List of Figures

1.1	(a) A tornado with funnel shape on the plains of North Dakota, USA
	(http://ww2010.atmos.uiuc.edu/(Gh)/guides/mtr/svr/torn/home.rxml)
	(Courtesy: National Severe Storms Laboratory (NSSL), USA). (b) A
	tornado with and unusual shape making right angle bend in the mid-
	dle. (http://www.weatherstock.com/tornadocat3.html) (Courtesy: The
	Weather stock, USA)
1.2	Naturally occurring atmospheric column vortex or dust devil formed
	in Arizona. (Source: https://en.wikipedia.org/wiki/Dust devil) 6
1.3	(a) Top view of Hurricane Irma. (Source: NOAA via the New York
	Times), (http://www.tampabay.com/hurricane-guide/Watch-out-Florida-
	Forecasters-predict-active-2018-hurricane season-166989625). (b) Ver-
	tical structure of hurricane. (Source: https://www.monolitonimbus.com.br/wp-
	content/uploads/2014/03/hurricane-structure-300x172.jpg) 9
3.1	Diagrammatic representation of the formation of a dust devil. Dashed
	curves show the direction of ambient winds blowing horizontally and
	then moving upward after supressing air the buffer zone, the inner-
	most and the outermost layers being shown by solid curves. Heights
	of the different layers indicate that the innermost rises the most. The
	two dotted circles indicate the inner and the outer boundaries of the
	rotating annular dust devil around a low pressure zone and kept intact
	by centripetal acceleration. $\dots \dots \dots$
3.2	The diagram gives the geometry of the whirlwind modelled as an
	annulus, drawn by solid lines and curves, of outermost radius r_o and
	innermost radius r_i measured from the axis oz . The inner region of
	radius r_i inside the annulus is a region of low pressure. The annulus is
	filled with air and has comparatively high pressure. Inside the annulus
	are shown concentric cylindrical layers shown by dotted lines, differing
	in some respect. u, v and w represent the radial, the azimuthal and
	the axial velocities respectively and ω_i and ω_o are respectively the
	angular velocities of the innermost and the outermost surfaces of the
	annulus

- 3.5 The diagrams (a d) display the variation of angular velocity and corresponding azimuthal velocity with radius based on Eq. (3.15). The various parameters used for the plots are: $\omega_o = 5 \ cycles \ s^{-1}$, $\omega_i = 25 \ cycles \ s^{-1}$, $r_o = 1.0 \ m$, $r_i = 0.1 \ m - 0.9 \ m$ 60
- 3.6 The diagrams (a d) display the variation of angular velocity and corresponding azimuthal velocity with radius based on Eq. (3.15). The various parameters used for the plots are: $\omega_o = 0$ cycles s^{-1} , $\omega_i = 25$ cycles s^{-1} , $r_o = 1.0$ m, $r_i = 0.1$ m - 0.9 m. 61

- 3.11 The diagrams (a-d) exhibit the variation of pressure difference across the innermost and the outermost layers with inner radius. This is based on Eq. (3.23). This corresponds to $\omega_o = 5 \ cycles \ s^{-1}$, and $\omega_i = 25 \ cycles \ s^{-1}$. In the four cases the inner radius varies as $(a) \ r_i = 0.1 \ m, \ (b) \ r_i = 0.3 \ m, \ (c) \ r_i = 0.5 \ m, \ (d) \ r_i = 0.9 \ m. \ldots 66$
- 3.12 The diagrams (a-d) exhibit the variation of pressure difference across the innermost and the outermost layers with inner radius. This is based on Eq. (3.23). This corresponds to $\omega_o = 20 \ cycles \ s^{-1}$, and $\omega_i = 25 \ cycles \ s^{-1}$. In the four cases the inner radius varies as $(a) \ r_i = 0.1 \ m, \ (b) \ r_i = 0.3 \ m, \ (c) \ r_i = 0.5 \ m, \ (d) \ r_i = 0.9 \ m. \ldots 67$
- 4.2 The diagram shows the radial velocity u(r) distribution along the radial direction for various values of c based on Eq. (4.10). 84

