
Chapter 6

A generalized viscous model

governing tornado dynamics: An

exact solution

6.1 Introduction

A tornado is a fast whirling columnar vortex wind system hanging as a pendent

from a cumuliform cloud in contact with the surface of the earth. It is witnessed

as a funnel merging into clouds with circulating dust at the foot. This low pressure

visual core vortex rotating with terrific energy also travels along the ground surface.

It is the most violent and destructive atmospheric vortex on the surface of the Earth.

It is observed all over the world such as in Japan, Bangladesh, Britain, Australia,

The contents of this chapter are published in Zeitschrift für Naturforschung A, 73(8), 753-766,
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but in large number in Tornado Alley in the USA. It is generally believed that the

circulation of a tornado vortex is maintained by the rotating mother cloud and the

sense of the vortex rotation coincides with that of the associated mother cloud (Ying

and Chang, 1970).

Numerous theoretical and empirical models are available in the literature.

The tangential velocity in tornadoes are generally approximated by continuous func-

tions that are zero at the centre of the tornado, increase to a maximum at some

radial distance, and then decrease asymptotically to zero at points infinitely distant

from the centre. Different forms of the tangential component of velocity have been

proposed with idealized Rankine (1882) combined vortex model as a first approxima-

tion. However, due to the absence of the radial and vertical components of velocity,

Rankine combined vortex model is doubtfully a good approximation.

In the literature, a number of analytical, empirical and numerical models

are available discussing the flow field of mature tornado-like vortices for single-cells

and two-cells above the tornado boundary layer. Burgers (1948) and Rott (1958)

both individually presented exact solution of full Navier-Stokes equations for viscous

incompressible steady flow of a vortex with the radial velocity as u = −ar (a being

the constant of proportionality), the azimuthal velocity v = Γ (1− exp (−(ar2)/2ν)) /2πr

(Γ being the circulation and ν the kinematic viscosity), and the axial velocity

w = 2az. While the azimuthal velocity has been found to fit well to some ob-

served and experimental data by several researchers (Wood and Brown, 2011; Kim

and Matsui, 2017; Gillmeier et al., 2018 etc.), the model may not be useful due to

the fact that other components of velocity are unbounded. Other models available

in the literature are either empirical or are unable to model a real tornado.
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Sullivan (1959) gave an exact solution with some similarity to the Burgers-

Rott vortex model. He discussed both one-celled and two-celled vortices. The two-

celled vortex possesses an inner cell in which wind descends from above and flows

outward to meet a separate wind that converges radially. Both the winds rise at

the meeting point. The Sullivan vortex is a very simple vortex but can describe

the flow in an intense tornado having a central downdraft and also its updraft is

localized to a place meant for the thunderstorm. The axial pressure gradient however

increases vertically without bound. Two-cell analytical Sullivan (1959) vortex model

for steady incompressible viscous flow is quite complex.

Kuo (1971) analytically modeled the three-dimensional flow in the bound-

ary layer of a tornado-like vortex and alternatively solved the two nonlinear boundary-

layer equations for the radial and vertical velocities. The Bloor and Ingham (1987)

vortex model and the Vyas-Majdalani (2003) vortex model are exact solutions for

inviscid flows using the Euler’s equations respectively in a conical and a cylindrical

domain. Xu and Hangan (2009) used a free narrow jet solution combined with a

modified Rankine vortex to analytically model an inviscid tornado-like vortex. How-

ever, the combined model is not an exact solution to the Navier-Stokes-Equations.

Wood and White (2011) reported a new parametric model of vortex tangential-wind

profiles, which is based on the Vatistas et al. (1991) model and is mainly designed to

represent realistic-looking tangential wind profiles observed in atmospheric vortices.

Tornado-like flow field has been studied experimentally and/or numerically

in numerous reports. A few of them are as follows: Ward (1972) simulated in a lab-

oratory system the three features of tornadoes, viz., characteristic surface pressure

profile, bulging deformation on the vortex core and multiple vortices in a single

convergence system; Church et al. (1979) discussed the dynamics of natural torna-

does based on laboratory simulations; Lewellen et al. (1997) simulated tornado’s
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interaction with the surface; Natarajan (2012) discussed large eddy simulations of

translation and surface roughness effects on tornado-like vortices; Sabareesh et al.

(2012) too discussed surface pressure and surface roughness, whereas Liu and Ishi-

hara (2016) studied translation and roughness on tornado-like vortices; Haan et

al. (2008) designed a large tornado simulator for wind engineering applications;

Mishra et al. (2008) physically simulated single cell tornado like vortex; Refan et

al. (2014) tried to reproduce tornadoes in laboratory using proper scaling; Gillmeier

et al. (2016) analysed influence of tornado generator’s geometry on the flow field;

Nolan et al. (2017) worked on tornado vortex structure, intensity and surface wind

gusts in large eddy-simulations and Tang et al. (2018) worked on characteristics of

tornado-like vortex simulation.

Vatistas (1986) experimentally observed that in the concentrated vortex,

the azimuthal velocity component does not vary strongly in the axial direction.

