
Chapter 7

A general viscous model for

tropical cyclonic winds

7.1 Introduction

Cyclone is an extraordinary amazingly huge weather related phenomenon, which

originates over tropical oceans due to atmospheric pressure disturbances. It is known

as tropical cyclone with wind speed exceeding 33 ms−1 in the Atlantic and the

eastern North Pacific, typhoon in the western North Pacific and hurricane in the

central and eastern Pacific basins. It has enormous impacts on the society.

The most popular model for the azimuthal velocity is the Rankine’s (1882)

combined vortex model, where the azimuthal velocity depends only on the radial

coordinate. This has been extensively used for studying as well as explaining ob-

served tangential wind flow and deduced pressure distribution in dust devils (Sin-

clair, 1973; Cantor et al., 2006), waterspouts (Leverson and Sinclair, 1977) and

tornadoes (Hoecker, 1961; Wakimoto and Wilson, 1989; Winn et al., 1999; Lee and
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Samaras, 2004; Wurman and Samaras, 2004; Lee and Wurman, 2005; Tanamachi et

al., 2013).

Yet many fundamental questions related to hurricanes continue bewilder-

ing the science community. Unexpected variations in the wind direction from the

bottom to the top of the hurricane, radial growth in the wind angular momentum

in the boundary layer, unpredicted effect of ocean spray, huge rise in the upper

boundary layer temperature, etc. are a few of them. Genesis and maturing are still

underinvestigated.

Most of the existing theoretical models, idealized in one or the other way,

are based on the balanced vortex model in association with Sawyer-Eliassen trans-

verse circulation equation (Eliassen, 1951; Charney and Eliassen, 1964; Ooyama,

1969; Shapiro and Willoughby, 1982; Emanuel, 1986; Schubert and Hack, 1982;

Emanuel, 1995; Nolan et al., 2007; Wirth and Dunkerton, 2009). Models based on

balanced vortex combine the hydrostatic and gradient wind balances with radial

momentum and thermodynamic equations. The balanced vortex model conserves

the absolute angular momentum and predicts the azimuthal winds to be maximum

at the lower levels and decay upward (Emanuel, 1986; Stern and Zhang, 2016).

Kieu and Zhang (2009) presented an analytical model of tropical cyclones

with a purpose to investigate rapid intensification from the perspective of rotational

growth and central pressure-falls. They considered a simplified version of the primi-

tive equations with a linear first-order frictional term. In the paper, they separated

the entire domain into two regions and called them region 1 of a fixed radius, referred

to as the radius of maximum wind, and within which lies the maximum exponen-

tial wind growth, and region 2 which lies outside the region 1 and has no vertical

component of velocity. They derived velocities for the two regions separately before

stepping in any further discussion. If we compare their division of regions with the
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existing nomenclature of used for hurricane, we find that the region 1 comprises the

eye and the eye wall while the region 2 is that lying outside the eyewall. They solved

the governing equations for an axisymmetric flow by prescribing a time dependent

vertical velocity with exponential growth in the region 1 but no growth in the outer

region 2. They finally held the double exponential term, available in the azimuthal

velocity derived for the region 1 but absent in that for the region 2, to be responsible

for rapid intensification of tropical cyclones. Our curiosity about whether a double

exponential term is responsible for intensification of tropical cyclones even when

viscosity is of general type led us, unlike them, to consider a much more general

viscous term. A perturbation technique is required to include general viscous effects

for solution.

It is hence aimed mainly at resolving some of the problems raised above by

providing an exact analytical solution of the equations governing hurricane vortex.

Analytical solutions for a fully time dependent hurricane vortex have not been found

as yet. In this paper we intend to obtain an exact solution to the equations which

govern atmospheric vortices, but concentrate only on the hurricane. We derive a

class of exact solutions to a simplified version of the governing equations. The

vertical velocity has an impact inside the vortex core but zero outside it. The

solution is achieved by considering a particular axial variation of the axial velocity

in the inner vortex and zero outside of the vortex core. Azimuthal velocity is tried

to be derived as much general as possible by duly considering its radial, axial and

temporal dependences. To begin with, we assume Rankine type velocity.
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Figure 7.1: Schematic diagram of the physical model of hurricane. The narrow
columnar geometry is the relatively motionless warm region called
eye placed symmetrically with respect to the vertical axis. The eye
is surrounded by the pure updraft zone, within the vertical layer
called eye-wall which witnesses heavy downpour. The outermost
zone contains violently rotating wind with extremely moist air at
the lower altitudes and its radial inflow downdraft supplies moisture
for updraft through the boundary layer.

7.2 Mathematical formulation of the problem

7.2.1 The physical model

A hurricane or cyclone is physically a three dimensional natural phenomenon per-

ceived as a solitary vertical air vortex spinning in the cyclonic direction about the

axis of rotation having extra radial and vertical winds near the bottom (see Fig. 7.1).

In the inner cyclone, there is a calm region of low pressure referred to as eye which

is a vertical column of radius 20 km and is wrapped by another region known as
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eyewall with an external radius 30−50 km. This wrapping territory will be referred

to as inner region. Above the boundary layer of thickness 2 − 3 km, the radius of

the external eye-wall changes with height (Leonov, 2014). The eye-wall is made up

of strongly revolving winds together with radial inflows maximizing at its inner sur-

face. The vertical velocity, which is ideally contained within the eye-wall, is weaker

than the radial and azimuthal winds and further weakens outside the eye-wall. In

the outermost part of radius 400 − 600 km, surrounding the eyewall, the relative

rotation of the cyclone declines to zero. The blowing wind along the radial direction

is inward at the bottom and outward at the top of the hurricane. The entire vortex

is vertically layered into the bottom hurricane boundary layer, and upper adiabatic

layer with the total cyclonic height up to 20− 30 km (Leonov, 2014).

