
Chapter 4

Exploration of the genesis of

whirlwinds: Application to dust

devils

4.1 Introduction

Unlike huge sized mighty tornadoes and hurricanes, dust-devils are transient whirl-

winds, rotating at a small scale, mixed with dust particles, dry leaves and anything

else available in the surroundings lying on the ground and light enough to float in

the air, observed particularly in the summer. A dust devil, also called a twister, is

witnessed lasting even for several minutes but less frequently.

Out of the numerous scientific reports published for over a century, we

shall discuss only those which give prime importance to the radial velocity with an

intention to construct a model for dust-devils, more general than existing ones.
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Burgers (1940, 1948) and Long-Rott (Long, 1957; Rott, 1958) indepen-

dently modelled steady viscous vortex motion with a radially inward stagnation

point flow over a plane boundary with the radial velocity, u = −ar, the axial ve-

locity, w = 2az, and the azimuthal velocity, v(r, t) = Γ0

2πr
{1 − exp(−ar2

2ν
)}, where

a = −(∂u/∂r)0. The model is referred to as Burgers-Rott vortex model.

Sullivan (1959) provided an exact solution for a two-celled vortex motion

which despite some similarity with the Burgers-Rott one cell vortex model is more

general than it. It has an inner cell in which air flow descends from above and flows

outward to meet a separate air flow which converges radially. It is the simplest

vortex that describes the flow in an intense tornado with a central downdraft which

flows outward to join the circumferential updraft. The Sullivan vortex is given by

u = −ar+ 6ν
r

(1−exp(−ar2

2ν
)), w = 2az(1−3 exp(−ar2

2ν
) and v = Γ

2Πr

H(ar
2

2ν
)

H(∞)
, where Γ is

the circulation strenght of the vortex, a = −(∂u/∂r)0 is the strength of the suction

and H(x) is the function defined as H(x) =
∫ x

0
exp(f(t)), where f(t) = −t+3

∫ t
0
(1−

exp(−y))dy/y. Here ν is considered to be a constant eddy viscosity which dominates

the value of this coefficient, not molecular viscosity. The pressure distribution in the

atmosphere is given by p(r, z) = p0 +ρ
∫ r

0
v2

r
dr− ρr2

2
(r2 + 4z2)− 18ρv2

r2
(1− exp(−ar2

2ν
))

and the axial pressure gradient is ∂p/∂z = −4ρza2, which increases vertically in

magnitude.

Vatistas (1986) experimentally observed that in the concentrated vortex,

the azimuthal velocity component does not depend strongly on the axial coordinate.

Therefore, under these assumptions the radial velocity component can be obtained

from the θ-momentum equation, the normalised radial velocity function u is given

by u = u rc
ν

= −{2(1+n)r2n−1

(1+r2n)
}, where ν is the kinematic viscosity and the normalized

axial velocity function Vz is given by w = w rc
ν

= 4n(1+n)r2n−1

(1+r2n)2
. This approaches

Rankine profile as n → ∞. These equations have singularity on the vortex center
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for n < 1. Therefore distribution with for n < 1 should not be permitted. For

any finite value of n, the values of all velocity components are well behaved. The

Vatistas (1991) generalised a few of the well-known vortex tangential velocity in

aerodynamics.

Deissler (1977) dealt with different aspects of atmospheric vortices by con-

sidering a single gravity driven vortex and a frictionless adiabatic model. It was a

generalisation of the model given by Deissler and Boldman (1974). The azimuthal

velocity v is a function of only r, the radial coordinate, while the axial velocity w

depends on only z, the axial coordinate. The radial velocity u is then computed and

found to be dependent on r and z.

Several reports deal with tornado dynamics. Ward (1956) used a laboratory

model to study temperature inversion as a factor in the formation of tornadoes. Kuo

(1966) did an analytical study of the dynamics of convective atmospheric vortices.

He (1967) later wrote a note on the similarity solutions of the vortex equations in

an unsteady stratified atmosphere. Bellany-Knights (1970) got an unsteady two cell

solution of the Navier–Stokes equations. Serrin (1972) modelled a swirling vortex in

the spherical polar coordinates. He himself (1972) later explored certain features of

tornado dynamics using a laboratory model. Lewellen (1993) detailed a comprehen-

sive theory of tornado vortex. Larcheveque and Chaskalovic (1994) put forward a

theory for tornado genesis and found that the basic flow is generated simultaneously

by a strong vertical gradient of temperature and by a storm in the troposphere,

which is a non-rotating updraft. The aforementioned literature gives due weightage

to the radial velocity. Their generalisations have also been subsequently attempted.

Davies-Jones (1995) discussed tornadoes extensively.

Anderson et al. (2006) modelled bath tub vortex in a rotating container

and proposed a model with zero axial velocity u = −F/πrδ × e−z/δsin(z/δ), v =
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F/πrδ×
(
1− e−z/δ

)
cos(z/δ) where F is the flow rate, δ is the Ekman layer thickness.