Therefore, with those assumptions the radial velocity component can be obtained

from the θ−momentum equation. This approaches Rankine model as a parameter

denoting the sharpness of the velocity profile near the radius of the maximum wind

increases infinitely (the details are given the main text). Vatistas et al. (1989) model

is a generalization of a few well-known vortex tangential-velocity models. Vatistas

et al. (1991) proposed the tangential velocity profiles for vortices with continuous

distributions of flow quantities. Recently, Gillmeier et al. (2018) have reviewed some

classical analytical tornado-like vortex flow field models.

The full scale structure of tornado is highly complex and therefore several

issues such as instabilities, singularities and nonlinearity pop up to be addressed

(Lewellen, 1993; Alexander and Wurman, 2008; Karstens et al., 2010). Hence,

to understand the complete physical processes adhering to the tornado flow field,

simplified mathematical models are required, which minimize the error existing in
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the full-scale data observations and allow to explain original velocity and pressure

fields. Collecting real wind field data from tornadoes in nature has been a difficult

task for observers because of their destructive nature. Now-a-days researchers use

Doppler radars for enabling full-scale tornado data from a safe distance. However,

the data collected from such measurements are largely limited to the genesis of

tornadoes (Bluestein et al., 1993, 2003, 2005; Lund and Snow, 1993; Wurman et al.,

1996; Davies-Jones and Wood, 2006).

Ying and Chang (1970) opine, “Tornado is a huge vortex column with a

low pressure visual core”, and with this consideration Pandey and Maurya (2017)

floated a mathematical model for atmospheric vortices by assuming an annular vor-

tex. However, despite the fact that that the characteristics discovered hold for all

whirlwinds, it was discussed in detail with regard to dust devils.

Baker and Sterling (2017) have recently published a paper in which for in-

viscid vortex flows they assumed the dimensionless radial velocity as u = − 4δrz

(1+r2)(1+z2)
,

where δ is the ratio between the vertical and horizontal length scales, and the rest

bear the usual meaning. The other two components of velocity have been deduced as

v =
Kr log(1+z2)

(1+r2)
(K being a constant) and w =

4δ log(1+z2)
(1+r2)

2 from the Euler equation.

The viscous effects remained untouched.

With the objective to get new exact solutions to the equations governing

dynamics of tornadoes duly considering viscous effects, we target to model single-

cell tornadoes by considering radial velocity whose variation in vertical direction

is consistent with the flow field in the laboratory vortex simulator (Ward, 1972).

We aim to deduce vertical and azimuthal velocities and pressure as well with due

consideration to the inferences made by Makarieva et al. (2011), who concluded,

”The decrease of pressure along the vertical axis sustains the ascending air motion

with vertical velocity w and induces a compensating horizontal air inflow with radial
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velocity u. The converging radial flow has maximal velocity at the surface, where the

magnitude of the condensation-induced pressure drop is the largest. Radial velocity

approaches zero at a certain height z = h, which approximately coincides with the

cloud height”.

6.2 The physical model and mathematical formu-

lation

Equations governing the motion of a steady incompressible Newtonian viscous fluid

with axial symmetry are given by

u
∂u

∂r
+ w

∂u

∂z
− v2

r
= −1

ρ

∂p

∂r
+ ν

{
∂2u

∂r2
+

1

r

∂u

∂r
− u

r2
+
∂2u

∂z2

}
, (6.1)

u
∂v

∂r
+ w

∂v

∂z
+
uv

r
= ν

{
∂2v

∂r2
+

1

r

∂v

∂r
− v

r2
+
∂2v

∂z2

}
, (6.2)

u
∂w

∂r
+ w

∂w

∂z
= −1

ρ

∂p

∂z
+ ν

{
∂2w

∂r2
+

1

r

∂w

∂r
+
∂2w

∂z2

}
+ Fz, (6.3)

1

r

∂(ru)

∂r
+
∂w

∂z
= 0. (6.4)

where u, v, w are respectively the radial, azimuthal and vertical components of fluid

velocity, and r, z are the radial and axial coordinates; p stands for the pressure, ν

for the kinematic viscosity and ρ for the density. The body forces (buoyancy) in the

vertical direction are denoted by Fz.

Variables in Eqs. (6.1)-(6.4) are made dimensionless with primed notations

as follows:

r
′
=

r

rm
, z
′
=

z

rm
, u

′
=

u

vm
, v

′
=

v

vm
, w

′
=

w

vm
, p
′
=

p

ρv2
m

, F
′

z =
Fz

v2
m/rm

. (6.5)
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where rm is the core radius and vm is the maximum azimuthal velocity.

In view of Eq. (6.5), Eqs. (6.1)−(6.4), on dropping the primes, are trans-

formed to

u
∂u

∂r
+ w

∂u

∂z
− v2

r
= −∂p

∂r
+

1

Re

{
∂2u

∂r2
+

1

r

∂u

∂r
− u

r2
+
∂2u

∂z2

}
, (6.6)

u
∂v

∂r
+ w

∂v

∂z
+
uv

r
=

1

Re

{
∂2v

∂r2
+

1

r

∂v

∂r
− v

r2
+
∂2v

∂z2

}
, (6.7)

u
∂w

∂r
+ w

∂w

∂z
= −∂p

∂z
+

1

Re

{
∂2w

∂r2
+

1

r

∂w

∂r
+
∂2w

∂z2

}
+ Fz, (6.8)

1

r

∂(ru)

∂r
+
∂w

∂z
= 0. (6.9)

where Re = rmvm/ν denotes the Reynolds number.