Inflow radial wind blowing from different directions in the hurricane bound-

ary layer is the most significant wind for the genesis of hurricane vortices, and when

a hurricane matures, the azimuthal component of the wind velocity is much stronger

than the radial and vertical components. These cyclones have been extensively in-

vestigated during the last seven decades. But till date no exact analytical model is

available for the motion of the real cyclonic vortex and pressure distribution within

and outside the vortex. Earlier most of the researchers considered either the linear

form of the inflow radial component of velocity or neglected it in comparison with

the azimuthal component.

Rankine (1882) was the first to present the radial profile of the azimuthal

velocity for incompressible steady inviscid flow with radial and vertical components

taken zero. The main problem with the Rankine vortex model is that it has sharp

peak at the wall of the core. Later, Burgers (1948) and Rott (1958) independently

obtained solution for viscous vortex motion of the steady incompressible flow em-

bedded in a radially inward stagnation point flow over a plane boundary with all
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non-zero velocity components, which was an improved version of Rankine model.

Both models are applicable for single celled vortex flow. Some unrealistic aspects of

the Burgers-Rott vortex, however, are that the radial and vertical velocity compo-

nents increase linearly to infinity.

As an attempt to understand the complete dynamics of mature hurricanes,

we present some new analytical solutions of general viscous incompressible equations

governing cyclones. Analytical solution of the equations governing atmospheric vor-

tices like tornado, hurricane, typhoon, cyclone etc. have always been a challenging

task due to their complex formulations. In this paper we intend to model only

cyclonic vortex.

7.2.2 Mathematical model of cyclonic vortex

We consider the cylindrical polar coordinates (r, θ, z) for the problem undertaken,

where r, θ, z respectively stand for the radial, angular and vertical coordinates.

The vertical coordinate is log-pressure coordinate defined as z = −H log(p/ps) with

respect to the reference pressure ps with p being pressure and H the scale height of

the hurricane. It is observed that practically, a rotating fluid mass in the form of a

mature vortex does not seem to differ much at different angles during its rotation

about the vertical axis. Thus, it is reasonable to consider the flow as symmetric

about the axis. This removes all terms where the angular coordinate θ is involved.

Hence, the three-dimensional model of atmospheric flows under the elastic and ax-

isymmetric approximation (Wilhelmson and Ogure, 1972; Willoughby, 1979) of an

incompressible Newtonian viscous fluid may be given by

∂u

∂t
+ u

∂u

∂r
+ w

∂u

∂z
− v2

r
− fv = −1

ρ

∂p

∂r
+ Fu, (7.1)
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∂v

∂t
+ u

∂v

∂r
+ w

∂v

∂z
+
uv

r
+ fu = Fu, (7.2)

∂w

∂t
+ u

∂w

∂r
+ w

∂w

∂z
= −1

ρ

∂p

∂z
+ b+ Fw, (7.3)

1

r

∂(ru)

∂r
+
∂w

∂z
− w

H
= 0. (7.4)

∂b

∂t
+ u

∂b

∂r
+N2w = Q, (7.5)

where u, v and w are the three wind components of velocity in the r, θ, z directions,

p is the pressure, b = g(T − Tref )/Tref is buoyancy with Tref (z) being the reference

temperature of the undisturbed atmosphere, Fu, Fv, Fw are frictional forces, f is

the Coriolis parameter; and N2 is the Brunt-Vaisala frequency.

Characteristic quantities are required to make various parameters dimen-

sionless. The radius, symbolized as a, of the region 1 which consists of the eye

and the eye wall could be considered an appropriate characteristic length. Fur-

ther, the azimuthal wind velocity, symbolized as va, at the periphery of region 1

seems to be the only probable characteristic velocity for non-dimensionalisation.

Therefore, the system of Eqs. (7.1)−(7.4), along with the boundary conditions are

non-dimensionalised in terms of the following dimensionless parameters:

t̄ =
t

T
, r̄ =

r

ra
, z̄ =

z

ra
, ū =

u

va
, v̄ =

v

va
, w̄ =

w

va
, p̄ =

p

P
. (7.6)

where T and P will be defined later. Further we consider b constant for analytical

solutions.

The dimensionless form of Eqs. (7.1)−(7.4), by dropping the bar, are

transformed to

∂u

∂t
+ u

∂u

∂r
+ w

∂u

∂z
− v2

r
− Sv = −∂p

∂r
+ F̄u, (7.7)
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∂v

∂t
+ u

∂v

∂r
+ w

∂v

∂z
+
uv

r
+ Su = F̄v, (7.8)

∂w

∂t
+ u

∂w

∂r
+ w

∂w

∂z
= −∂p

∂z
+ b̄+ F̄w, (7.9)

1

r

∂(ru)

∂r
+
∂w

∂z
− w

H1

= 0. (7.10)

here S = af/va, H1 = H/a, P = ρv2
a and T = a/va and quantities with bar denotes

non-dimensional parameters.

The classical Rankine-combined vortex is the solution of steady the two-

dimensional Euler equation governing an ideal inviscid fluid. The velocity field in this

is purely azimuthal and is given, in cylindrical polar coordinates, as q = [0, v(r), 0],

where v(r) = ζr/2, r ≤ a and v(r) = ζa2/2r, r > a. This flow consists of the

circular inner region (r ≤ a) of radius a moving with constant vorticity ζ surrounded

by irrotational flow everywhere outside the inner region.