- 4.6 Diagrams based on Eq. (4.20) show the pressure $p(r, z) p(r_i, z_o)$ distribution along the radial coordinate r for various values of the ratio c/ν . Other parameters set for the graphs are $\omega_i = 25 \text{ cycles s}^{-1}$, $\omega_o = 5 \text{ cycles s}^{-1}$, $r_o = 1.0 \text{ m}$ and (a) $r_i = 0.2 \text{ m}$, r = 0.2 m - 1.0 m, (b) $r_i = 0.4 \text{ m}$, r = 0.4 m - 1.0 m, (c) $r_i = 0.7 \text{ m}$, r = 0.7 m - 1.0 m. 89

4	4.7	Diagrams based on Eq. (4.20) show the pressure $p(r, z) - p(r_i, z_o)$ at the radial coordinates $r = 0.8 \ m$, 0.9 m given in (a) and (b) parts of the figure respectively when r_i varies from 0.2 $m = 0.7 \ m$	
4	4.8	corresponding to various values of the ratio c/ν in the range $0.5-2.5$. Other parameters are $\omega_i = 25 \ cycles \ s^{-1}$ and $\omega_o = 5 \ cycles \ s^{-1}$ Diagrams based on Eq. (4.20) display plots for $p(r, z) - p(r_i, z_o)$ vs. c/ν . The various parameters are $r_o = 1.0 \ m, \ r_i = 0.4 \ m$ and $r = 0.6 \ m, 0.8 \ m$ respectively in (a) and (b). Other parameters are $\omega_i =$. 89
4	4.9	25 cycles s^{-1} and $\omega_o = 5$ cycles s^{-1} Diagrams based on Eq. (4.20) display plots for $p(r, z) - p(r_i, z_o)$ vs. c/ν . The various parameters are $r_o = 1.0 \ m, \ r_i = 0.7 \ m$ and $r = 0.7 \ m$. 90
4	4.10	0.8 m, 0.9 m respectively in (a) and (b). Other parameters are $\omega_i = 25 \text{ cycles } s^{-1}$ and $\omega_o = 5 \text{ cycles } s^{-1}$. 91
		and $\omega_o = 5 \text{ cycles } s^{-1}$.	. 91
Ę	5.1	The diagram is based on Eq. (5.18) and represents the variation of core radius of vortex with time with different values of the radial flow parameter A_0 for the inviscid flow and zero axial pressure gradient. Here initial core radius $\delta(t_0) = 1 m. \dots \dots \dots \dots \dots$. 112
ţ	5.2	The diagram is based on Eq. (5.20) and represents the variation of core radius of vortex with time with different values of the radial flow parameter A_0 for the inviscid flow and non-zero axial pressure mediant. Here initial core radius $\delta(t) = 1$ m	119
ţ	5.3	pradient. Here initial core radius $\delta(\iota_0) = 1 m$. Diagram is based on Eq. (5.26) represents the variation of core radius of vortex with time for different kinematic viscosities and zero axial	. 115
ļ	5.4	pressure gradient. Here, initial core radius $\delta(t_0) = 1 \ m.$ The diagram is based on Eq. (5.29) and represents the temporal variation of azimuthal velocity with radius for viscous flow and zero	. 114
ţ	5.5	axial pressure gradient. The diagram based on Eq. (5.27) represents the variation of core radius of vortex with time with different radial flow parameter A_0 for	. 115
Į	5.6	the viscous flow and non-zero axial pressure gradient. Here initial core radius $\delta(t_0) = 1 \ m$ and $a = 1 \ s^{-1}$. 116
		variation of azimuthal velocity with radius with different time for the viscous flow and non-zero axial pressure gradient. Here kinematic viscosity $\nu = 0.000017 \ m^2 \ s^{-1}$ and $a = 1 \ s^{-1}$.	. 117