The most recent reports are confined to different aspects particularly of tornado

like vortices, and used different methods for solution. In all such communications,

radial velocity has been given prime importance (Tanamachi et al., 2006; Yih, 2007;

Makarieva and Gorshkov, 2009a, 2009b, 2011; Bestray et al., 2011; Makarieva et al.,

2011; Arsen’yev, 2011; Bistray and Lykov, 2012; Rotunno, 2013; Davies-Jones, 2015;

Ben-Amots, 2016; Baker and Sterling, 2017 etc.).

Although in a few of the models available in the literature, the axial ve-

locity has not been given importance (Rankine, 1882; Anderson et al., 2006; Wood

and White, 2011); but in several models, to be discussed hereinafter, it has been

duly taken care of. While a few showed its dependence on either the axial coordi-

nate (Burgers, 1948-Rott, 1959; Deissler, 1977) or the radial vector (Makarieva and

Gorshkov, 2011; Pandey and Maurya, 2017), there are models in which the axial

velocity depends on both (Sullivan, 1959). This is due to various considerations for

simplifying the complex governing equations or due to the physical phenomenon un-

der consideration. Gall (1982) considered radial velocity depending on the radial as

well as the axial coordinates while analysing the internal dynamics of tornadoes and

further derived the axial velocity which depends on both. Baker and Sterling (2017)

considered a particular form of the radial velocity for inviscid flow and derived the

axial velocity in terms of both the radial and the axial coordinates. A comparative

study of analytical and empirical models has been presented by Kim and Matsui

(2017). Gillmeier et al. (2018) have also reviewed analytical tornado-like vortex

flow field models.

In a recent publication, Pandey and Maurya (2017), while exploring the

characteristics of whirlwind, concluded that a low pressure zone is essentially re-

quired for any vortex motion for its survival. The model they presented possesses
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axial and azimuthal velocities. The radial component was neglected justifying its in-

significance in terms of magnitude in a mature whirlwind. However, the fact is that

this is the first and foremost velocity and causes the birth of any such vortex motion

despite the fact that later, other components of velocity become more significant

and dominating.

The discussion throughout the introduction is confined to those papers

which considered the significance of the radial component and eventually formulated

it in the models they presented. Considering this aspect, we intend to incorporate

the radial velocity in the model presented by Pandey and Maurya (2017) in order to

examine its impact on the flow behaviour of dust devils. Accordingly, changes are

expected in the axial and azimuthal components of velocity.

4.2 Mathematical formulation of the problem

We shall first discuss the physical model of the dust devil that is to be translated

into a mathematical formulation which characterizes its motion for further solution

and subsequent discussion.

4.2.1 The physical model

During the summer season, when a part of the Earth’s surface is very much hot, a

local low pressure region is created leaving the air rarer in density. It leads to a hori-

zontal shear supplying the flow with vertical vorticity and a mild wind blows between

3− 10 mph. A twister is then created in planes and deserts due to super-adiabatic

temperature lapse rate with an unstable temperature stratification (Barcilon, 1967).

Ives (1947) reported that dust devils can be started by mild disturbances such as
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firing of a shell in a mirage or running of a small animal across a mirage area in

deserts. Horizontal breeze that causes radial velocity plays a big role in the forma-

tion of a dust devil. In a mature tornado, it may be insignificant; yet the centripetal

acceleration is required to keep it rotating, which is due to the presence of a low

pressure zone in the middle (Pandey and Maurya, 2017). However, even after a dust

devil matures, the ambience around it keeps it disturbing and therefore presence of

radial velocity cannot be ruled out.

Horizontally blowing mild breezes rush to the low pressure zone and are

then diverted upward by the compressed air lying midway, adding momentum to

rising hot air and making the dust devil visible by lifting dust, sand, debris, and

leaves etc. which later float due to buoyancy and keep rotating with the twisting

wind. Although the pressure inside the twister is low, that around it which is due

to the winds coming from relatively cold places can be comparatively high. The

density of these winds can be more in magnitude since these contain more humidity

and carry dust, debris, leaves etc. Areas prone to dust devils are hot, flat surfaces

such as dry playas and riverbeds (Mattsson et al., 1993), close to freshly ploughed

and irrigated fields (Sinclair, 1969), gentle slopes (Brooks, 1960). The details are

nicely given in a review paper of Balme and Greeley (2006). The observations divulge

the fact that not the heat but it is the temperature gradient that creates favorable

circumstances for the birth of whirlwinds. Rafkin et al. (2016) finds a convective

vortex as the first criterion for the formation of dust devils, the other two being:

sufficient strength of the associated winds to loft sand or the other particulates into

the air, and a sufficient source of mobile surface material to produce visible opacity.