We seek to apply here the method of separation of variables and hence

assume the azimuthal velocity as the product of F (r), a function exclusively of r,

and G(z, t), a function exclusively of z and t, i.e. v(r, z, t) = F (r)×G(z, t). Following

the Rankine-combined vortex model (Rankine, 1882), we further assume the radial

variation F (r) of the azimuthal velocity in the non-dimensional form F (r) = ζr/2,

for 0 ≤ r ≤ a, and F (r) = ζa2/2r, for r > a. In order to obtain a more general z-

dependent solution, we consider a piecewise solution in r with the azimuthal velocity

taken as

v(r, z, t) =


rG(z, t), for 0 ≤ r ≤ 1

G1(z, t)/r, for r > 1

, and 0 ≤ z ≤ H, (7.11)

In view of the quasi-balanced constraints, Charney and Elliasen (1964), Yanai (1964)

and Ooyama (1969) found it theoretically correct to describe the secondary circula-

tion growth in terms of an instability mode. Therefore, following Kein and Zhang
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(2009), we assume the diabatically induced ascending velocity as

w(r, z, t) = W0 sin(λz)eβt, for 0 ≤ r ≤ 1 , w(r, z, t) = 0, for r > 1. (7.12)

where W0, β, λ are constants non-dimensionlised respectively by va, a/va, a. This is

to be noted that there cannot be any sort of discontinuity at r = 1. Therefore, since

w(r, z, t) = 0 at r > 1, even w(1, z, t) = 0 which simply implies that z is an integral

multiple of π/λ at r = 1. Kieu and Zhang (2009) argue that β, the growth rate of

the vertical flow, is affected by friction and surface heat fluxes, hence is a function

of the axial coordinate z and the buoyancy frequency. However, it typically being

dimensionally of the order of 10−6−10−5 s−1 (Ooyama, 1969) may be approximated

to a constant.

The dimensionless governing equations (7.7)−(7.9) are now constrained by

the following boundary conditions:

u(r, z, t)r=0 = 0, u(r, z, t)r=Rm/a; v(r, z, t)r=0 = 0,

v(r, z, t)r=Rm/a = 0; w(r, z, t)z=0 = 0, w(r, z, t)z=H0/a.

 (7.13)

7.2.3 Analytical solutions

In this section, we present an analytical solution for time dependent viscous incom-

pressible flows in the cyclonic vortex governed by the azimuthal momentum Eq.

(7.8). In Eq. (7.8), F̄v represents the nondimensional viscous term in the azimuthal

direction. Most of the earlier researchers either considered, F̄v negligibly small or of

linear form (Kieu and Zhang, 2009). Here, we assume

F̄v =
1

Re

(
∂2v

∂r2
+

1

r

∂v

∂r
− v

r2
+
∂2v

∂z2

)
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Now, we solve the following equation for azimuthal velocity separately for the two

regions (1) 0 ≤ r ≤ 1 and (2) r > 1 separately by supplying radial and vertical

velocities

∂v

∂t
+ u

∂v

∂r
+ w

∂v

∂z
+
uv

r
+ Su =

1

Re

(
∂2v

∂r2
+

1

r

∂v

∂r
− v

r2
+
∂2v

∂z2

)
, (7.14)

7.2.3.1 Solution for the region 1

Assuming w1(r, z, t) = W (z)eβt, where W (z) = W0 sin(λz) as in Eq. (7.12), the

radial wind in the region 1 with vanishing radial velocity at r = 0, may be obtained,

from the continuity equation (7.10), as

u1(r, z, t) =
rW0

2

[
1

H1

sin(λz)− λ cos(λz)

]
eβt, (7.15)

Using Eqs. (7.12) and (7.15) into Eq. (7.14), we obtain the following equation for

the tangential wind in the region 1:

(7.16)
∂v1

∂t
+W0 sin(λz)

∂v1

∂z
eβt+

rW0

2

{
1

H1

sin(λz)−λ cos(λz)

}(
∂v1

∂r
+
v1

r
+S

)
eβt

=
1

Re

(
∂2v1

∂r2
+

1

r

∂v1

∂r
− v1

r2
+
∂2v1

∂z2

)
,

The only solution separable in the radial and axial-temporal coordinates of Eq.

(7.16) can be of the form v1(r, z, t) = rF1(z, t). Hence, using this form in Eq. (7.16),

we get

∂F1

∂t
+

[
W0 sin(λz)

∂F1

∂z
+
W0

2

{
1

H1

sin(λz)− λ cos(λz)

}
(2F1 + S)

]
eβt =

1

Re

∂2F1

∂z2
,

(7.17)
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In terms of G(z, t) (= F1(z, t) + S/2), Eq. (7.17) is transformed to

∂G

∂t
+W0

[
sin(λz)

∂G

∂z
+

{
1

H1

sin(λz)− λ cos(λz)

}
G

]
eβt =

1

Re

∂2G

∂z2
, (7.18)

We suppose that the vortex Reynolds number Re is very large; or equivalently that

ε = Re−1 � 1. In view of this, we seek an asymptotic solution of Eq. (7.18) of the

form

G(z, t) = G0(z, t) + εG1(z, t) + ε2G2(z, t) + ..... (7.19)

Assuming that this series expansion converges for higher orders, we can obtain a

solution for G(z, t) for various orders of ε by substituting Eq. (7.19) into Eq. (7.18).