6.2.1 Radial velocity

The winds blowing towards the centre of the tornado in the radial direction below

few meters (or kms) of height, play a crucial role in the formation of tornadoes.

We consider the radial velocity of the form u(r, z) = −U(r)F (z), where U(r) is a

function of only r and F (z) is a function of only z, and the negative sign indicates

that the radial wind blows towards the centre.

It is mostly considered that the strong inflow weakens along the radial di-

rection and reduces to zero at the centre of the tornado. When the wind starts

to rotate about the axis of rotation, it is physically accepted that the radial veloc-

ity diminishes with height and approaches zero at a certain height z = h, which

approximately coincides with the cloud height (Makarieva et al., 2011).
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We therefore assume that the radial velocity decreases linearly with height

and vanishes at height z = h, i.e., F (z) = 1− az/h, where the parameter a controls

the shape of F (z) and a must be 1 when z tends to h so that F (z) vanishes. This

is consistent with the flow field in the laboratory vortex simulator (Ward, 1972 and

Church et al., 1979). Hence, the radial velocity may be taken as

u(r, z) = −U(r) (1− az/h) , for 0 ≤ z ≤ h and u = 0 h < z ≤ H, (6.10)

For one-cell tornado model, Burger (1948)-Rott (1958) considered the ra-

dial velocity proportional to radial distance, which is physically unacceptable be-

cause it has no upper bound in the radial direction.

In the opinion of Vatistas (1989), concentrated vortices produced in air

and water follow a certain relationship. That relationship inspired Vatistas et al.

(1991) to assume the tangential velocity (i.e. azimuthal velocity) of the form v =

r/
(
1 + r2β

)1/β
, where β governs the sharpness of the velocity profile near the radius

of the maximum wind. β → ∞, leads to Rankine’s model. Smaller integral values

of β give smoother turns. Then with the assumption that the radial velocity does

not depend strongly on the axial coordinates, Vatistas et al. (1991) derived from

momentum conservation equation that the dimensionless radial velocity is U(r) =

−2(β+1)r(2β−1)/
(
1 + r2β

)
. In that model, U is well-behaved except for the numerical

value of β < 1, where U has a singularity near the tornado centre. For simple

one-cell vortex, we accept it for β = 1, and so the dimensionless form of U(r) is

U(r) = 4r/(1 + r2). Thus, the final form of the radial velocity may be considered as

u(r, z) = − r

(1 + r2)

(
1− az

h

)
, (6.11)
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where the second factor is based on the conclusion made by Makarieva et al. (2011);

i.e., the pressure drop along the vertical axis sustains the ascending air motion with

vertical velocity and induces a compensating horizontal air inflow with radial ve-

locity. The converging radial flow has maximal velocity at the surface, where the

magnitude of the condensation-induced pressure drop is the largest. u→ 0, at a cer-

tain height z = h, which is approximately the cloud height. Further, the coefficient 4

has been dropped as it does not modify the model qualitatively and further we shall

be deriving other components from mass conservation and momentum conservation

equations.

6.2.2 Vertical velocity

Substituting Eq. (6.11) into the continuity (6.9) with the consideration that w(r, z) =

w1(r)× w2(z), we obtain the vertical velocity as

w(r, z) =
2

(1 + r2)2

{(
z − a z

2

2h

)
+K

}
, (6.12)

where K is an integrating constant and is determined by using the boundary condi-

tion that vertical velocity w2(z) = w0 at z = 0. This yields

w(r, z) =
2

(1 + r2)2

(
w0 + z − a z

2

2h

)
. (6.13)
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6.2.3 Azimuthal velocity

6.2.3.1 Inviscid flow

First of all, we investigate the flow field of a simple one-cell tornado vortex with

high Reynolds number disregarding viscous terms. Under this consideration the

azimuthal momentum equation (6.7) reduces as

u

(
∂v

∂r
+
v

r

)
+ w

∂v

∂z
= 0. (6.14)

By applying the method of separation of variables, the azimuthal velocity is obtained

as

v(r, z) =
Crα−1

(
w0 + z − a z2

2h

)α/2
(1 + r2)α/2

, (6.15)

where C is an arbitrary constant and α, a real number, is a separation constant.

The azimuthal velocity is maximum at r2 = α− 1 and z = h/a. We may determine

C in terms of the swirl ratio S = vm/um at the reference height, vm, um being

respectively the maximum azimuthal and maximum radial velocities. Consequently,

C = 2aS/h and hence

v(r, z) =
2aSrα−1

(
w0 + z − a z2

2h

)α/2
h (1 + r2)α/2

, (6.16)

A non-zero azimuthal velocity at z = 0 at the ground level is a significant observation

for real tornadoes.
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6.2.3.2 Viscous flow

Considering the vortex Reynolds number Re very large (or equivalently, ε = Re−1 �

1), we seek an asymptotic solution of Eq. (6.7) in the form

v(r, z) = v0(r, z) + εv1(r, z) + ε2v2(r, z) + ..., (6.17)

assuming the series expansion to converge for higher orders of ε. However, the entire

calculation in this section will be carried out for w0 = 0 as it simply augments the

velocity to some extent without contributing in qualitative terms.