However, low background winds’ theory of McGinnigle (1966) and wind threshold

finding of Sinclair (1969) still leave scope for a better fluid dynamic theory to come

up.
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Winds are certainly compressible but if these are not deliberately com-

pressed, one may consider them incompressible for the sake of modelling. Of course,

when the low pressure zone inside the twister gets gradually filled with cold wind

with high pressure, it will die out. It is to be noted that thermodynamics has a great

role to play and several authors take it into consideration, discuss and incorporate

in their models (Larcheveque and Chaskalovic, 1994). However here, although we

do not rule out its role but consider only its impact which ultimately affects pressure

and velocity of the whirlwind. There are many more issues to be addressed here.

Figure 4.1: Schematic diagram of the formation of a whirlwind (dust-devils).
Dashed curves show the direction of the ambient winds blowing hor-
izontally and getting diverted upward by the compressed air lying
in the buffer zone, the innermost and the outermost layers being
shown by solid curves. Heights of the different layers indicate that
the innermost layer rises the most. The two dotted circles indi-
cate the inner and the outer boundaries of the rotating annular dust
devil around a low pressure zone and kept intact by centripetal ac-
celeration and the arrows between the annular regions indicate the
direction of the inflow radial component of the wind.
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4.2.2 Mathematical model of whirlwind vortex

In cylindrical polar coordinates (r, θ, z), r, θ, z respectively represent the radial, az-

imuthal and axial coordinates. Considering the whirlwind rotating symmetrically

about the vertical axis, we remove all terms involving θ. Thus, the three-dimensional

Navier-Stokes governing equations for the steady axi-symmetrically rotating flow of

an incompressible Newtonian viscous fluid may be given by

ρ

(
u
∂u

∂r
+ w

∂u

∂z
− v2

r

)
= −∂p

∂r
+ µ

(
∂2u

∂r2
+

1

r

∂u

∂r
− u

r2
+
∂2u

∂z2

)
, (4.1)

ρ

(
u
∂v

∂r
+ w

∂v

∂z
+
uv

r

)
= µ

(
∂2v

∂r2
+

1

r

∂v

∂r
− v

r2
+
∂2v

∂z2

)
, (4.2)

ρ

(
u
∂w

∂r
+ w

∂w

∂z

)
= −ρgρ∞ − ρ

ρ∞
− ∂p

∂z
+ µ

(
∂2w

∂r2
+

1

r

∂w

∂r
+
∂2w

∂z2

)
, (4.3)

together with the continuity equation

1

r

∂(ru)

∂r
+
∂w

∂z
= 0. (4.4)

where u, v and w denote the fluid motion respectively in the r−, θ− and z− direc-

tions with p being the pressure, ρ the density and µ the viscosity of the fluid, and

ρ and ρ∞ respectively the densities of the fluid contained in the dust devil and that

of the ambient wind. Besides, g = G M
(R+h(z))2

is the gravitational acceleration G,

M , R, h, being respectively the Gravitational constant, the mass of the earth, the

radius of the earth and the height which is a function of z. g, may be taken as a

constant in view of h(z) being negligibly small in comparison to R. The modified

gravitational acceleration term in Eq. (4.3) is based on Simpson and Glezer (2016).

We consider a whirlwind more general than that considered by Pandey

and Maurya (2017). Though the model is more general, the fluid assumed is still
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Newtonian and incompressible. To begin with, Pandey and Maurya (2017) assumed

the azimuthal velocity of a particular form and the radial velocity negligibly small.

With these assumptions, they derived the axial velocity as a function of only r.

However, some of the researchers, as discussed in the introduction, assumed the

radial velocity non-zero and a function of r for some axially rotating vortex like

motions applicable to the natural phenomena such tornadoes, typhoons, hurricanes,

cyclones etc. Thus, it may be generalised as u(r).

We proceed with the physical model of whirlwind as considered by Pandey

and Maurya (2017) with the exception that the radial velocity is not negligible and

hence retained and that the axial velocity is dependent on the radial coordinate.

Thus, the whirlwind, a vertical circularly rotating fluid mass, is modelled as a cylin-

drical annulus of dense areal mass, inside which is a rarer areal mass region, which

creates a favourable radial gradient of pressure. Hence, there are two concentric

vertical cylindrical surfaces, say innermost and outermost surfaces. The annular

mass rotates with varying azimuthal velocities. Let the innermost one, which is in

contact with low pressure region, rotate with the highest axial velocity, vertically

upward being the positive direction. The concentric layers slow down as we move

towards the outermost surface and the axial velocity of the outermost layer may be

asymptotically zero in some cases.