However, in order to avoid unnecessary derivations in view of ε� 1, we present the

solution only up to the first order of ε. Thus, equations of the zeroth and the first

order of ε are

ε0 :
∂G0

∂t
+W0

[
sin(λz)

∂G0

∂z
+

{
1

H1

sin(λz)− λ cos(λz)

}
G0

]
eβt = 0, (7.20)

ε1 :
∂G1

∂t
+W0

[
sin(λz)

∂G1

∂z
+

{
1

H1

sin(λz)− λ cos(λz)

}
G1

]
eβt =

∂2G0

∂z2
. (7.21)

A possible solution of Eq. (7.20) is of the form

G0(z, t) = G
′

0(z) exp(µeβt), (7.22)

where µ is an arbitrary positive dimensionless number. Substituting Eq. (7.22) into

Eq. (7.20), we get

dG
′
0

dz
= −

[{
1

H1

− λ cot(λz)

}
+
βµ

W0

csc(λz)

]
G
′

0, (7.23)



Chapter 7. A general viscous model for tropical cyclonic winds 162

which on integration, yields G0(z, t) in the explicit form as

G0(z, t) = Ke(−z/H1) {sin(λz)}(1−βµ/λW0)

{
2 cos

(
λz

2

)}2(βµ/λW0)

exp
(
µeβt

)
, (7.24)

where K is an integration constant that determines the initial strength of the vortex

(See Appendix A for detailed analysis). The zeroth order tangential wind velocity

is given by

v10(r, z, t) = r

[
Ke(−z/H1) {sin(λz)}(1−βµ/λW0)

{
2 cos

(
λz

2

)}2(βµ/λW0)

exp
(
µeβt

)
− S

2

]
,

(7.25)

which has an infinite number of possible solutions depending on the values

of µ. However, the requirements for the regularity of Eq. (7.25) at z = 0 impose a

strong restriction on the range of µ. Thus for a regular solution of Eq. (7.25), we

have βµ/λW0 ≤ 1. Following Kieu and Zhang (2009), we take βµ/λW0 = 1 − δ,

where 0 ≤ δ ≤ 1. This substitution transforms Eq. (7.25) to

G0(z, t) = 2Ke(−z/H1) {sin(λz)}δ
{

cos

(
λz

2

)}2−δ

exp

(
λW0

β
(1− δ)eβt

)
, (7.26)

and the corresponding zeroth order azimuthal wind velocity, in terms of δ, may be

given by

v10(r, z, t) = r

[
2Ke(−z/H1)

{
sin

(
λz

2

)}δ {
cos

(
λz

2

)}(2−δ)

exp

(
λW0

β
(1− δ)eβt

)
− S

2

]
,

(7.27)

Now we seek to solve Eq. (7.21) by presenting it in the form

e−βt
∂G1

∂t
+W0 sin(λz)

∂G1

∂z
+W0

{
1

H1

sin(λz)− λ cos(λz)

}
G1 = e−βt

∂2G0

∂z2
, (7.28)
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Assuming G1(z, t) = Γ(z, t)G0(z, t) in Eq. (7.28) and using Eq. (7.20), we obtain

e−βt
∂Γ

∂t
+W0 sin(λz)

∂Γ

∂z
= F (z, t), (7.29)

where

F (z, t) = e−βt
[
λ2δ(δ − 1)

4
cot2

(
λz

2

)
+
λ2(2− δ)(1− δ)

4
tan2

(
λz

2

)
− δλ

H1

cot

(
λz

2

)
+

(2− δ)λ
H1

tan

(
λz

2

)
+

(
1

H2
1

− (2δ − δ2 + 1)λ2

2

)]
,

(7.30)

The solution of Eq. (7.30) is given by (the detailed analysis is given in Appendix

B),

(7.31)

Γ(z, t) =
1

β

[
λ2δ(δ − 1)

4
exp

(
2λW0

eβt

β

)
cot2

(
λz

2

)
I11

+
λ2(2− δ)(1− δ)

4
exp

(
−2λW0

eβt

β

)
tan2

(
λz

2

)
I22

− δλ

H1

exp

(
λW0

eβt

β

)
cot

(
λz

2

)
I33

+
(2− δ)λ
H1

exp

(
−λW0

eβt

β

)
tan

(
λz

2

)
I44

+

(
1

H2
1

− (2δ − δ2 + 1)λ2

2

)
log

(
eβt

β

)]
+ φ(A),

where φ(A) is an arbitrary function of A = eβt/β − (1/(λW0)) log (λz/2), which is

itself a constant and is given by (B4) in Appendix B. This may be noted that

A has a singularity at z = 0, and hence φ(A) too, which may be eliminated by

considering φ(A) = γ a constant. Thus, the first order solution of G1(z, t) may be
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given by

(7.32)G1(z, t)

= 2Ke(−z/H1)

{
sin

(
λz

2

)}δ {
2 cos

(
λz

2

)}(2−δ) [
1

β

{
λ2δ(δ − 1)

4
exp

(
2λW0

eβt

β

)
×

cot2

(
λz

2

)
I11+

λ2(2− δ)(1− δ)
4

exp

(
−2λW0

eβt

β

)
tan2

(
λz

2

)
I22−

δλ

H1

exp

(
λW0

eβt

β

)
×

cot

(
λz

2

)
I33 +

(2− δ)λ
H1

exp

(
−λW0

eβt

β

)
tan

(
λz

2

)
I44

+

(
1

H2
1

− (2δ − δ2 + 1)λ2

2

)
log

(
eβt

β

)}
+ γ

]
exp

(
λW0

β
(1− δ)eβt

)
,

With the first order viscous correction, the tangential wind velocity in region 1 is

now given by

v1(r, z, t) = r [G0(z, t) + εG1(z, t)− S/2] = rψ(z, t). (7.33)

where

(7.34)ψ(z, t) = 2Ke(−z/H1)

{
sin

(
λz

2

)}δ {
2 cos

(
λz

2

)}(2−δ) [
1

+
1

Re

{
1

β

{
λ2δ(δ − 1)

4
exp

(
2λW0

eβt

β

)
cot2

(
λz

2

)
I11+

λ2(2− δ)(1− δ)
4

×

exp

(
−2λW0

eβt

β

)
tan2

(
λz

2

)
I22 −

δλ

H1

exp

(
λW0

eβt

β

)
cot

(
λz

2

)
I33

+
(2− δ)λ
H1

exp

(
−λW0

eβt

β

)
tan

(
λz

2

)
I44+

(
1

H2
1

− (2δ − δ2 + 1)λ2

2

)
log

(
eβt

β

)}
+γ

}]
×

exp

(
λW0

β
(1− δ)eβt

)
− S

2
.