Substituting Eq. (6.17) into Eq. (6.7) and equating similar powers of ε on

the two sides, we get the following equations corresponding to the zeroth and the

first order of ε as follows:

ε0 : u

(
∂v0

∂r
+
v0

r

)
+ w

∂v0

∂z
= 0, (6.18)

u

(
∂v1

∂r
+
v1

r

)
+ w

∂v1

∂z
=

{
∂2v0

∂r2
+

1

r

∂v0

∂r
− v0

r2
+
∂2v0

∂z2

}
. (6.19)

(Note: In order to avoid unnecessary derivations in view of very large Reynolds

number, we evaluate the series only up to the first order of ε.)

The solution of Eq. (6.18), which is under no perturbation, is the same as

that of Eq. (6.15), i.e.

v0(r, z) =
Crα−1

(
z − a z2

2h

)α/2
(1 + r2)α/2

, (6.20)
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Further, in terms of angular momentum M1 = rv1, Eq. (6.19) may be reproduced

as

u
∂M1

∂r
+ w

∂M1

∂z
= f(r, z), (6.21)

where

(6.22)f(r, z) = C

(
z

−a z
2

2h

)α/2
rα

(1 + r2)α/2

[{
α(α− 2)r−2 − 4α

(1 + r2)2

}
+
α

2

(
z−a z

2

2h

)−2{(α
2
−1
)(

1− az
h

)2

− a

h

(
z − a z

2

2h

)}]
,

Eq. (6.21) is a first order linear inhomogeneous partial differential equation with

variable coefficients. The Lagrange subsidiary equations will be therefore

dr

− r
(1+r2)

(
1− az

h

) =
dz

2
(1+r2)2

(
z − az2

2h

) =
dM1

f(r, z)
. (6.23)

Considering the first equality, the first integral is obtained as

A

(
z − az2

2h

)
= 1 +

1

r2
, (6.24)

and the second integral is obtained from the second equality

dz

2
(
z − az2

2h

) =
dM1

(1 + r2)2f(r, z)
,
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which yields

(6.25)M1(r, z)

=
Crα

(
z − a z2

2h

)α/2
(1 + r2)α/2

α(α− 2)(1 + r2)z

r2
(
z − az2

2h

) −α(α+2) log

(
z

1− az2

2h

)
+
α(α− 2)(1 + r2)2

4r4
(
z − az2

2h

)2 ×(1− az
h

)
log

(
1+

1

r2

)
+
az

h
log

(
1

r2

)
−r2

(
1− az

h

)
+2
{

1−log
(

1− az
2h

)}
−

1

K2

r2
(
z − az2

2h

)
1 + r2

−h
a

 log

(
z − h

a

)
− k2(

z − h
a

)
+K2

− αh

aK3
2


(
z − h

a

)
K2

K2
2 −

(
z − h

a

)2 +log

∣∣∣∣∣∣
√
K2 +

(
z − h

a

)√
K2 −

(
z − h

a

)
∣∣∣∣∣∣



+ φ

(
1 + r2

r2
(
z − az2

2h

)) ,
for 2h

aA
− h2

a2
= −K2

2 < 0.

where φ is an arbitrary function.

Hence, the azimuthal velocity up to the first order may be given by

v(r, z) =
Crα−1

(
z − a z2

2h

)α/2
(1 + r2)α/2

+
1

Re

Crα
(
z − a z2

2h

)α/2
(1 + r2)α/2

α(α− 2)(1 + r2)z

r2
(
z − az2

2h

) −α(α+ 2) log

(
z

1− az2

2h

)
+

α(α− 2)(1 + r2)2

4r4
(
z − az2

2h

)2

(1− az

h

)
log

(
1 +

1

r2

)
+
az

h
log

(
1

r2

)
− r2

(
1− az

h

)
+

2
{

1− log
(

1− az

2h

)}
− 1

K2

r2
(
z − az2

2h

)
1 + r2

− h

a

 log

(
z − h

a

)
− k2(

z − h
a

)
+K2

−
αh

aK3
2


(
z − h

a

)
K2

K2
2 −

(
z − h

a

)2 + log

∣∣∣∣∣∣
√
K2 +

(
z − h

a

)√
K2 −

(
z − h

a

)
∣∣∣∣∣∣

+

1

r
φ

(
1 + r2

r2
(
z − az2

2h

))
 ,

(6.26)
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for 2h
aA
− h2

a2
= −K2

2 < 0.

(The involved details are given in Appendix A)

Special Case

The parameter α determines the shape of velocity profile. Baker and Sterling (2017)

opine that in order to retain desirable forced vortex behavior at the tornado center,

where velocity is proportional to radius, and free vortex behavior at large distances

from the center, where velocity is inversely proportional to radius, we need to adopt

α = 2.