With the aforementioned consideration of the axial velocity w(r, z) and the

radial velocity u(r) for steady flow, the governing Eqs. (4.1−4.4) reduce to

du

dr
− v2

r
= −1

ρ

∂p

∂r
+ ν

(
d2u

dr2
+

1

r

du

dr
− u

r2

)
, (4.5)

u

(
∂v

∂r
+
v

r

)
+ w

∂v

∂z
= ν

(
∂2v

∂r2
+

1

r

∂v

∂r
− v

r2
+
∂2v

∂z2

)
, (4.6)
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u
∂w

∂r
+ w

∂w

∂z
= −gρ∞ − ρ

ρ∞
− 1

ρ

∂p

∂z
+ ν

(
∂2w

∂r2
+

1

r

∂w

∂r
+
∂2w

∂z2

)
, (4.7)

1

r

d(ru)

dr
+
∂w

∂z
= 0. (4.8)

4.2.3 Estimation of radial velocity

We use the method of separable variables for w(r, z) for solution and under the

assumptions that the radial velocity u is a function of only r and the axial pressure

gradient ∂p/∂z is a constant, we arrive at the conclusion that w is a function of only

r. The details are given in Appendix A. In view of that analysis and conclusion,

Eq. (4.7) reduces to

u
dw

dr
= −gρ∞ − ρ

ρ∞
− 1

ρ

∂p

∂z
+ ν

(
d2w

dr2
+

1

r

dw

dr

)
, (4.9)

Further, from the continuity Eq. (4.8), we obtain the radial velocity

u(r) = −c
r
, (4.10)

where c is an arbitrary constant. For the arguments given in the Section 4.2.5

discussing azimuthal velocity (given by Eq. (4.15)), it is appropriate to consider

u(r) negative and thus c is positive presented with a minus sign. Let us name c

inflow-parameter. Unlike Burgers-Rott vortex model in which the radial velocity

u ∝ r , this form is somewhat similar to the radial velocity given by Andersen et al.

(2006) for a bathtub in which u ∝ 1/r.
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4.2.4 Estimation of axial velocity

Now we solve Eq. (4.9) for axial velocity under the assumption that the axial velocity

is maximum at the innermost radius ri and is minimum w0 (maybe even zero) at its

outermost layer ro. Thus, the axial velocity may be given by

w(r) = w0 −
g ρ∞−ρ

ρ∞
+ P

ρν

r2+c/ν
i

(
r
−c/ν
o − r−c/ν

)
c/ν (2 + c/ν)

+
r2
o − r2

2 (2 + c/ν)

 (4.11)

where P , symbolising ∂p/∂z, is constant. When c→ 0, as a limiting case, Eq. (4.11)

for the axial velocity w(r) reduces to that derived by Pandey and Maurya (2017)

for u(r)→ 0.

4.2.5 Estimation of azimuthal velocity

Considering the azimuthal velocity a function of only r (as per the conclusion given

in Appendix C), i.e., v = v(r), Eq. (4.6) reduces to

− c

r

(
dv

dr
+
v

r

)
= ν

(
d2v

dr2
+

1

r

dv

∂r
− v

r2

)
, (4.12)

Rearranging of Eq. (4.12) reduces it to Cauchy-Euler type ordinary differential

equation

r2d
2v

dr2
+ r

(
1 +

c

ν

)
−
(

1− c

ν

)
v = 0, (4.13)

giving the solution

v(r) =
A

r
+Br1−c/ν , (4.14)

where A and B are integration constants.
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Using boundary conditions that the innermost layer is moving with the

uniform angular velocity ωi and the outermost layer with ωo, we obtain the azimuthal

velocity

v(r) =
1

r
2−c/ν
o − r2−c/ν

i

r1−c/ν (r2
oωo − r2

iωi
)
−
r

2−c/ν
i r

2−c/ν
o

(
ωor

c/ν
o − ωirc/νi

)
r

 ,
(4.15)

For negligibly small radial velocity,

v(r)→ 1

r2
o − r2

i

[(
r2
oωo − r2

iωi
)
r − r2

i r
2
o (ωo − ωi)

r

]
, as, c→ 0

which was derived by Pandey and Maurya (2017) for a whirlwind without radial

velocity. Further, when the radius r with ri ≤ r ≤ ro, of the whirlwind increases

infinitely, the azimuthal velocity reduces to zero, i.e., v(r)→ as r →∞.

4.2.6 Vorticity vector

Thus, in the consolidated form, the velocity of the vortex may be given by

u(r) = −c
r
,

v(r) =
1

r
2−c/ν
o − r2−c/ν

i

r1−c/ν (r2
oωo − r2

iωi
)
−
r

2−c/ν
i r

2−c/ν
o

(
ωor

c/ν
o − ωirc/νi

)
r

 ,
w(r) = w0 −

g ρ∞−ρ
ρ∞

+ P

ρν

r2+c/ν
i

(
r
−c/ν
o − r−c/ν

)
c/ν (2 + c/ν)

+
r2
o − r2

2 (2 + c/ν)

 .


Hence, the corresponding vorticity vector is given by

ζ = r̂0 + θ̂
g ρ∞−ρ

ρ∞
+ P

(2 + c/ν)µ

(
r

(2+c/ν)
i

r(1+c/ν)
− r

)
+ ẑ
−(2− c/ν)(r2

iωi − r2
oωo)r

−c/ν

r
2−c/ν
o − r2−c/ν

i

,
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which, for negligible radial velocity (i.e. c→ 0), reduces to

ζ = r̂0 + θ̂
g ρ∞−ρ

ρ∞
+ P

2µ

(
r2
i

r
− r
)

+ ẑ
−2(r2

iωi − r2
oωo)

r2
o − r2

i

, as, c→ 0.