The radial pressure gradient is obtained, by using Eqs. (7.12), (7.15) and (7.34) into

Eq. (7.7), as

∂p1

∂r
=−r

[
W0e

βt

4

{
1

H1

sin(λz)−λ cos(λz)

}{
2β+W0

(
1

H1

sin(λz)−λ cos(λz)

)
eβt

+
2λ2

Re

}
+
W 2

0 λ

2
sin(λz)

{
1

H1

cos(λz) + λ sin(λz)

}
e2βt − ψ2 − Sψ

]
,

(7.35)
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Integration of Eq. (7.35), with respect to r, gives

p1(r, z, t)− p1(1, z, t) =
(1− r2)

2

[
W0e

βt

4

{
1

H1

sin(λz)− λ cos(λz)

}{
2β

+W0

(
1

H1

sin(λz)− λ cos(λz)

)
eβt +

2λ2

Re

}
+
W 2

0 λ

2
sin(λz)

{
1

H1

cos(λz) + λ sin(λz)

}
e2βt − ψ2 − Sψ

]
,

(7.36)

The axial pressure gradient is obtained, by using Eqs. (7.12), (7.15) into Eq. (7.9),

as

∂p1

∂z
= −W

2
0 λ

2
sin(2λz)e2βt + b̄−W0

(
β +

λ2

Re

)
sin(λz)eβt, (7.37)

Integrating Eq. (7.37) from the initial level z0 to z, we get

(7.38)
p1(r, z, t)− p1(r, z0, t) =

W 2
0

4
(cos(2λz)− cos(2λz0)) e2βt +

W0

λ

(
β +

λ2

Re

)
× (cos(2λz)− cos(2λz0)) eβt +

z∫
z0

b̄dz,

Then substituting r = 1 into Eq. (7.38) and substituting in Eq. (7.36), we get

p1(r, z, t)− p1(1, z, t) =
(1− r2)

2

[
W0e

βt

4

{
1

H1

sin(λz)− λ cos(λz)

}{
2β

+W0

(
1

H1

sin(λz)− λ cos(λz)

)
eβt +

2λ2

Re

}
+
W 2

0 λ

2
sin(λz)

{
1

H1

cos(λz) + λ sin(λz)

}
e2βt − ψ2 − Sψ

]
+
W 2

0

4
(cos(2λz)− cos(2λz0)) e2βt +

W0

λ

(
β +

λ2

Re

)
× (cos(2λz)− cos(2λz0)) eβt +

z∫
z0

b̄dz,

(7.39)
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7.2.3.2 Solution for the region 2

From the continuity equation (7.10) and assuming w2(r, z, t) = 0, the radial wind in

region 2 may be given by

u2(r, z, t) =
c1(z, t)

r
, (7.40)

where c1(z, t), an integral function, is obtained by matching the radial velocities at

the outer boundary of the core, i.e., at r = 1. Thus the radial velocity may be given

by

u2(r, z, t) =
W0

2r

[
1

H1

sin(λz)− λ cos(λz)

]
eβt. (7.41)

Substitution of u2 into Eq. (7.14), followed by some manipulations, yields

(7.42)
∂v2

∂t
+
W0

2r

{
1

H1

sin(λz)− λ cos(λz)

}(
∂v2

∂r
+
v2

r
+ S

)
eβt

= ε

(
∂2v2

∂r2
+

1

r

∂v2

∂r
− v2

r2
+
∂2v2

∂z2

)
,

A possible separable solution of Eq. (7.42) is of the form v2(r, z, t) = F2(z, t)/r so

that we have

∂F2

∂t
− ε∂

2F2

∂z2
=
W0

2

{
1

H1

sin(λz)− λ cos(λz)

}
Seβt, (7.43)

which itself is separable in the form F2(z, t) = M(z)eβt, where M(z) satisfies the

following equation:

d2M

dz2
− β

ε
M =

W0

2ε

{
1

H1

sin(λz)− λ cos(λz)

}
S, (7.44)

whose solution is obtained as

M(z) = c1e
−
√
βRez + c2e

√
βRez − W0S

2(λRe−1 + β)

{
1

H1

sin(λz)− λ cos(λz)

}
., (7.45)
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For a finite solution of v2(r, z, t), F2(z, t) and hence M(z) must be finite, which is

possible only when c2 = 0, which increases it infinitely. This constraint reduces Eq.

(7.45) to

M(z) = c1e
−
√
βRez − W0S

2(λRe−1 + β)

{
1

H1

sin(λz)− λ cos(λz)

}
. (7.46)

Thus the azimuthal velocity for this region may be given by

v2(r, z, t) =
eβt

r
M(z), (7.47)

We obtain c1 by using the second condition, i.e., the azimuthal velocities v1 and v2

of the two regions are the same when t = 0, z = 0 and r = 1. Thus, we have

v2(r, z, t) = − S
2r

[{
1 +

λW0

(λRe−1 + β)

}
e−
√
βRez +

W0S

(λRe−1 + β)

{
1

H1

sin(λz)− λ cos(λz)

}]
eβt.

