
Chapter 5

Exact solutions for unsteady

axisymmetric flow dynamics of

atmospheric vortices

5.1 Introduction

Exact solution of the equations of motion which govern the atmospheric vortices

like tornadoes, dust devils etc. has always been a challenging task for the scien-

tific community. This is partly due to complex geometries and partly due to the

nonlinear equations of the fluid motion. Tornados and dust-devils occur all over the

world under different physical conditions. Dust-devils are formed in the atmospheric

The contents of this chapter are published in Dynamics of Atmospheres and Oceans, 83, 111-
121, (2018).
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boundary layer whereas tornadoes are born in rotating thunderstorm clouds. Ex-

act solutions of vortex model are most suited for conceptual understanding of the

mechanism. There are several analytical vortex models available in the literature

for tornadoes, dust-devils and some atmospheric vortices (Rankine, 1882; Burgers,

1948; Rott, 1958; Sullivan, 1959; Davies-Jones and Wood, 2006; Trapp and Jones,

1997).

Results from the observations, numerical simulations and laboratory mod-

els show that the azimuthal (swirl velocity) component of the velocity vector in the

core region of vortices increases from zero to reah the maximum at the vortex core

and decreases in the outer region being inversely proportional to the radial distance.

The core is the region around the vertical axis, on the periphery of which the az-

imuthal velocity is maximum. This type of vortex flow was theoretically modelled

first by Rankine (1882) (known as Rankine combined-vortex model). The Rankine

combined-vortex model is limited because, it modelled only the azimuthal velocity

for inviscid steady flow in an axisymmetric cylindrical geometry with radial and ax-

ial velocities considered negligible. The azimuthal velocity in the core region linearly

increases with radial distance from the vortex centre and attains the maximum ve-

locity at the outer edge of the core and then decreases like potential vortex. Unlike

the Rankine (1882) combined-vortex model, Burgers (1948) and Rott (1958) is a so-

phisticated model. It is an exact solution of Navier-Stokes equations for the steady,

axisymmetric and viscous flows. This model possesses inflow radial velocity which

solely depends on radial coordinates, axial velocity, which is a linear function of axial

coordinate, and azimuthal velocity, which is dependent on the radial coordinate and

also on the fluid viscosity.

To model the real tornado and dust-devil type vortices, both the Rankine

combined-vortex and the Burgers vortex models have restrictions and vortices are in
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the stationary state in both of them. There are a few time dependent analytical mod-

els available in the literature (cf. Davies-Jones and Wood, 2006; Trapp and Jones,

1997; Moffatt, 2000; Kolomenkiy and Moffatt, 2012; Oseen, 1911; Onishchenko et

al., 2016; Horton et al., 2016). Oseen (1911) discussed azimuthal velocity only. How-

ever, Trapp and Jones (1997) described unsteady azimuthal velocity but the other

two are steady. Later, Davies-Jones and Wood (2006) validated their model with

tornado’s motion. Moffatt (2000) and Kolomenkiy and Moffatt (2012) considered

all the three unsteady components of vortex motion while investigation different as-

pects. Moffatt (2000) tried to address the problem of blow up introduced by Leray

(1934) and provided a solution to Leray’s equation which is a reduced Navier-Stokes

equation; while Kolomenkiy and Moffat (2012) reported similarity solutions for un-

steady stagnation point flow. Onishchenko et al. (2016) reported a vortex model for

dust devils in which all the components are unsteady and grow exponentially.

Burgers (1948) and Rott (1958) model is an axisymmetric vortex solution

given by u = −Ar, v = v(r), w = 2Az in the cylindrical polar coordinates (r, θ, z),

where u, v, w are respectively the radial, the azimuthal and the axial velocities.