4.2.7 Radial pressure gradient

When we substitute u(r) from Eq. (4.10) into Eq. (4.5), we find that the entire

viscous term vanishes and the radial pressure gradient reduce to

∂p

∂r
= ρ

(
c3

r3
+
v2

r

)
, (4.16)

which, with the azimuthal velocity substituted from Eq. (4.15), may be given by

∂p

∂r
= ρ

c3

r3
+

1

r

r
2
i r

2
o

(
r
−c/ν
o ωi − r−c/νi ωo

)
r

2−c/ν
o − r2−c/ν

i

1

r
+

(r2
oωo − r2

iωi) r
1−c/ν

r
2−c/ν
o − r2−c/ν

i


2
 , (4.17)

Integrating Eq. (4.17) from ri to r, we get

(4.18)

p(r, z)− p(ri, z) =
ρ

2


c2 +

r2
i r

2
o

(
r
−c/ν
o ωi − r−c/νi ωo

)
r

2−c/ν
o − r2−c/ν

i

2

(

1

r2
i

− 1

r2

)
+

(
r2
oωo − r2

iωi

r
2−c/ν
o − r2−c/ν

i

)2

× r2(1−c/ν) − r2(1−c/ν)
i

(1− c/ν)
−

4r2
i r

2
o

(
r
−c/ν
o ωi − r−c/νi ωo

)
(r2
oωo − r2

iωi)
(
r−c/ν − r−c/νi

)
c/ν

(
r

2−c/ν
o − r2−c/ν

i

)2

 ,
In Eq. (4.11), the axial pressure gradient ∂p/∂z was considered a constant P . From

there, we get

p(r, z) = p(r, z0) + P (z − z0), (4.19)
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where z0 is reference point in the axis (see the details in Appendix B). Evaluating

p(r, z) for r = ri from Eq. (4.19) and then substituting p(ri, z) into Eq. (4.18), we

obtain

(4.20)p(r, z)− p(ri, zo) = (z − z0)P +
ρ

2


c2

+

r2
i r

2
o

(
r
−c/ν
o ωi − r−c/νi ωo

)
r

2−c/ν
o − r2−c/ν

i

2

(

1

r2
i

− 1

r2

)
+

(
r2
oωo − r2

iωi

r
2−c/ν
o − r2−c/ν

i

)2

× r
2(1−c/ν) − r2(1−c/ν)

i

(1− c/ν)
−

4r2
i r

2
o

(
r
−c/ν
o ωi − r−c/νi ωo

)
(r2
oωo − r2

iωi)
(
r−c/ν − r−c/νi

)
c/ν
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r

2−c/ν
o − r2−c/ν

i

)2

 ,

In the limiting case,
r2(1−c/ν)−r2(1−c/ν)i

2(1−c/ν)
→ loge(

r
ri

), as, c→ ν. Hence, for c→ ν,

p(r, z)− p(ri, zo) = (z − z0)P

+
ρ

2

[{
c2 +

r2
i r

2
o (roωo − riωi)2

(ro − ri)2

}(
1

r2
i

− 1

r2

)
+
r2
oωo − r2

iωi

(ro − ri)2

×
{

2
(
r2
iωi− r2

oωo
)
loge

(
r

ri

)
− 4rori (roωo− riωi)

(
1

r
− 1

ri

)}]
,

(4.21)

which is the same as that obtained when c/ν = 1 is directly substituted in Eq. (4.13)

and obtained from Eq. (4.16). Hence, the function is continuous at c/ν = 1.

4.2.8 Streamlines and path lines

Equations for the streamlines and path lines can be seen in Appendix D.
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4.3 Results and discussion

4.3.1 Radial velocity

Radial velocity is the genesis of vortex motion. Considering non-zero radial velocity

and constant axial pressure gradient, we obtained u(r) = −c/r from the continuity

equation and the axial velocity w(r), given by Eq. (4.11), was inferred as a function

of r but not z. In the limiting case of zero radial velocity, it reduces to what Pandey

and Maurya (2017) derived for a mature whirlwind. The azimuthal velocity v(r),

given by Eq. (4.15), was later deduced from Eq. (4.6). This reduces, as c→ 0, to the

corresponding formulation of Pandey and Maurya (2017) for the model considering

zero radial velocity.

Negative sign in the radial velocity u(r) = −c/r is an indication that

it is directed towards the centre, i.e., the axis of the whirlwind. The presence

of an arbitrary constant suggests that although there is a pattern but it is not

independent of other parameters. It is born naturally with a velocity depending

upon the temperature of the surroundings. The nature shows that the radial velocity

increases as it approaches the axis but practically it cannot reach the axis. We plot

diagrams for arbitrary c shown in Fig. 4.2. We set the outermost radius ro = 1 m,

ri = 0.1 m and let r vary in the range 0.1 m − 1.0 m. The arbitrary constant c is

dimensionally similar to kinematic viscosity. Hence, it is assigned values comparative

to the kinematic viscosity observed practically.