Further, the last term φ/r in Eq. (6.26) together with arbitrary function

φ is a part of velocity and similar to the first term, so the appropriate term will be

r (z − az2/2h) /(1 + r2). Hence, the azimuthal velocity may be appropriately put

for α = 2 in the form,

(6.27)
v(r, z) =

Crz
(
1− az

2h

)
1 + r2

1− 1

Re

γ + 8 log

(
z

1− az
2h

)

+
2h

aK3
2


(
z − h

a

)
K2

K2
2 −

(
z − h

a

)2 + log

∣∣∣∣∣∣
√
K2 +

(
z − h

a

)√
K2 −

(
z − h

a

)
∣∣∣∣∣∣


 ,

for 2h
aA
− h2

a2
= −K2

2 < 0, where K2 =

√
h2

a2
− 2hr2z(1− az

2h)
a(1+r2)

, γ is an arbitrary constant.

In view of very large Reynolds number, we evaluate γ approximately in terms of C,

determined for non-viscous case, so that γ = Re
(
1− 2S

C

)
− 8 log

(
2h
a

)
. Eq. (6.27)

may therefore be given by

(6.28)
v(r, z) =

rz
(
1− az

2h

)
1 + r2

2S − C

Re

8 log

(
az

2h− az

)

+
2h

aK3
2


(
z − h

a

)
K2

K2
2 −

(
z − h

a

)2 + log

∣∣∣∣∣∣
√
K2 +

(
z − h

a

)√
K2 −

(
z − h

a

)
∣∣∣∣∣∣


 ,
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With respect to the axial coordinates, the azimuthal velocity has parabolic profile.

6.2.4 Pressure

6.2.4.1 Inviscid flow

Ignoring the viscous terms, the radial momentum equation in the dimensionless form

reduces to

− ∂P

∂r
= u

∂u

∂r
+ w

∂u

∂z
− v2

r
. (6.29)

Substituting the expressions from Eqs. (6.11), (6.13) and Eq. (6.15) re-

spectively for u, w and v into Eq. (6.29), we obtain the radial pressure gradient

as

− ∂P

∂r
=
r (1− r2)

(1 + r3)3

(
1− az

h

)2

+
2ra

h (1 + r2)3

(
z − az2

2h

)
−
C2r2α−3

(
z − az2

2h

)α
(1 + r2)α

,

(6.30)

and integrating Eq. (6.30) with respect to r, the pressure as

P (r, z) = − r3

2 (1 + r2)2

(
1− az

h

)2

+
a

2h (1 + r2)2

(
z − az2

2h

)
+ C2

(
z − az2

2h

)α
×
∫

r2α−3

(1 + r2)α
dr + f(z),

(6.31)

where f(z) is the integrating function to be determined later.
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Differentiating Eq. (6.31) with respect to z, the axial pressure gradient is

given by

∂P

∂z
=

[
a (2r2 + 1)

4h (1 + r2)2 + C2α

(
z − az2

2h

)α−1 ∫
r2α−3

(1 + r2)α
dr

](
1− az

h

)
+ f

′
(z),

(6.32)

6.2.4.2 The buoyancy field

We write the axial momentum equation as

u
∂w

∂r
+ w

∂w

∂z
= −∂P

∂z
+ Fz, (6.33)

where Fz denotes the buoyancy force per unit volume. Thus, substituting u from

Eq. (6.11), w from Eq. (6.13) and the axial pressure gradient from Eq. (6.32) into

Eq. (6.33), we obtain buoyancy as

Fz =

[
4

(1 + r2)3

(
z − az2

2h

)
+

a (1 + 2r2)

4h (1 + r2)2 + C2α

(
z − az2

2h

)α−1 ∫
r2α−3

(1 + r2)α
dr

]

×
(

1− az

h

)
+ f

′
(z),

(6.34)

6.2.4.3 Determination of pressure for viscous flow

Substituting u from Eq. (6.11), v from Eq. (6.28) and w from Eq. (6.13) into Eq.

(6.6), the radial pressure gradient may be given by

− ∂p

∂r
=

r

(1 + r2)3

[(
1− r2

) (
1− az

2h

)2

+
2a

h

(
z − az2

2h

)
− 8

Re

(
1− az

h

)]
− v2

r
,

(6.35)
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which, on performing integration from 0 to r, gives

(6.36)

p(r, z)− p(0, z) = − r2

2 (1 + r2)2

(
1− az

h

)2

+
1

2

{
1− 1

(1 + r2)2

}{
a

h

(
z − azz

2h

)
− 4

Re

(
1− az

h

)}
+

r∫
0

v2(r, s)

s
ds.

Similarly, from Eqs. (6.11), (6.13) and Eq. (6.8), the axial pressure gradient

may be obtained as

−∂p
∂z

+Fz =

(
z − az2

2h

)
4

(1 + r2)4

{(
1− az

h

) (
1 + 2r2

)
+

4 (1− 2r2)

Re

}
+

2a

Reh (1 + r2)2 ,

(6.37)

integration of which from 0 to z, yields

(6.38)
p(r, z)− p(r, 0) = − 4

(1 + r2)4

{
(1 + 2r2)

2

(
z − az2

2h

)2

+

2 (1− 2r2)