Wondering over the fact how some simple exact solutions remained unreported de-

spite rigorous exercises carried out for understanding vortex motion, Craik (2009)

presented some solutions by different time independent and time dependent assump-

tions for the radial flow parameters A(t) and B(t) of the corresponding generalised

assumed solutions given by u = A(t)r + B(t)/r, w = −2A(t)z. We have observed

that there can be a non-steady more general time dependent exact solutions for A(t)

with the assumption that B = 0. The various assumptions for A(t) by Davies-Jones

and Wood (2006), Moffatt (2000), Kolomenkiy and Moffat (2012) and Craik (2009)

will be special cases of this solution. All these results are discussed in the chapter,

in detail, whenever and wherever required.
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The solutions are presented here.

5.2 Mathematical model

5.2.1 Formulation of the problem

We start the analysis in cylindrical polar coordinates (r, θ, z) for modelling atmo-

spheric vortices, where r, θ, z respectively stand for radial, angular and axial co-

ordinates bounded by the radius (0 ≤ r ≤ R) and the height (0 ≤ z ≤ H). We

only consider the axisymmetric case so that terms are independent of the angular

coordinate θ. Moreover, body forces are neglected. Hence, the equations of motion

governing the unsteady axisymmetric flow for dry atmosphere may be given by

∂u

∂t
+ u

∂u

∂r
+ w

∂u

∂z
− v2

r
= −1

ρ

∂p

∂r
+ ν

{
∂2u

∂r2
+

1

r

∂u

∂r
− u

r2
+
∂2u

∂z2

}
, (5.1)
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+
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∂r2
+
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∂t
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∂r
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∂w
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ρ

∂p

∂z
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{
∂2w

∂r2
+

1

r

∂w

∂r
+
∂2w

∂z2

}
, (5.3)

1

r

∂(ru)

∂r
+
∂w

∂z
= 0. (5.4)

where (u, v, w) are the velocity components in the radial (r), the azimuthal (θ) and

the axial (z) directions, t is time, ρ is the constant density, p is the pressure and ν

is the viscosity.

We consider that the velocity at the lower surface satisfies no-slip condition

at the ground level. Following the assumption of Burgers (1948) model, we prescribe

the radial and the axial velocity components as given below with the following
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generalisation:

u(r, t) = −A(t)r, w(z, t) = 2A(t)z, (5.5)

and intend to formulate the azimuthal component of velocity as a consequence of

imposed conditions. Burgers (1948) and Rott (1958) considered A a constant in

order to model the swirl velocity for the steady vortex while Davies-Jones and Wood

(2006) and Trapp and Jones (1997) considered A as constant and investigated the

time dependent extension of Rankine (1882) combined-vortex model for an inviscid

fluid and time dependent Burgers (1948) model for viscous vortex flow. Further,

Moffatt (2000) as well as Kolomenkiy and Moffatt (2012) made the assumption that

A(t) ∝ 1/(t0 − t), where t0 is constant.

The assumptions made in Eq. (5.5) satisfy the continuity equation (5.4)

and, in view of them, Eqs. (5.1)−(5.3) reduce to

∂p

∂r
= ρ

(
dA(t)

dt
− A2(t)

)
r + ρ

v2(r, t)

r
, (5.6)

∂v

∂t
− A(t)r

(
∂v

∂r
+
v

r

)
+ 2A(t)z

∂v

∂z
= ν

(
∂2v

∂r2
+

1

r

∂v

∂r
− v

r2
+
∂2v

∂z2

)
, (5.7)

∂p

∂z
= −2ρ

(
dA(t)

dt
+ 2A2(t)

)
z, (5.8)

Eq. (5.6) and Eq. (5.8) implies that the azimuthal velocity is independent of the

axial coordinates z. In view of this, Eq. (5.7) may be rewritten as

∂v

∂t
= A(t)r

(
∂v

∂r
+
v

r

)
+ ν

(
∂2v

∂r2
+

1

r

∂v

∂r
− v

r2

)
, (5.9)

Radial pressure gradient is required to maintain circulation in tornadoes

and dust-devils. Researchers used cyclostrophic balance to determine the radial

pressure gradients or pressure distributions in these types of vortex flow. There are
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analytical solutions of Eq. (5.9) available in the literature with the assumptions that

A(t) = 0 or constant. But we are looking for a more general solution.