(7.48)

Corresponding radial pressure gradient is obtained, by applying Eqs. (7.12), (7.41)

and Eq. (7.48) into Eq. (7.7), as

(7.49)
∂p2

∂r
= −W0

2

{
1

H1

sin(λz)− λ cos(λz)

}[
1

r

(
β + λ2Re−1

)
− W0

2r3

{
1

H1

sin(λz)− λ cos(λz)

}
eβt
]
eβt +

M2

r3
e2βt +

SM

r
eβt.

Further, integrating Eq. (7.49) with respect to r, we get

(7.50)

p2(r, z, t)− P (z, t) = −W0

2

{
1

H1

sin(λz)− λ cos(λz)

}[(
β + λ2Re−1

)
log(r)

+
W0

4r2

{
1

H1

sin(λz)− λ cos(λz)

}
eβt
]
eβt

− M2

2r2
e2βt + SM log(r)eβt.
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P (z, t) may be obtained by using the second condition p2(Rm, z, t) = 0, at r = Rm.

Thus, we have

(7.51)

p2(r, z, t) = −W0

2

{
1

H1

sin(λz)− λ cos(λz)

}[(
β + λ2Re−1

)
log

(
r

Rm

)
+
W0

4

(
1

r2
− 1

R2
m

){
1

H1

sin(λz)− λ cos(λz)

}
eβt
]
eβt

− M2

2

(
1

r2
− 1

R2
m

)
e2βt + SMeβt log

(
r

Rm

)
.

7.3 Results and discussion

This is an analytical model of an intense hurricane vortex by considering a diabati-

cally induced ascending motion proposed by Kieu and Zhang (2009). The particular

form of the vertical velocity assumed by Kieu and Zhang (2009) is used to solve the

governing equations analytically. We have further assumed that the vertical velocity

is independent of the radial coordinate r.

In most the investigations the vortex motion has been considered inviscid.

However, Kieu and Zhang (2009) considered viscous flow but took a linear form of

viscosity. Unlike them, we have considered the general form and used a perturbation

technique to analyze the contribution of viscosity to hurricane dynamics despite the

fact that the Reynolds number is very large in such a rotational motion. Due to the

large Reynolds number and highly complicated expressions, we confined the entire

solution to the first order of ε = Re−1(� 1). Besides the azimuthal velocity, pressure

too has been considered worth discussing.
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7.3.1 Analysis of the solution in the region 1

As per our assumptions made in Section (7.2.2), we have only azimuthal velocity

derived for the two regions viz., the inner region and the outer region. In the eye-

wall, updraft and rotational wind motion about the vertical axis are witnessed. Since

the vertical velocity is the same as that assumed by Kieu and Zhang (2009), we shall

confine the discussion around the azimuthal velocity.

7.3.1.1 Azimuthal velocity

The role of δ which is a parameter in the formulation of the azimuthal velocity,

the contribution due to the perturbation term and the edge of general viscosity

consideration over the linear form assumed by Kieu and Zhang (2009) is required

for discussion.

In order to examine the impact of δ, where βµ/(λW0) = 1 − δ, 0 ≤ δ ≤ 1

on the unperturbed azimuthal velocity v10, we plot v10 versus z, displayed in Fig.

7.2, against a wide range of δ at t = 0 and for λ = 2, β = 0.5, W0 = 0.12 and

r = 1 which is the interface of the two regions. It is observed that the azimuthal

velocity increases while ascending along the vertical axis up to a certain height and

then begins to fall in magnitude. An interesting observation is that up to that

height v10, the zeroth order azimuthal velocity, increases with δ but coincides at

non-dimensional z = 1 ∀δ. Trends are exactly reverse above that. This is almost

the same as that Kieu and Zhang (2009) discovered. This is to be noted that they

used dimensional parameters.
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Figure 7.2: The diagram, based on Eq. (7.27), represents vertical profile of v10,
the zeroth order azimuthal velocity, for t = 0. Here λ = 2, β = 0.5,
W0 = 0.12, are the parameters used for the plot.

Figure 7.3: The diagram displays (a) the zeroth order and (b) the first order
perturbed azimuthal velocity along the vertical axis for δ = 0 at
different instants mentioned in the legend.



Chapter 7. A general viscous model for tropical cyclonic winds 171

The contribution of the first perturbation term is another vital aspect of

this investigation. Accordingly, we plot v10 and v11 versus z by varying t in the range

0 − 3 in Figs. 7.3. The two have similar patterns with v1 exceeding a little bit in

magnitude but both of them increase with time t. However, the real contribution

of the perturbation term will be much less as it is multiplied by ε = Re−1 which is

of the order of 10−4 for a real hurricane. The combined effect has been displayed in

Figs. 7.4(a) and 7.4(b) respectively for Re = 10000 and 100. For comparatively small

Reynolds number, the contribution of the perturbation term, in terms of magnitude,

is quite significant. Moreover, the pattern we get here is quite similar to what

Kieu and Zhang (2009) observed. Scales are distinct for the reason that they used

dimensional parameters; however, they claim the figures to use non-dimensional

units. If so, then probably they used different characteristic parameters which are

nowhere mentioned in the article.

Figure 7.4: The diagram displays the azimuthal velocity, (a) for Reynolds num-
ber Re = 10000 (b) Reynolds number Re = 100, for δ = 0 along the
vertical axis at different instants.
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7.3.1.2 Vertical pressure distribution

Pressure for region 1 is given by Eq. (7.39). Apart from the radial and axial

coordinates, it depends also on time, viscosity and the radius of maximum wind.