Re

(
z2 − az3

3h

)}
− 2a

Reh (1 + r2)2 +

z∫
0

Fsds,

From Eq. (6.38) at r = 0, we get

p(0, z) = p(0, 0)− 2

{(
z − az2

2h

)2

+
4

Re

(
z2 − az3

3h

)}
− 2az

Re h
+

z∫
0

Fs(0, s)ds,

(6.39)
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Substituting Eq. (6.39) into Eq. (6.36), we get pressure given by

(6.40)

p(r, z)− p(0, 0) = − r2

2 (1 + r2)2

(
1− az

h

)2

+
1

2

{
1− 1

(1 + r2)2

}{
a

h

(
z − az2

2h

)
− 4

Re

(
1− az

h

)}
+

r∫
0

v2(s, z)

s
ds−

{
2

(
z − az2

2h

)2

+
8

Re

(
z2 − az3

3h

)}

− 2az

Re h
+

z∫
0

Fs(0, s)ds.

6.3 Results and discussions

The present model is more general in the sense that all the three components are also

dependent on the axial coordinate. The derived velocity components are plotted to

study the radial and axial profiles and the impact of viscosity thereon.

6.3.1 Radial component of velocity

Radial dependence of the radial component of velocity was assumed of the form

based on the empirical model of Vatistas et al. (1991) for viscous flow. The form

was extended for axial dependence as per the suggestions of Makarieva et al. (2011).

The dimensionless radial velocity profile at fixed axial distances are displayed in Fig.

6.1. The negative sign is an indication that the flow is inward. It is observed that the

magnitude of the radial velocity increases to the maximum at the core but reverses

the trend beyond and vanishes as it reaches the centre line. The magnitude reduces

linearly with axial distance as per the supposition. The results are comparable with

those obtained by Baker and Sterling (2017) who worked on inviscid flows but got
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similar results for the dimensionless radial velocity with a different modification

(Eq. (3) and Fig. 1a in Baker and Sterling, 2017) for the axial as well as radial

dependence of the radial component. The radial component increases in magnitude

until it reaches the core, but beyond that, they too mention that for large radius

the radial component of velocity approaches zero as is required. This is to be noted

that the radial and axial components have no viscous terms.

Figure 6.1: The radial profile of the radial component u(r) of velocity based
on Eq. (6.11). The parameters assumed here for the diagram are
h = 50, and a = 1.

6.3.2 Vertical component of velocity

The vertical component of velocity has been derived from the continuity equation

with substitution of the radial component designed in subsection (6.2.1). The plots

are given in Figs. 6.2.
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The radial profile of the axial component of velocity reveals that it is max-

imum at the centre line, weakens as we move radially outward, reduces at large

distances from the axis and then vanishes gradually (Fig. 6.2a). Baker and Sterling

(2017) have showed very similar results with their derived dimensionless vertical

velocity.

Figure 6.2: (a) The radial profile of the vertical velocity w and (b) the depen-
dence of w on z. The plots are based on Eq. (6.13) and the param-
eters assumed here for the diagram are h = 50, and a = 1.

Vertical velocity increases along the axis (Fig. 6.2b). However, it diminishes

as we move outward from the centre. Similar patterns with similar radial profiles

were observed by Liu and Ishihara (2016) in their numerical study for tornadoes with

swirl ratio 0.02 for weak vortices. As swirl ratio is not a parameter in our formula,

it is not possible to compare with other observations or results given in that paper.

Therefore, a further improvement is required considering some other aspects of the

vortex motion.



Chapter 6. A generalized viscous model governing tornado dynamics 141

6.3.3 Azimuthal component of velocity

The azimuthal velocity is the most significant component in a whirling motion. In

this investigation, it has been derived on the basis of the assumption made for the

radial component and also the axial component which was derived from the conti-

nuity equation by the substitution of the radial component of velocity. Unlike this,

most of the previous theoretical investigations showed its dependence on the radial

coordinate only ignoring its obvious variation in the axial direction. However, dur-

ing numerical simulation, this fact could not be ruled out. Duly considering this

aspect, Tang et al., (2018) simulated azimuthal velocity for various fixed values of

axial coordinates and found it to match relatively less general models of Rankine

(1882) and Burgers (1948)- Rott (1958). As an exception to the most of the pre-

vious results, Baker and Sterling (2017) have formulated the radial as well as axial

dependence of the azimuthal velocity but for inviscid flows (Eq. 9 and Fig. 1b in

Baker and Sterling, 2017). The results they obtained is similar to those of our model

for inviscid part. However, the impact of viscosity cannot be compared. As both

the models are based on model (Vatistas, 1991) in terms of the radial component,

the observations are alike. Graphs given in the following paragraph reveal more.

Taking care of axial dependence of the azimuthal component of velocity,

we draw plots showing its radial and axial profiles (Fig. 6.3). This component is

strongest at the core, and inside and outside the core, it diminishes. This is revealed

in the plots drawn. The radial profile has resemblance with simulated models of Tang

et al., (2018), and the vertical profile is parabolic even for viscous flows, obvious from

the constructed model given by the (Vatistas, 1989) for high Reynolds numbers.
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Figure 6.3: Plots for (a) the radial profile of the azimuthal velocity v and (b)
the dependence of v on z. The plots are based on Eq. (6.28) and
the parameters assumed here for the diagram are S = 0.50, h = 50
and a = 1.