5.2.2 Evaluation of A(t)

We shall evaluate A(t) for different cases of axial pressure gradient.

Case 1: In Rankine’s combined-vortex model for the steady state flow, the ra-

dial and the axial pressure gradients are respectively given by ∂p/∂r = ρv2/r, and

∂p/∂z = 0, where ∂p/∂r = ρv2/r, represents the cyclostrophic balance in the atmo-

spheric flow.

Under the consideration that ∂p/∂z = 0, Eq. (5.8) reduces to

dA(t)

dt
+ 2A2(t) = 0, (0 ≤ t < t∞)

which, under the initial condition A(t0) = A0, gives

A(t) =
A0

2A0 × (t− t0) + 1
, (5.10)

Case 2: In the steady Burgers (1948) and Rott (1958) vortex model, the radial and

the axial pressure gradients are respectively given by

∂p

∂r
= −ρa2r + ρ

v2

r
,
∂p

∂z
= −4ρa2z,

where a is a constant.

Substituting the axial pressure gradient of this case in Eq. (5.8), we get

dA(t)

dt
+ 2A2(t)− 2a2 = 0,
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which yields

A(t) =
a (1 + Le−4at)

(1− Le−4at)
,

where L is evaluated for t = t0 under the condition that A(t0) = A0 to get, L =

(A0 − a)/(A0 + a),

Hence

A(t) =
a
{

1 + (A0−a)
(A0+a)

e−4a(t−t0)
}

1 + (A0−a)
(A0+a)

e−4a(t−t0)
. (5.11)

which reduces to A0 of the Burgers model as t→ t0.

5.2.3 Determination of azimuthal velocity for inviscid flows

Now we solve Eq. (5.9) for inviscid flow. In terms of angular momentum M(r, t) =

rv(r, t), Eq. (5.9) reduces to the Lagrange’s linear form given by

∂M(r, t)

∂t
− A(t)r

∂M(r, t)

∂r
= 0, (5.12)

Using the method of characteristic along with the assumption that the angular

momentum is constant along the characteristic, Eq. (5.12) has the following char-

acteristic curve:

r(t) = r(t0)e
−
∫ t
t0
A(s)ds

,

where r(t0) is the initial inner radius of the vortex. Since there is no diffusion, the

core wall of the vortex advects the flow. The core radius may be given by

δ(t) = δ(t0)e
−
∫ t
t0
A(s)ds

, (5.13)
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where δ(t0) is the initial core radius. Following the Rankine combined-vortex model,

the unsteady azimuthal velocity may be considered as

v(r, t) =


vm(t)r/δ(t), for r ≤ δ(t)

vm(t)δ(t)/r, for r > δ(t)

, (5.14)

For t = 0, this azimuthal velocity reduces to the azimuthal velocity for the steady

Rankine (1882) combined vortex model. Here vm(t) is the maximum azimuthal

velocity at time t and δ(t) is the core radius, where the fluid attains the maximum

azimuthal velocity. The angular momentum is constant along the core wall and

also in the outer region of the core. This implies that the circulation is constant.

Therefore, the maximum azimuthal velocity vm(t) at any instant is given by

vm(t) =
M∞
δ(t)

=
M∞
δ(t0)

e
∫ t
t0
A(s)ds

=
M∞

δ(t0)
√

2× A0(t− t0) + 1
. (5.15)

Thus, Eq. (5.14) reduces to

v(r, t) =


M∞
δ2(t)

r, for r ≤ δ(t)

M∞
r
, for r > δ(t)

, (5.16)

Substituting Eq. (5.13) into Eq. (5.16), the azimuthal velocity for an unsteady

vortex may be given by

v(r, t) =


M∞
δ2(t0)

e
2
∫ t
t0
A(s)ds

, for r ≤ δ(t)

M∞
r
, for r > δ(t)

, (5.17)

Eq. (5.5) and Eq. (5.17) represent an unsteady combined vortex model. For constant

A, this reduces to the inviscid flow solution reported by Davies-Jones and Wood
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(2006) and Trapp and Jones (1997).