It is observed that the magnitude of the radial velocity increases as it

moves towards the axis of the whirlwind. It obviously increases with the value of

the parameter c (Fig. 4.2).
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Figure 4.2: The diagram shows the radial velocity u(r) distribution along the
radail direction for various values of c based on Eq. (4.10).

4.3.2 Azimuthal velocity

The azimuthal velocity v(r), given by Eq. (4.15), is dependent on the radial velocity

and hence on c. Another important factor that determines the azimuthal velocity is

ν, the kinematic viscosity. In Eq. (4.15), ν is present together with c, an arbitrary

constant which is dimensionally similar to ν. For that reason, we draw plots for

v(r) vs. r corresponding to different values of c/ν by assigning fixed values for the

innermost and the outermost radii. The plots are shown in Fig. 4.3. It is observed

that v(r) shoots up very close to the innermost radius for large values of c/ν but then

gradually slows down to the velocity prescribed at the outer boundary. However,

for no radial velocity, i.e., c/ν = 0, v(r) goes down right from the beginning.
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The role of rotational motion is best interpreted by angular velocity. That

is why, we deduce angular velocity from the azimuthal velocity and get

ω (r) =
1

r
2−c/ν
o − r2−c/ν

i

{
r−c/ν

(
r2
oωo − r2

iωi
)
− ωor

2−c/ν
i r2

o − ωir2
i r

2−c/ν
o

r2

}
(4.22)

In case, the innermost radius ri = 0, the angular velocity appears to reduce to a very

simple form, given by ω(r) = ωo (ro/r)
c/ν . However, it is clear from the expression

that r 9 0. Thus ri 9 0. Further, we find that due to the presence of non-zero

innermost radius in the denominator.

Figure 4.3: The diagram based on Eq. (4.15) shows the azimuthal velocity
v(r) distribution along the radial coordinate r for various values
of the ratio c/ν. The velocity curve, corresponding to c/ν = 0,
describes the case for zero radial velocity. Other parameters are
ωi = 25 cycles s−1 and ωo = 5 cycles s−1.
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Figure 4.4: The diagram shows the angular velocity ω(r) distribution along the
radial coordinate r for various values of the ratio c/ν. Other param-
eters are ωi = 25 cycles s−1 and ωo = 5 cycles s−1.

ω (r)→
ωor

2
ologe

(
ri
r

)
− ωir2

i loge

(
r
ro

)
r2loge

(
ri
ro

) , as, c = 2ν, (4.23)

which is the same as that obtained by direct substitution c = 2ν in Eq. (4.13). This

confirms continuity of the function at c = 2ν.

We plotted graphs, by prescribing ωi and ωo for values of c/ν ∈ [0, 3.5]

including 2 and close to 2 such as 1.99 and 2.01 shown in Fig. 4.4. It is observed

that ω(r) touches its peak close to the innermost radius for large values of c/ν, but

not at the innermost radius. For very small values of c/ν, it is not like that.

4.3.3 Axial velocity

The axial velocity w(r) given by Eq. (4.11) is plotted against the radial coordinate

(Fig. 4.5). It is observed that w(r) has parabolic profile and the plots are similar to
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what Pandey and Maurya (2017) observed for zero radial velocity despite the fact

that Eq. (4.11) does not have logarithmic terms. We have already discussed that in

the limiting case of c→ 0, we obtain u(r)→ 0 and the axial velocity w(r) takes the

form deduced by Pandey and Maurya (2017).

Figure 4.5: The diagram shows the axial velocity w(r) distribution along the
radial coordinate r for various values of the ratio c/ν based on Eq.
(4.11). Other parameters used here are: dynamic viscosity µ(=
ρν) = 0.0000198 Pa.s., P = −0.01 Pa/m and wo = 0. The presence
of g will simply reduce the magnitude slightly without disturbing
the trends; hence it has not been under consideration.

4.3.4 Pressure

Pressure vs. radius plots exhibit an extraordinary behavior at c = 2ν (Figs. 4.6−4.10).

Pressure function given by Eq. (4.20) is, however, continuous at c = ν as verified

earlier and shows no anomalies (Figs. 4.6−4.7). For this reason, pressure curves

corresponding to the values other than c = 2ν are shown in Fig. 4.6. The outermost

radius is fixed as ro = 1.0 m and the innermost radius ri is varied in the range
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0.2 m− 0.7 m. The value of c/ν is varied in the range 0.5− 2.5 excluding c/ν = 2.

Pressure is observed to rise from the innermost to the outermost radii. Pressure

rises also with c/ν within some range of ri (see Figs. 4.6(a)− (b)) and drops beyond

that (see Fig. 4.6(c)).

In order to sort out this anomaly, we plot pressure against radius for dif-

ferent innermost radii ri varying in the range 0.2 m− 0.7 m (Fig. 4.7) and different

values of c/ν varying in the range 0.5− 2.5 with r = 0.8 m, 0.9 m fixed in two parts

(a) and (b) of Fig. 4.7. For smaller values of ri, pressure rises with c/ν but there

is a turning point in the value of ri beyond which the trend reverses. Interestingly,

the turning point remains the same even when r changes. This is to be noted that

the case c/ν = 2 could not be considered as the corresponding values are quite large

and was left for to be considered separately.