In order to examine the impact of viscosity, we further draw some plots

for different values of Reynolds number. We fix S = 0.98; i.e., the azimuthal and

radial velocities are almost the same at their maxima. The radial length is varied

in the range r = 0.5− 3.0. We take the following three different cases and plot axial

profiles of the azimuthal component of velocity:

(a) r = 1.0: This is the core where the velocity is maximum. Plots are drawn

for Re = 5, 10, 100, 10000. The plots, drawn in Fig. 6.4, show that larger the

Reynolds number, lesser is the velocity. However, once Re = 100, further increase in

Reynolds number has insignificant impact as we observe that curves corresponding

to Re = 100− 10000 almost coincide.

(b) r = 0.5: This is a point inside the core and plots are drawn forRe = 10, 100, 10000.

The trends are reversed. Larger the Reynolds number, lesser is the velocity.

(c) r = 3.0: This is a point outside the core and plots are drawn for Re =

10, 100, 10000. Beyond the core, the azimuthal velocity decreases. The trends for
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the Reynolds number are similar to that inside the core, i.e. larger the Reynolds

number, lesser is the velocity.

Figure 6.4: Plots for vertical profiles of the azimuthal velocity v based on Eq.
(6.28). The parameters assumed here for the diagram are S = 0.98,
h = 50 and a = 1.

6.3.4 Pressure distribution

Radial pressure distributions for different axial positions are shown in Fig. 6.5(a).

We set z = h/2a, h/3a, h/4a and Re = 10000. Profiles are similar to theoretical

observation of Arsen’yev et al. (2011) and numerically simulated observation of Tang

et al., (2018). That is, as we move outward from the axis, pressure increases, and

also that pressure decreases as height increases. The drop from the circumferential

pressure to the pressure at the axis, based on Eq. (6.36), increases with height for

swirl ratio S = 0.98, or, in other words, the pressure at the axis, i.e, p(0, z), is

minimum. Plots are differently drawn in Fig. 6.5(b), in which axial distribution

of pressure, based on Eq. (6.38), has been plotted for different radial distances.

The pressure is observed to fall as height is scaled; in other words, i.e. p(r, 0), is

maximum. If we fix z, trends are similar to what is observed in Fig. 6.5(a). Further,



Chapter 6. A generalized viscous model governing tornado dynamics 144

pressure drop becomes more in magnitude with height. This is a combined effect of

the two observations.

Figure 6.5: (a) The radial distribution of pressure difference p(r, z) − p(0, z)
based on Eq. (6.36). (b) The axial distribution of pressure difference
p(r, z)− p(r, 0) based on Eq. (6.38) with S = 0.98 and (c) The axial
distribution of pressure difference p(r, z)−p(r, 0) based on Eq. (6.38)
with S = 0.15. The other parameters assumed here for the diagrams
are h = 50 and a = 1.

However, for S = 0.15 (i.e. the value Wang et al., 2017 talk about), the

trends for pressure drop, shown in Fig. 6.5(c), are similar to what Wang et al. (2017)

observed in an experimental investigation, i.e., for some height pressure decreases

(i.e, pressure drop increases in magnitude) while above that the trend gets reversed.

However, it needs to be noted that neither we talk of roughness nor has it anything to

do with roughness of the surface; this is just based on the model we have formulated.

This is an indication that the swirl ratio plays a big role. Tang et al. (2018) have

discussed this in detail.
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In order to examine the effect of viscosity, we study pressure against dif-

ferent Reynolds numbers. The plots are given in Fig. 6.6. Pressure decreases with

rising Reynolds number uniformly for all radial distances. This is an indication that

quantitative difference in pressure is large between viscous and inviscid flows. Thus,

an approximation, from viscous to inviscid flow, does not look fair; it will be difficult

to fit experimental data with theoretical inviscid models.

Figure 6.6: (a) The radial distribution of pressure difference p(r, z) − p(0, z)
based on Eq. (6.36) with z = h/4a. (b) The axial distribution of
pressure difference p(r, z) − p(r, 0) based on Eq. (6.38). The other
parameters assumed here for the diagrams are S = 0.50, h = 50,
a = 1 and r = 1.

6.4 Conclusions

New results are mainly related to axial dependence of the various components of

velocity. Although all the three components are functions of radial and axial coor-

dinates, viscosity affects the azimuthal velocity and the pressure.



Chapter 6. A generalized viscous model governing tornado dynamics 146

It is observed that the magnitude of the radial velocity increases to the

maximum at the core but reverses the trend beyond and vanishes as it reaches the

centreline. The magnitude reduces linearly with axial distance as per the supposi-

tion.

At the core, larger the Reynolds number, the lesser is the velocity for

moderate Reynolds number. For larger Reynolds number, insignificant impact is

observed. However, Inside and outside the core, the trends are reversed; i.e., larger

the Reynolds number, lesser is the velocity.

Radial pressure distributions for different axial positions are similar to the-

oretical, experimental and numerical observations as given in the discussion. As we

move outwards from the axis, pressure increases, but pressure decreases with height.

Further, drop of pressure from the circumference to the axis increases in magnitude

with height.