In subsection (5.2.2), we have obtained two different expressions of A(t) for two

different cases. We use the two to get the following expressions of core radius and

angular velocity:

Substituting A(t) from Eq. (5.10) into Eq. (5.13), the core radius δ(t),

obtained for the unsteady combined-vortex model, is given by

δ(t) =
δ(t0)√

2× A0(t− t0) + 1
, (5.18)

which reduces to δ(t0) of the Rankine (1882) combined-vortex as t→ t0. We further

observe that δ(t) → 0 when t → ∞. Corresponding azimuthal angular velocity of

the core region for inviscid motion with zero axial pressure gradient is

ω(t) =
M∞
δ2(t0)

{2× A0(t− t0) + 1} . (5.19)

The angular velocity ω(t) becomes constant as in the Rankine (1882) combined-

vortex when t→ t0.

Further, substituting A(t) from Eq. (5.11) into Eq. (5.13), the same is obtained as

δ(t) = δ(t0)

√
2a

A0 sinh 2a(t− t0) + a cosh 2a(t− t0)
. (5.20)

Here too, δ(t)→ δ(t0) as t→ t0; and δ(t)→ 0 when t→∞.

Corresponding angular velocity of the core region for inviscid motion with non-zero

axial pressure gradient is

ω(t) =
M∞
δ2(t0)

{
A0 sinh 2a(t− t0) + a cosh 2a(t− t0)

2a

}
(5.21)
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5.2.4 Determination of azimuthal velocity for viscous flows

For viscous flow in terms of angular momentum, which is M(r, t) = rv(r, t), Eq.

(5.9) reduces to

∂M(r, t)

∂t
− A(t)r

∂M(r, t)

∂r
= νr

∂

∂r

(
1

r

∂M(r, t)

∂r

)
. (5.22)

We solve Eq. (5.22) for the swirling flow, i.e., for the vortex having finite non-zero

circulation Γ∞ = 2πM∞ at infinity. Similarity solution of Eq. (5.22) is obtained

from the consideration that M(r, t) = rv(r, t) = M(ζ), where ζ = r/δ(t). In view of

this, Eq. (5.22) transforms to

d2M(ζ)

dζ2
+

{
1

ν

(
δ(t)

dδ(t)

dt
+ A(t)δ2(t)

)
ζ − 1

ζ

}
dM(ζ)

dζ
= 0,

which may be rewritten as

δ(t)
dδ(t)

dt
+ A(t)δ2(t) =

ν

ζ

[
d2M(ζ)
dζ2

dM(ζ)
dζ

+
1

ζ

]
= νC (say), (5.23)

where C is a constant, since on the left side is a function of only t and on the other

is a function of only ζ.

The second equality of Eq. (5.23) may be manipulated as

d2M(ζ)

dζ2
+

(
Cζ − 1

ζ

)
dM(ζ)

dζ
= 0. (5.24)

Solving this, we get

dM(ζ)

dζ
= C1ζ exp

(
−C ζ

2

2

)
,
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which further gives

M(ζ)−M(ζ0) = C1

ζ∫
ζ0

ζ
′
exp

(
−C ζ

′2

2

)
dζ
′
,

i.e.

M(ζ) = M(ζ0) +
νC1

C
e−Cζ

2
0/2
[
1− e−C(ζ2−ζ20)/2

]
.

Since r0, C and δ(t0) are fixed, we assume νC1

C
e−Cζ

2
0/2 = K, andK is to be determined

by using the condition that the circulation Γ = 2πM(ζ) is finite (say M∞) and non-

zero when r →∞(ζ →∞). Thus, the above equation gives

M(ζ) = M(ζ0) + (M∞ −M(ζ0))
[
1− e−C(ζ2−ζ20)/2

]
(5.25)

When M(ζ0) = 0 for ζ0 = 0, the above relation reduces the same expression

investigated by Davies-Jones and Wood (2006) and Trapp and Jones (1997).