Therefore, in this subsection, we would discuss temporal, viscous and the radius

of maximum wind impacts on radial and vertical pressure distribution. Vertical

pressure distribution is displayed in Figs. 7.6, in which the parameters viz., time, the

Reynolds number and the radial distance are varied respectively in Fig. 7.6(a)− (c)

in order to examine their effects when other parameters are kept constant.

Figure 7.5: The diagram represents the azimuthal velocity v vs. z for different
Reynolds number at time t = 1, and δ = 0.

Keeping the reference pressure p1(1, 0, t), i.e., that at the radius of maxi-

mum wind on the ground we observe that with all variations in the three parts of
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the figure, pressure ascends with height. Setting Re = 10000 and the radius of max-

imum wind a = 100, temporal variation reveals in Fig. 7.6(a) that pressure drops

with increasing time. Fixing r = 20, a = 100, t = 1, we find in Fig. 7.6(b) that

pressure drops when Re is increased; whereas when Re = 10000, a = 100, t = 1, are

kept unaltered, pressure ascends with the radial distance (see Fig. 7.6(c)).

Figure 7.6: The diagrams display vertical pressure distribution for δ = 0 and
the impact of (a) time t (Re = 10000, a = 100) (b) the Reynolds
number Re (r = 20, a = 100, t = 1) and (c) the radial distance
(Re = 10000, a = 100, t = 1).

7.3.2 Analysis of the solution in the region 2

The region 2 which contains violently rotating wind with extremely moist air at the

lower altitudes and its radial inflow downdraft supplies moisture for updraft through

the boundary layer has an extremely important role to play for the updraft in the

eye wall. We study the azimuthal velocity with the vertical profile of the azimuthal

velocity plotted in Fig. 7.7 in a temporal range 0 − 3. Unlike within the region 1
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for which perturbation technique had to be used, exact solution has been obtained

in region 2.

Figure 7.7: The diagram represents azimuthal velocity along the vertical axis for
δ = 0 at different instants mentioned in the legend for the second
region.

Near the ground the azimuthal velocity is found to rise very fast with time,

but reverse is the trend at a little bit height and becomes independent of time at

high altitudes. It drops further with time at even higher altitudes. The trends are

qualitatively similar to that in the region 1 but quantitative difference is there. In

fact the two regions conform to the Rankines’ model as assumed in the beginning.

The presence of sine and cosine terms seem to periodically change the trends with

height. This region has no vertical velocity.
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7.3.3 Pressure deficit

The relationship between the central pressure deficit and the peak wind speed near

the ground surface in a tropical cyclone has important consequences in meteorology

from physical point of view. It is also related to risk of damage and loss of life

(Chavas et al., 2017). The central pressure deficit in a tropical cyclone is defined as

the difference in pressure between the centre of the storm and outside it. We denote

it by ∆p̃ = 1 − pm/p0, where pm is the minimum central pressure near the surface

and p0 is the environmental pressure at the outer edge of the storm.

The minimum central pressure near the surface may be obtained with the

help of Eq. (7.39) and Eq. (7.51), which is

pm(t) = −λW0e
βt

2

[(
β +

λ2

Re

)
log(Rm) +

λW0

4

(
1− 1

R2
m

)
eβt
]

+
S2

8

(
1− 1

R2
m

)
e2βt

+
S2

2
eβt log(Rm)− 1

8

[
λW0e

βt

{
2

(
β +

λ2

Re

)
− λW0e

βt

}
− S2

]
.

(7.52)

It is observed that the central presure drop decreases with time (Fig. 7.8). The

observation is similar to that Kieu and Zhang (2009) who found it to conform ex-

perimental dara.
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Figure 7.8: The diagram represents the variation of surface central pressure drop
with time based on Eq. (7.52).

7.4 Conclusions

Unlike a special linear form of viscosity, we assumed a general type of viscosity for

investigating the reason behind rapid intensification of cyclonic wind. The existence

of double exponential terms was discovered as the reason for linear viscosity. Similar

terms are observed even for the general form of viscosity. Hence, it is concluded that

double exponential terms accelerate the rotational motion irrespective of the form

of the viscosity.

The domain of analysis is split into two regions, one which is distinct in the

sense that all the updraft in confined in this region only which entirely lies within

the radius of maximum velocity and the other beyond it, which is without updraft,

has only azimuthal velocity.
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Vertical pressure depends on time, viscosity and the radius of maximum

wind. Within the radius of maximum wind, we observe that pressure ascends with

height and the radial distance but drops with time and also when the Reynolds

number is increased.

The azimuthal velocity rises fast with time close to the ground, but this

dependence diminishes at a height little above the ground. At a considerable height,

time sieges to be a factor and further, above that, trends reverse.

Near the ground the azimuthal velocity is found to rise very fast with time,

but reverse is the trend at a little above and becomes independent of time at high

altitudes. It drops further with time at even higher altitudes.

Mathematical method for the solution is perturbation technique. It is found

that the perturbation terms behave almost identically with the terms without pertur-

bation. The significance of their contribution definitely depends on the magnitude of

the Reynolds number. Unlike within the region 1 for which perturbation technique

had to be used, exact solution is obtained for region 1. The trends are qualitatively

similar to that in the region 1 but quantitative difference is definitely marked. It is

also observed that the central pressure drop decreases with time.
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Appendices

Appendix A

Analytical solution for the eye wall

Plunging Eq. (7.22) into Eq. (7.20), we obtain

dG
′
0

dz
= −

[(
1

H1

− λ cot(λz)

)
+
βµ

W0

csc(λz)

]
G
′

0, (A1)

On integration, we have

log

(
G
′
0

K

)
= −

[
z

H1

− log(sin(λz))− βµ

λW0

log(cot(λz) + csc(λz))

]
,

G
′

0(z) = Ke−(z/H1) {sin(λz)}( 1− βµ/λW0)

{
2 cos

(
λz

2

)}2(βµ/λW0)

, (A2)

where K is an integration constant (with unit per second) that determines the initial

strength of the vortex.

