (5.29) and represents the temporal variation of azimuthal velocity with radius with different time for the viscous flow and non-zero axial pressure gradient. Here kinematic viscosity $\nu=0.000017 \mathrm{~m}^{2} \mathrm{~s}^{-1}$ and $a=1 \mathrm{~s}^{-1}$.

5.7 Diagram (a) based on Eq. (5.15) represents the variation of maximum azimuthal velocity vs. time for different values of radial flow parameter A_{0} when the flow is inviscid and the axial pressure gradient is zero while Diagram (b) is based on Eq. (5.15) and represents variation of the maximum azimuthal velocity with time for different values of radial flow parameter A_{0} when the flow is inviscid and the axial pressure gradient is non-zero.

5.8 Diagram (a) based on Eq. (5.33) represents the variation of maximum azimuthal velocity vs. time for different values of radial flow parameter A_{0} when the flow is viscous and the axial pressure gradient is zero while Diagram (b) is based on Eq. (5.33) and represents variation of the maximum azimuthal velocity with time for different values of radial flow parameter A_{0} when the flow is viscous and the axial pressure gradient is non-zero. Here kinematic viscosity $\nu=0.000017 \mathrm{~m}^{2} \mathrm{~s}^{-1}$ and $a=1 \mathrm{~s}^{-1}$119
6.1 The radial profile of the radial component $u(r)$ of velocity based on Eq. (6.11). The parameters assumed here for the diagram are $h=50$, and $a=1$.
6.2 (a) The radial profile of the vertical velocity w and (b) the dependence of w on z. The plots are based on Eq. (6.13) and the parameters assumed here for the diagram are $h=50$, and $a=1$.140

6.3 Plots for (a) the radial profile of the azimuthal velocity v and (b) the
dependence of v on z. The plots are based on Eq. (6.28) and the
parameters assumed here for the diagram are $S=0.50, h=50$ and
$a=1$. 142
6.4 Plots for vertical profiles of the azimuthal velocity v based on Eq. (6.28). The parameters assumed here for the diagram are $S=0.98$, $h=50$ and $a=1$.143
6.5 (a) The radial distribution of pressure difference $p(r, z)-p(0, z)$ based on Eq. (6.36). (b) The axial distribution of pressure difference $p(r, z)-$ $p(r, 0)$ based on Eq. (6.38) with $S=0.98$ and (c) The axial distribution of pressure difference $p(r, z)-p(r, 0)$ based on Eq. (6.38) with $S=0.15$. The other parameters assumed here for the diagrams are $h=50$ and $a=1$.144
6.6 (a) The radial distribution of pressure difference $p(r, z)-p(0, z)$ based on Eq. (6.36) with $z=h / 4 a$. (b) The axial distribution of pressure difference $p(r, z)-p(r, 0)$ based on Eq. (6.38). The other parameters assumed here for the diagrams are $S=0.50, h=50, a=1$ and $r=1$. 145
7.1 Schematic diagram of the physical model of hurricane. The narrowcolumnar geometry is the relatively motionless warm region calledeye placed symmetrically with respect to the vertical axis. The eye issurrounded by the pure updraft zone, within the vertical layer calledeye-wall which witnesses heavy downpour. The outermost zone con-tains violently rotating wind with extremely moist air at the loweraltitudes and its radial inflow downdraft supplies moisture for up-draft through the boundary layer.154
7.2 The diagram, based on Eq. (7.27), represents vertical profile of v_{10}, the zeroth order azimuthal velocity, for $t=0$. Here $\lambda=2, \beta=0.5$, $W_{0}=0.12$, are the parameters used for the plot 170
7.3 The diagram displays (a) the zeroth order and (b) the first order perturbed azimuthal velocity along the vertical axis for $\delta=0$ at different instants mentioned in the legend 170
7.4 The diagram displays the azimuthal velocity, (a) for Reynolds number $R e=10000$ (b) Reynolds number $R e=100$, for $\delta=0$ along the vertical axis at different instants 171
7.5 The diagram represents the azimuthal velocity v vs. z for different Reynolds number at time $t=1$, and $\delta=0$. 172
7.6 The diagrams display vertical pressure distribution for $\delta=0$ and the impact of (a) time t ($R e=10000, a=100$) (b) the Reynolds number $R e(r=20, a=100, t=1)$ and (c) the radial distance $(R e=10000$, $a=100, t=1)$. 173
7.7 The diagram represents azimuthal velocity along the vertical axis for $\delta=0$ at different instants mentioned in the legend for the second region. 174
7.8 The diagram represents the variation of surface central pressure drop with time based on Eq. (7.52) 176