In order to determine δ(t), we rearrange Eq. (5.23) as

dδ2(t)

dt
+ 2A(t)δ2(t) = 2νC, or

dδ(t)

dt
+ A(t)δ(t) =

νC

δ(t)
.

This equation gives the velocity of the core wall. Integrating this, we obtain the

core radius δ(t) as

δ2(t) = δ2(t0) exp

−2

t∫
t0

A(s)ds

+2νC exp

−2

t∫
0

A(s)ds

 t∫
t0

exp

2

s∫
0

A(s1)ds1

 ds,

which reduces to

δ2(t) = δ2(t0) exp {−2A× (t− t0)}+
νC

A
[1− exp {−2A× (t− t0)}] ,
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for A being a constant. This is the expression for the core radius reported by Davies-

Jones and Wood (2006) and Trapp and Jones (1997), where C is constant and is

determined by using the assumption that the maximum azimuthal velocity occurs

at the core radius r = δ(t).

For the two cases of pressure gradient, having different values of A(t),

discussed in Subsection (5.2.2), the core radius is given respectively by

δ2(t) =
δ2(t0)

2(t− t0)A0 + 1
+

2(t− t0)νC

2(t− t0)A0 + 1
{(t− t0)A0 + 1} . (5.26)

For ν → 0, Eq. (5.26) reduces to Eq. (5.18) meant for inviscid flow. Unlike

inviscid case, δ(t) → ∞ when t → ∞ for viscous flows due to the presence of the

second term involving viscosity on the right side of the equation.

(5.27)δ2(t) = δ2(t0)

{
a

A0 × sinh 2a(t− t0) + a× cosh 2a(t− t0)

}
+
νC

a

{
A0 × {cosh 2a(t− t0)− 1}+ a× sinh 2a(t− t0)

A0 × sinh 2a(t− t0) + a× cosh 2a(t− t0)

}
.

It is observed from Eq. (5.26) and Eq. (5.27) both that δ(t)→ 1 as t→ t0. However,

in Eq. (5.26), δ(t)→∞ as t→∞ but in Eq. (5.27),

δ(t)→


√
νC/a as t→∞ (provided a 6= 0)

∞, as t→∞ (when a→ 0)

,

This is to be noted that the inference δ(t) → ∞ when a → 0, is similar to the

conclusion made for the previous case of zero axial pressure gradient formulated in

Eq. (5.26).
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Using equations Eq. (5.26) and Eq. (5.27), the unsteady azimuthal velocity

in terms of angular momentum is given by

M(r, t) = M(ζ0) + (M∞ −M(ζ0))

[
1− exp

{
−C

2

(
r2

δ2(t)
− r2

0

δ2(t0)

)}]
. (5.28)

Corresponding azimuthal velocity is given by

v(r, t) =
M(ζ0)

r
+

(M∞ −M(ζ0))

r

[
1− exp

{
−C

2

(
r2

δ2(t)
− r2

0

δ2(t0)

)}]
. (5.29)

Eq. (5.29) together with Eq. (5.5), in which A(t) is given by either Eq. (5.10)

or Eq. (5.11), represents an unsteady model, which reduces to the corresponding

steady state Burgers (1948) and Rott (1958) model for constant A.

When the initial angular momentum of the wind in the atmospheric vortex

is zero i.e. M(ζ0) = 0 when r = r0 = 0 and A is constant, then Eq. (5.29) reduces

to the azimuthal velocity given by Trapp and Jones (1997) and Davies-Jones and

Wood (2006). We have M(ζ0) = 0 for ζ0 = 0, which is achieved when r0 = 0. The

unsteady azimuthal velocity for a one-celled vortex given by Bellamy-Knights (1970)

is a special case of Eq. (5.29) with their assumption, i.e. A(t) ∝ 1/t. Further, Eq.

(5.29) reduces to the azimuthal velocity given by Moffatt (2000) and, Kolomenkiy

and Moffatt (2012) for the assumption that A(t) ∝ 1/(t0 − t), where t0 is constant.