Eq. (A2) contains an infinite number of possible solution depending on the values

of µ. However, the requirements for the regularity of Eq. (A2) at z = 0 impose a

strong restriction on the range of µ. Using L’ Hospital rule for regular solution we

have 1 ≥ βµ/λW0. Taking βµ/λW0 = 1 − δ, where 0 ≤ δ ≤ 1. Thus, Eq. (A2)

reduces to

G
′

0(z) = Ke−(z/H1) {sin(λz)}δ
{

cos

(
λz

2

)}2−δ

, (A3)
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Appnendix B

To solve Eq. (7.28), we let G1(z, t) = Γ(z, t)G0(z, t), and use Eq. (7.20) we obtain

e−βt
∂Γ

∂t
+W0 sin(λz)

∂Γ

∂z
= F (z, t). (B1)

where

eβtF (z, t) =
(2δ − 1)δλ2

4
cot2

(
λz

2

)
+

(1− 3δ)λ

2H1

cot

(
λz

2

)
+

{
1

H2
1

− (5− 2δ)δλ2

4

}
+

(3− δ)λ
2H1

tan

(
λz

2

)
− δλ2

4
csc2

(
λz

2

)
,

(B2)

Now we solve Eq. (B2) by applying Lagrange subsidiary equation

dt

e−βt
=

dz

W0 sin(λz)
=

dΓ

F (z, t)
, (B3)

Solution of the first equality is

eβt

β
− 1

λW0

log

(
λz

2

)
= A, (B4)

where A is an integration constant.

The second integral is obtained by last two equality

dΓ

dz
=

F (z, t)

W0 sin(λz)
, (B5)
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Integrating Eq. (B5), with respect to z, we obtain

β−1Γ(z, t) =
λ2δ(δ − 1)I1

4
+
λ2(2− δ)(1− δ)I2

4
− δλI3

H1

+
(2− δ)λI4

H1

+(
1

H2
1

− (2δ − δ2 + 1)λ2

2

)
I5 + β−1φ(A),

(B6)

where

I1 =

∫
cot2

(
λz
2

)
W0 sin(λz)

(
A+ 1

λW0
log
{

tan
(
λz
2

)})dz,
I2 =

∫
tan2

(
λz
2

)
W0 sin(λz)

(
A+ 1

λW0
log
{

tan
(
λz
2

)})dz,
I3 =

∫
cot
(
λz
2

)
W0 sin(λz)

(
A+ 1

λW0
log
{

tan
(
λz
2

)})dz,
I4 =

∫
tan
(
λz
2

)
W0 sin(λz)

(
A+ 1

λW0
log
{

tan
(
λz
2

)})dz,
I5 =

∫
dz

W0 sin(λz)
(
A+ 1

λW0
log
{

tan
(
λz
2

)})dz.



(B7)

Substitutng A + 1
λW0

log
{

tan
(
λz
2

)}
= P , we get dz = W0 sin(λz)dP , tan

(
λz
2

)
=

e(P−A)λW0 and cot
(
λz
2

)
= e−(P−A)λW0 , thus integrals (B7) reduces to

I1 = e2λW0AI11, I2 = e−2λW0AI22, I3 = eλW0AI33, I4 = e−λW0AI44, I5 =

∫
eP

P
dP,

(B8)

where

I1 =

∫
e−2λW0P

P
dP, I22 =

∫
e2λW0P

P
dP, I33 =

∫
e−λW0P

P
dP, I44 =

∫
eλW0P

P
dP,

(B9)
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Thus, we have

β−1Γ(z, t) =
λ2δ(δ − 1)

4
exp

(
2λW0

eβt

β

)
cot2

(
λz

2

)
I11 +

λ2(2− δ)(1− δ)
4

× exp

(
−2λW0

eβt

β

)
tan2

(
λz

2

)
I22 −

δλ

H1

exp

(
λW0

eβt

β

)
cot

(
λz

2

)
I33+

(2− δ)λ
H1

exp

(
−λW0

eβt

β

)
tan

(
λz

2

)
I44 +

(
1

H2
1

− (2δ − δ2 + 1)λ2

2

)
log

(
eβt

β

)
+ β−1φ(A),

(B10)

Thus, we get the first order solution as

G1(z, t) = 2Ke−(z/H1)

{
sin

(
λz

2

)}δ {
cos

(
λz

2

)}2−δ

Γ(z, t) exp

(
λW0

β
(1− δ)eβt

)
.

(B11)

***********




	7 A general viscous model for tropical cyclonic winds
	7.1 Introduction
	7.2 Mathematical formulation of the problem
	7.2.1 The physical model
	7.2.2 Mathematical model of cyclonic vortex
	7.2.3 Analytical solutions
	7.2.3.1 Solution for the region 1
	7.2.3.2 Solution for the region 2


	7.3 Results and discussion
	7.3.1 Analysis of the solution in the region 1
	7.3.1.1 Azimuthal velocity
	7.3.1.2 Vertical pressure distribution

	7.3.2 Analysis of the solution in the region 2
	7.3.3 Pressure deficit

	7.4 Conclusions