Treatment of the extraordinary case c = 2ν

Let us examine the case c = 2ν. In the limiting case,

p(r, z)− p(ri, z) = (z − z0)P +
ρ

2log2
e

(
ri
ro

) ( 1

r2
i

− 1

r2

)[{
4ν2log2

e

(
ri
ro

)
+
(
ωor

2
ologe(ri)− ωir2

i loge(ro)
)2
}

+
(
ωir

2
i − ωor2

o

)
loge

(
r

ri

){
ωir

2
i (1− 4loge(ro) + loge(rri))

− ωor2
o (1− 4loge(ri) + loge(rri))

}]
, as, c

→ 2ν,
(4.24)

which is the same as the expression obtained by direct substitutions (i) c/ν = 2 and

(ii) ω(r) corresponding to c/ν = 2 from Eq. (4.23), into Eq. (4.16).
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Figure 4.6: Diagrams based on Eq. (4.20) show the pressure p(r, z) − p(ri, zo)
distribution along the radial coordinate r for various values of the ra-
tio c/ν. Other parameters set for the graphs are ωi = 25 cycles s−1,
ωo = 5 cycles s−1, ro = 1.0 m and (a) ri = 0.2 m, r = 0.2 m−1.0 m,
(b) ri = 0.4 m, r = 0.4 m−1.0 m, (c) ri = 0.7 m, r = 0.7 m−1.0 m.

Figure 4.7: Diagrams based on Eq. (4.20) show the pressure p(r, z) − p(ri, zo)
at the radial coordinates r = 0.8 m, 0.9 m given in (a) and (b)
parts of the figure respectively when ri varies from 0.2 m − 0.7 m
corresponding to various values of the ratio c/ν in the range 0.5−2.5.
Other parameters are ωi = 25 cycles s−1 and ωo = 5 cycles s−1.
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In order to study variation of pressure in the neighbourhood of c/ν = 2, we

plot pressure against c/ν in the interval [1.9999, 2.0001] by setting ri = 0.4 m, 0.7 m,

ro = 1.0 m and r ∈ [0.6, 0.9] m (Figs. 4.8(a) − (b), 4.9(a) − (b)). Pressure is

observed to rise at a tremendous rate to ultimately reach the pressure corresponding

to c/ν = 2. Still there is no discontinuity. The non-smoothness in the pressure graph

is negligibly small and is due to the limitations of the software plotting graphs for

extremely small variations. Fig. 4.10 shows the radial distribution of pressure

corresponding to c/ν = 2. If we compare Figs. 4.6(b) and 4.8(a) with Fig. 4.10,

we find that the pressures corresponding to ro = 1.0 m, ri = 0.4 m, r = 0.6 m and

c/ν = 2 match in the those figures.

Figure 4.8: Diagrams based on Eq. (4.20) display plots for p(r, z) − p(ri, zo)
vs. c/ν. The various parameters are ro = 1.0 m, ri = 0.4 m and
r = 0.6 m, 0.8 m respectively in (a) and (b). Other parameters are
ωi = 25 cycles s−1 and ωo = 5 cycles s−1.

This extraordinary behaviour in a small neighbourhood of c/ν = 2 adds a

new dimension for investigation and physical interpretation.

The value of c/ν depends on a number of factors, e.g. c, µ and ρ, which are

further dependent on pressure, temperature etc. Undoubtedly, these are unsteady in

nature. It is quite natural that this is momentary and changes soon. Whenever we

view a dust devil, we find that its start is sudden and fast and also that sometimes
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during its course it enhances rotation by many folds by reducing its width. Hence, a

momentary shock is predicted. Such shocks are often observed practically whenever

a dust devil is born.

Figure 4.9: Diagrams based on Eq. (4.20) display plots for p(r, z) − p(ri, zo)
vs. c/ν. The various parameters are ro = 1.0 m, ri = 0.7 m and
r = 0.8 m, 0.9 m respectively in (a) and (b). Other parameters are
ωi = 25 cycles s−1 and ωo = 5 cycles s−1.

Figure 4.10: Radial distribution of pressure p(r, z) − p(ri, zo) corresponding
to c/ν = 2 based on Eq. (4.24). Other parameters are ωi =
25 cycles s−1 and ωo = 5 cycles s−1.
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Although according to the general theory of fluid motion, for rigid body rotation of

fluid elements with a velocity component half the vorticity vector is required, but

this needs to be accelerated; this shock is expected to assist acceleration. Since the

parameter c came into existence due to the radial velocity, a particular value of the

radial velocity may be thought responsible for the genesis of dust devils. Barring

these anomalies, the pressure distribution along the radius for various values of c/ν

is similar to what Pandey and Maurya (2017) observed for the case with zero radial

velocity.