We determine C in the following way: The maximum azimuthal velocity

occurs at r = δ(t) and therefore

∂p

∂r
= 0,

∂2v

∂r2
< 0, at r = δ(t). (5.30)
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Using this condition in Eq. (5.29), we get

1 +
C

ν
=

(
1 +

M(ζ0)

M(ζ0)−M∞

)
exp

{
C

2

(
1− r2

0

δ2(t0)

)}
. (5.31)

This can be solved to evaluate C.

Substituting r = δ(t) in Eq. (5.29) and the value of C obtained from Eq. (5.31), we

can have the maximum tangential velocity at any instant from

vm(t) =
M(ζ0)

δ(t)
+

(M∞ −M(ζ0))

δ(t)

[
1− exp

{
−C

2

(
1− r2

0

δ2(t0)

)}]
. (5.32)

For M(ζ0) = 0 as r0 = 0, Eq. (5.31) reduces to

1 + C = exp

(
C

2

)
,

which gives C = 2.5128. Thus, the maximum tangential velocity for this case is

given by

vm(t) =
M∞
δ(t)

[1− exp (−1.2564)] =
0.71532×M∞

δ(t)
. (5.33)

Eq. (5.33) is similar to the expression derived by Davies-Jones and Wood (2006) for

the core radius for constant A.

Substituting A(t) from Eq. (5.10) and Eq. (5.11) into Eq. (5.6), we get

the radial pressure for the two cases of A(t),

∂p

∂r
= − 3ρA2

0r

{2(t− t0)A0 + 1}2 +
ρ

r3

[
M∞ + (M(ζ0)−M∞) exp

{
−C

2

(
r2

δ2(t)
− r2

0

δ2(t0)

)}]2

.

(5.34)
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for which δ2(t) is given by Eq. (5.26).

(5.35)
∂p

∂r
= −

ρa2

{
1 + 10

(
A0−a
A0+a

)
e−4a(t−t0) +

(
A0−a
A0+a

)2

e−8a(t−t0)

}
{

1−
(
A0−a
A0+a

)
e−4a(t−t0)

}2

+
ρ

r3

[
M∞ + (M(ζ0)−M∞) exp

{
−C

2

(
r2

δ2(t)
− r2

0

δ2(t0)

)}]2

.

for which δ2(t) is given by Eq. (5.27).

Eurther, in view of Eq. (5.29) the axial vorticity for viscous motion is given

by

Ωz(r, t) =
1

r

∂ (rv(r, t))

∂r
=
C (M∞ −M(ζ0))

δ2(t)
exp

{
−C

2

(
r2

δ2(t)
− r2

0

δ2(t0)

)}
. (5.36)

5.3 Results and discussion

Our generalised equations for the various cases are used to plot graphs exhibiting

influence of various parameters on various entities characterising the unsteady flows.

We plot graphs for core radius δ(t) against time t. For δ(t), we have two

forms related to two different cases: one for inviscid flows and the other for viscous

flows. Both have been further categorised into two parts depending on the value of

A(t) deduced under the consideration of zero and non-zero axial pressure gradients.

First of all, we consider δ(t) given by Eq. (5.18) for inviscid flows and A(t)

given by Eq. (5.10) for zero pressure gradient.
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Figure 5.1: The diagram is based on Eq. (5.18) and represents the variation of
core radius of vortex with time with different values of the radial flow
parameter A0 for the inviscid flow and zero axial pressure gradient.
Here initial core radius δ(t0) = 1 m.

Fig. 5.1 is plotted to display temporal variation of the core radius δ(t) as

t is varied from 0 − 20 s, while the core radius δ(t0) is supposed to be of 1.0 m in

the beginning and A0 = 0.05 s−1. It is observed that the core radius δ(t) decreases

initially at a fast rate but gradually slows down. We observe that in Eq. (5.18),

δ(t)→ 0 when t→∞. Thus, the core radius narrows with the passage of time and

finally vanishes asymptotically
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Figure 5.2: The diagram is based on Eq. (5.20) and represents the variation of
core radius of vortex with time with different values of the radial
flow parameter A0 for the inviscid flow and non-zero axial pressure
gradient. Here initial core radius δ(t0) = 1 m.