5.7	Diagram (a) based on Eq. (5.15) represents the variation of maxi- mum azimuthal velocity vs. time for different values of radial flow parameter A_0 when the flow is inviscid and the axial pressure gradi- ent is zero while Diagram (b) is based on Eq. (5.15) and represents variation of the maximum azimuthal velocity with time for different values of radial flow parameter A_0 when the flow is inviscid and the axial pressure gradient is non-zero.	118
5.8	Diagram (a) based on Eq. (5.33) represents the variation of maximum azimuthal velocity vs. time for different values of radial flow parame- ter A_0 when the flow is viscous and the axial pressure gradient is zero while Diagram (b) is based on Eq. (5.33) and represents variation of the maximum azimuthal velocity with time for different values of ra- dial flow parameter A_0 when the flow is viscous and the axial pressure gradient is non-zero. Here kinematic viscosity $\nu = 0.000017 \ m^2 \ s^{-1}$ and $a = 1 \ s^{-1}$.	119
6.1	The radial profile of the radial component $u(r)$ of velocity based on Eq. (6.11). The parameters assumed here for the diagram are $h = 50$, and $a = 1$	139
6.2	(a) The radial profile of the vertical velocity w and (b) the dependence of w on z . The plots are based on Eq. (6.13) and the parameters assumed here for the diagram are $h = 50$, and $a = 1$.	140
6.3	Plots for (a) the radial profile of the azimuthal velocity v and (b) the dependence of v on z . The plots are based on Eq. (6.28) and the parameters assumed here for the diagram are $S = 0.50$, $h = 50$ and	
	$a = 1. \ldots $	142
6.4	Plots for vertical profiles of the azimuthal velocity v based on Eq. (6.28). The parameters assumed here for the diagram are $S = 0.98$, $h = 50$ and $a = 1$	143
6.5	(a) The radial distribution of pressure difference $p(r, z) - p(0, z)$ based on Eq. (6.36). (b) The axial distribution of pressure difference $p(r, z) - p(r, 0)$ based on Eq. (6.38) with $S = 0.98$ and (c) The axial distribu- tion of pressure difference $p(r, z) - p(r, 0)$ based on Eq. (6.38) with	110
6.6	S = 0.15. The other parameters assumed here for the diagrams are $h = 50$ and $a = 1$	144
	difference $p(r, z) - p(r, 0)$ based on Eq. (6.38). The other parameters assumed here for the diagrams are $S = 0.50$, $h = 50$, $a = 1$ and $r = 1$.	145

7.1	Schematic diagram of the physical model of hurricane. The narrow	
	columnar geometry is the relatively motionless warm region called	
	eye placed symmetrically with respect to the vertical axis. The eye is	
	surrounded by the pure updraft zone, within the vertical layer called	
	eye-wall which witnesses heavy downpour. The outermost zone con-	
	tains violently rotating wind with extremely moist air at the lower	
	altitudes and its radial inflow downdraft supplies moisture for up-	
	draft through the boundary layer	. 154
7.2	The diagram, based on Eq. (7.27), represents vertical profile of v_{10} ,	
	the zeroth order azimuthal velocity, for $t = 0$. Here $\lambda = 2$, $\beta = 0.5$,	
	$W_0 = 0.12$, are the parameters used for the plot	. 170
7.3	The diagram displays (a) the zeroth order and (b) the first order	
	perturbed azimuthal velocity along the vertical axis for $\delta = 0$ at	
	different instants mentioned in the legend.	. 170
7.4	The diagram displays the azimuthal velocity, (a) for Reynolds number	
	$Re = 10000$ (b) Reynolds number $Re = 100$, for $\delta = 0$ along the	
	vertical axis at different instants.	. 171
7.5	The diagram represents the azimuthal velocity v vs. z for different	
	Reynolds number at time $t = 1$, and $\delta = 0$.	. 172
7.6	The diagrams display vertical pressure distribution for $\delta = 0$ and the	
	impact of (a) time t ($Re = 10000$, $a = 100$) (b) the Reynolds number	
	Re(r = 20, a = 100, t = 1) and (c) the radial distance ($Re = 10000$,	
	a = 100, t = 1)	. 173
7.7	The diagram represents azimuthal velocity along the vertical axis for	
	$\delta = 0$ at different instants mentioned in the legend for the second	
	region.	. 174
7.8	The diagram represents the variation of surface central pressure drop	
	with time based on Eq. (7.52)	. 176