Pressure decreases with rising Reynolds number uniformly for all radial

distances. This is an indication that quantitative difference in pressure is large

between viscous and inviscid flows.

Appendix A

In terms of angular momentum M1 = rv1, Eq. (6.19) is transformed to

u
∂M1

∂r
+ w

∂M1

∂z
= f(r, z), (A1)

where f(r, z) has been given by Eq. (6.22).

Eq. (A1) is a first order linear inhomogeneous partial differential equation with
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variable coefficients. The Lagrange subsidiary equations are therefore given by

dr

− r
(1+r2)

(
1− a z

h

) =
dz

2
(1+r2)2

(
z − a z2

2h

) =
dM1

f(r, z)
, (A2)

The first integral is obtained by considering the first equality, which is

A

(
z − a z

2

2h

)
= 1 +

1

r2
, (A3)

where A is an integration constant; and the second integral is obtained from the

second equality

dz

2
(
z − a z2

2h

) =
dM1

(1 + r2)2 f(r, z)
, (A4)

which gives

M1(r, z) =
C

Aα/2

[
αA(α− 2)z − α(α + 2) log

(
z

1− a z
h

)
+
αA2

(
α
2
− 1
)

2
I1 −

aαA2

2h
I2

]
+B,

(A5)

where B is a function of A and

I1 =
∫ (1−az

h )
2{

A
(
z−a z2

2h

)
−1
}2(

z−a z2
2h

)dz, and I2 =
∫

1{
A
(
z−a z2

2h

)
−1
}2dz

which on performing integrations are as follows:

(a) For 2h
ah
− h2

a2
= K2

1 > 0

I1 =
(

1− az

h

)
log

{
A

(
z − a z

2

2h

)}
+
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h
log

{
A
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2

2h
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− 1

}
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h

){
A
(
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2h

)
− 1
} + 2

{
1− log

(
1− az

2h

)}
−

2
(
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a

)
AK1

arctan

{
z − h

a

K1

}
,

(A6)

I2 =
2h2

a2A2K3
1

[
K1

(
z − h

a

)(
z − h

a

)2
+K2

1

+ arctan

{
z − h

a

K1

}]
, (A7)
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(b) For 2h
ah
− h2

a2
= −K2

2 < 0

I1 =
(

1− az

h

)
log

{
A

(
z − a z

2

2h

)}
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az

h
log
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A

(
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2
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(A8)
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2h2

a2A2K3
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 K2
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z − h
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)
K2
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(
z − h
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)2 + log
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√
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(
z − h

a

)√
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(
z − h
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)
∣∣∣∣∣∣
 . (A9)

Substituting I1 and I2 from Eqs. (A6), (A7) into Eq. (A5) and also using Eq. (A3),

for the case (a), we get

M1 =
Crα

(
z − a z2

2h

)α/2
(1 + r2)α/2

[
α(α− 2)(1 + r2)z

r2
(
z − a z2

2h

) − α(α + 2) log
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z

1− a z
2h

)
+ L+ ψ

]
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(
(1 + r2)

r2
(
z − a z2

2h

)) ,
(A10)

where

L = L1

[(
1− az

h

)
log

(
1 +

1

r2

)
+
az

h
log

(
1

r2

)
− r2

(
1− az

h

)
+ 2

{
1− log

(
1− az

2h

)}
− A1

]

L1 =
α(α− 2)(1 + r2)2

4r4
(
z − a z2

2h

) , A1 =
2

K1

r2
(
z − a z2

2h

)
1 + r2

− h

a

 arctan

(
z − h

a

K1

)
,

and

ψ = − αh

aK3
1

[
K1

(
z − h

a

)(
z − h

a

)2
+K2

1

+ arctan

(
z − h

a

K1

)]
.



Chapter 6. A generalized viscous model governing tornado dynamics 149

Similarly, for the case (b), we get

M1 =
Crα

(
z − a z2

2h

)α/2
(1 + r2)α/2
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where

N = L1

[(
1− az

h

)
log

(
1 +

1

r2

)
+
az

h
log

(
1

r2

)
− r2

(
1− az

h

)
+ 2

{
1− log

(
1− az

2h

)}
−B1

]

L1 =
α(α− 2)(1 + r2)2

4r4
(
z − a z2

2h

) , B1 =
1

K2

r2
(
z − a z2

2h

)
1 + r2

− h

a

 log

{(
z − h

a

)
−K2(

z − h
a

)
+K2

}
,

and

ψ1 = − αh

aK3
2

 K2

(
z − h

a

)
K2

2 −
(
z − h

a

)2 + log

∣∣∣∣∣∣
√
K2 +

(
z − h

a

)√
K2 −

(
z − h

a

)
∣∣∣∣∣∣
 .

Hence,

(a) For 2h
ah
− h2

a2
= K2

1 > 0

V1 =
Crα−1

(
z − a z2

2h

)α/2
(1 + r2)α/2

[
α(α− 2)(1 + r2)z

r2
(
z − a z2

2h

) − α(α + 2) log

(
z

1− a z
2h

)
+ L+ ψ

]

+
1

r
φ

(
(1 + r2)

r2
(
z − a z2

2h

)) ,
(A12)



Chapter 6. A generalized viscous model governing tornado dynamics 150

where
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