Fig. 5.2 displays temporal variation of the core radius δ(t) given by Eq.

(5.20) for non-zero axial pressure gradient. The range of t is maintained as the same,

i.e., from 0−20 s and the core radius δ(t0) too is the same as 1.0 m in the beginning

with A0 = 0.05 s−1. The observation is that the core radius δ(t) decreases initially

at a faster rate than the previous case and slows down earlier than the previous case.

Change in A0 is not that effective; for smaller values of A0, the core radius remains

almost the same. Here too, from Eq. (5.20) we get δ(t)→ 0 as t→∞, i.e., the core

radius narrows with time and finally disappears. When we compare with case that

pressure gradient is zero, we find that in this case δ(t) dies out very fast.
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Figure 5.3: Diagram is based on Eq. (5.26) represents the variation of core
radius of vortex with time for different kinematic viscosities and
zero axial pressure gradient. Here, initial core radius δ(t0) = 1 m.

The next case considered is that the flow is viscous with δ(t) given by Eq.

(5.26) for zero pressure gradient. Fig. 5.3 has been plotted to discuss this case. Once

again the range of t is maintained as the same, i.e., from 0−20 s and the core radius

δ(t0) too is the same as 1.0 m in the beginning with A0 = 0.05 s−1. The curves

corresponding to δ(t) vs. t are dissimilar to those corresponding to non-viscous case

(cf. Fig. 5.1 in the sense that the core radius diminishes continuously for very small

kinematic viscosity but for comparatively high viscosity, it reduces first and then

increases with time. This is due to the two terms of Eq. (5.26). The second term

contains viscosity and makes core radius infinitely large, since δ(t)→∞ as t→∞

in Eq. (5.26). For very small viscosity, the core radius reduces to zero as if it were
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inviscid case formulated in Eq. (5.18). There may be a critical value of the kinematic

viscosity for which the core radius becomes constant after some time. For somewhat

larger viscosity, the core radius may increase from the beginning overcoming the

non-viscous term of Eq. (5.26).

Figure 5.4: The diagram is based on Eq. (5.29) and represents the temporal
variation of azimuthal velocity with radius for viscous flow and zero
axial pressure gradient.

We use then the core radius to determine the azimuthal velocity. We draw

plots Fig. 4 for azimuthal velocity vs. radius based on Eq. (5.29) with M(ζ0) = 0,

where ζ0 = r2
0/δ

2(t0). It is observed that the azimuthal velocity rises very sharp

with the radius, soon reaches the maximum at the core radius, but then gradually

diminishes in magnitude at a fast rate and finally dies out satisfying equation.
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Figure 5.5: The diagram based on Eq. (5.27) represents the variation of core
radius of vortex with time with different radial flow parameter A0 for
the viscous flow and non-zero axial pressure gradient. Here initial
core radius δ(t0) = 1 m and a = 1 s−1.

For non-zero axial pressure gradient and viscous flows, the core radius is

given by Eq. (5.27). The relation between δ(t) and t has been displayed in Fig. 5.5.

It is observed that the core radius diminishes very fast with time but soon stabilises.

Larger the kinematic viscosity, thicker is the core radius. In the limiting case, the

similar is the observation which reveals analytically that δ(t) →
√
νC/a as t → ∞

(provided a 6= 0) from Eq. (5.27). In case a→ 0, δ(t)→∞ which is similar to the

conclusion made for zero pressure gradient.
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Figure 5.6: The diagram is based on Eq. (5.29) and represents the temporal
variation of azimuthal velocity with radius with different time for the
viscous flow and non-zero axial pressure gradient. Here kinematic
viscosity ν = 0.000017 m2 s−1 and a = 1 s−1.