A similar situation was reported by Onischenko et al. (2016) in which they

pointed out an explosive growth of an unsteady dust devil under the assumption

that vorticity is constant with height. This was attributed to the presence of double

exponential term in vertical vorticity.

Gradual axial pressure changes are also responsible for the funnel like shape

of a whirlwind. Dust devils being short in size take sometimes right circular cylin-

drical shape. However, in the beginning due to larger compressive pressure in the

vicinity of the ground dust devils too look like a funnel.

4.4 Conclusions

The main conclusions of the entire discussion of this article are associated with the

inflow parameter c of the radial component of velocity without which no formation of

a dust devil can be thought of. The axial velocity reduces smoothly to that derived

by Pandey and Maurya (2017) for no radial velocity. The azimuthal component has

no discontinuity for c→ o, ν or 2ν. However, in spite of the fact that c→ 2ν does

not lead to any discontinuity in pressure, it rises enormously at once, almost as an

explosion having different limits depending on the radial coordinate, in a very small
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neighborhood of c = 2ν. This causes compression and accelerates the formation of

dust devils based on conservation of angular momentum. This situation is probably

a fluid dynamic root cause, i.e., the driving force for the genesis of dust devils.

Appendices

Appendix A

Let the axial velocity w(r, z) be given by

w(r, z) = f(r)× g(z),

where f(r) and g(z) are respectively functions of only r and only z. Substituting

this product into Eq. (4.7), we obtain

u
df

dr
= − 1

ρg(z)

∂p

∂z
+ ν

(
d2f

dr2
+

1

r

df

dr
+

f

g(z)

d2g

dz2

)
− f 2dg

dz
. (A1)

Here the radial velocity umay be solved as a function of r and z; but in view of several

solutions in the literature considering u a function of only r (Burgers, 1940, 1948;

Long, 1957; Rott, 1958; Tanamachi et al., 2006; Yih, 2007; Makarieva and Gorshkov,

2009a, b, 2011; Bestray et al., 2011; Makarieva et al., 2011; Arsen’yev, 2011; Bistray

and Lykov, 2012; Rotunno, 2013; Davies-Jones, 2015; Ben-Amots, 2016; Baker and

Sterling, 2017 etc.) and also for the sake of avoiding complicacies, we consider the

radial velocity u a function of only r. Further, following the assumption made by

Pandey and Maurya (2017) for the axial pressure gradient, we consider the pressure

gradient ∂p/∂z a constant.
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Under the assumption mentioned above, the equation (A1) is satisfied if

g(z) is constant. As a consequence, the axial velocity is found to be independent of

z, i.e., w(r) is a function of only r.

Appendix B

The radial pressure gradient ∂p/∂z = P which, when integrated with respect to z,

gives p(r, z) = zP + k(r), where k(r), being a function of r; yields k(r) = p(r, z0)−

z0P , when it is evaluated at z = z0. Hence p(r, z) = p(r, z0) + P (z − z0).

Appendix C

In the subsection 2.4, P symbolising ∂p/∂z, is constant. Hence, p = Pz + k(r),

where k(r) is a function of r. Therefore, ∂p/∂r is a function of only r. Further, Eq.

(4.5) may be rearranged as follows:

v2 = r ×
{
u
du

dr
+

1

ρ

∂p

∂r
− ν

(
d2u

dr2
+

1

r

du

dr
− u

r2

)}
. (C1)

The right hand side terms involve r and parameters u(r) and p(r), which are func-

tions of only r as per the expression (4.10), and the discussion in this section itself

respectively. Therefore, v has to be a function of r and none other.
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Appendix D

Since the flow is considered steady, the streamlines and path lines coincide. Stream-

lines are solutions of dr/u = rdθ/rω = dz/w, which give

θ = − 1

c
(
r

2−c/ν
o − r2−c/ν

i

) {r2−c/ν
i r2−c/ν

o

(
ωir

c/ν
i − ωorc/νo

)
log(r)− (r2

iωi − r2
oωo) r

2−c/ν

2− c/ν

}
+const.,

(D1)

and

z = −r
2

2c

[
wo −

g ρ∞−ρ
ρ∞

+ P

cρ (2 + c/ν)

{
r

2+c/ν
i

(
r−c/νo − 2r−c/ν

2− c/ν

)
+

c

2ν

(
r2
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r2

2

)}]
+const.,

(D2)

The two equations reduce respectively to

θ = −
log(r)

{
ωor

2
o log

(
r2i
r

)
− ωir2

i log
(
r
r2o

)}
2c log

(
ri
ro

) + const., (D3)

and

z = − 1

2ν

[
r2

2
wo −

g ρ∞−ρ
ρ∞

+ P

8ρν

{
r4
i

(
r2

2
r−2
o − log(r)

)
+
r2

2

(
r2
o −

r2

2

)}]
+ const.

(D4)

as c/ν → 2. The same are the values the function obtained by direct substitution

from the beginning showing continuity of the functions at c = 2ν.

***********
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