The core radius is used to determine the azimuthal velocity. We draw

plots Fig. 5.6 for azimuthal velocity vs. radius based on Eq. (5.29) with M(ζ0) = 0,

where ζ0 = r2
0/δ

2(t0). The observation is similar and the azimuthal velocity rises

very sharp with radius, soon reaches the maximum at the core radius, then gradually

diminishes in magnitude at a fast rate and finally dies out satisfying Eq. (5.29). The

magnitude of velocity is several times more than the previous case.

We further examine the dependence of maximum velocity on the core ra-

dius. The cases of inviscid and viscous flows are considered separately.
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Figure 5.7: Diagram (a) based on Eq. (5.15) represents the variation of maxi-
mum azimuthal velocity vs. time for different values of radial flow
parameter A0 when the flow is inviscid and the axial pressure gradi-
ent is zero while Diagram (b) is based on Eq. (5.15) and represents
variation of the maximum azimuthal velocity with time for different
values of radial flow parameter A0 when the flow is inviscid and the
axial pressure gradient is non-zero.

The maximum azimuthal velocity is given by Eq. (5.15) for inviscid vortex and by

Eq. (5.33) for viscous vortex. For inviscid flow, the maximum azimuthal velocity

vm(t) = M∞/δ(t). For r0 = 0, we have M(ζ0) = 0 and C = 2.5128. With these val-

ues the maximum velocity for viscous flows is given by vm(t) = 0.71532×M∞/δ(t).

Thus, in both the cases vm(t) is inversely proportional to δ(t). For the various cases,

vm(t) vs. t graphs are shown by Fig. 5.7 and Fig. 5.8. For constant radial flow

parameter A, these formulas reduce to those presented by Davies-Jones and Wood

(2006), and hence these graphs also match the patterns of experimental observation

by Davies-Jones and Wood (2006) although unlike their formulations of time inde-

pendent core radius, δ(t) is time dependent in our formulations, whose dependence

on time has been presented in Figs. 5.1−5.6.
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Figure 5.8: Diagram (a) based on Eq. (5.33) represents the variation of maxi-
mum azimuthal velocity vs. time for different values of radial flow
parameter A0 when the flow is viscous and the axial pressure gradi-
ent is zero while Diagram (b) is based on Eq. (5.33) and represents
variation of the maximum azimuthal velocity with time for differ-
ent values of radial flow parameter A0 when the flow is viscous and
the axial pressure gradient is non-zero. Here kinematic viscosity
ν = 0.000017 m2 s−1 and a = 1 s−1.

5.4 Conclusions

Generalised solutions to several exiting special solutions have been attempted in this

paper (although more generalisations are still possible). With the assumption that

B(t) = 0, A(t) has been deduced for two cases, i.e., (1) the axial pressure gradient

is zero, (2) the axial pressure gradient pressure is non-zero. Core radius is then

determined for the two cases, i.e., inviscid flow and viscous flow. The azimuthal

velocity is dependent on the core radius; hence we have two forms of azimuthal

velocity each for inviscid and viscous flow.
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Azimuthal velocity has been derived for unsteady cases, which reduces to

steady forms derived by different researchers during several decades under different

considerations.

In the first case with zero axial pressure gradient, it is observed that the

core radius increases infinitely for viscous flow when t → ∞; while for non-viscous

flows, the core radius reduced to zero when t → ∞, In the second case with non-

zero pressure gradient we observed during discussion that the core radius becomes

constant when t → ∞, if the flow is viscous but vanishes for inviscid flows. With

zero axial pressure gradient, i.e., a→ 0 the conclusion confirms the inference made

in the previous case.

In both the cases, azimuthal velocity rises very sharp with the radius, soon

reaches the maximum at the core radius, but then gradually diminishes in magnitude

at a fast rate and finally dies out. In the second case, azimuthal velocity is found to

be much larger. Further, in both the cases, the maximum azimuthal velocity vm(t)

is inversely proportional to the core radius δ(t).

***********
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