
Chapter 3

Fundamental characteristics

governing dynamics of whirlwinds:

Application to dust devils

3.1 Introduction

Rotating columnar fluid masses called vortex have been extensively investigated to

model their flow patterns under different considerations by simplifying the complex-

ity inherent to the solutions. This led to several solutions, of course special ones,

fit for special circumstances formulated under different boundary conditions. The

struggle for a general solution is no doubt continuing unabated across the scientific

world.

The contents of this chapter are published in Zeitschrift für Naturforschung A, 72(8), 763-778,
(2017).
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Vortex exits in nature in various forms and it is known by different names,

depending on its size, strength, longivity, and the country of its occurrence. It is, of

course, also dependent on the language spoken in the area. Among them tornado,

typhoon, cyclone, hurricane, whirlwind etc. are common names.

A tornado is a very strongly rotating funnel shaped vortex stretching up

to the sky and connected to clouds. Hurricane is a tropical cyclone occurring in

the southern Atlantic ocean, Caribbean seas, Gulf of Mexico and the eastern Pacific

Ocean. It does not touch clouds. It is characterised by heavy rains produced by

strong winds and rapidly rotating spiral thunderstorms around a centre of low pres-

sure. Typhoon is a mature tropical cyclone observed in the North Pacific Ocean.

Whirlwind is a very tiny and transient rotating wind mixed with dust particles, dry

leaves and anything available around, lying on the ground prior to its birth and light

enough to float in the air, observed particularly in summer.

Among the initial attempts to model a vortex type phenomenon was an ef-

fort by Rankine (1882). He presented his tornado vortex model with the assumptions

of simple steady-state rotation of a radially symmetric circular solid mass possessing

only azimuthal velocity (i.e. rotational velocity about the axis of symmetry) and

with the outer region being free from vorticity. That simplest model described by

him with the assumptions that the radial and axial velocities are negligibly small,

i.e., respectively u = 0, w = 0, is given by v = v0r/a for r < a and v = v0a/r for

r > a, where r, a, v and v0 are radial coordinate, radius of the vortex, azimuthal

velocity and the maximum azimuthal velocity at r = a. The part of the motion

beyond the core vortex is called free vortex whose velocity, unlike the core vortex,

in inversely proportional to the radial distance.

The velocity profile of Tayler (1918) vortex is given by u = 0, w = 0, and

v(r, t) = Mr/8πvt2 exp(− r2

4νt
), where M represents the total angular momentum

about the axis given by M =
∫∞

0
2πr2vdr. This solution has zero total circulation
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and finite angular momentum M .

An unsteady axisymmetric columnar vortex model known as Oseen-Lamb

model (Oseen, 1912; Lamb, 1932) incorporated viscous and unsteady aspects of the

flow and modified it to: radial velocity is negligibly small, i.e., u = 0, the axial ve-

locity is negligibly small, i.e., w = 0 and the azimuthal velocity is given by v(r, t) =

Γ0

2πr
{1 − exp(− r2

4νt
)}, where Γ(r, t) = 2πrv, {Γ(0, 0) = 0,Γ(0, t) = 0,Γ(∞, t) = Γ0},

Γ, t and v represent circulation, time and kinematic viscosity respectively.

Burgers (1940, 1948) and Long-Rott (Long, 1957; Rott, 1958) indepen-

dently obtained Burgers-Rott vortex model for steady viscous vortex embedded in a

radially inward stagnation point flow over a plane boundary in the form: the radial

velocity is u = −ar, the axial velocity is w = 2az, and the azimuthal velocity is

given by v(r, t) = Γ0

2πr
{1− exp(−ar2

2ν
)}, where a = −(∂u/∂r)0.

Sullivan (1959) vortex model is an exact solution and has some similarity to

the Burgures-Rott vortex model. There is a one-celled vortex and a two-celled vortex

as well. The two-celled vortex has an inner cell in which air flow descends from above

and flows outward to meet a separate air flow that is converging radially. Both flows

rise at the point of meeting. The Sullivan vortex is probably the simplest vortex

that can describe the flow in an intense tornado with a central downdraft, and it is a

simplest vortex that localizes its updraft to a particular place-there is a place for the

thunderstorm. The mathematical form of the Sullivan Vortex is: u = −ar + 6ν
r

(1−

exp(−ar2

2ν
)), w = 2az(1− 3 exp(−ar2

2ν
) and v = Γ

2Πr

H(ar
2

2ν
)

H(∞)
, where Γ is the circulation

strenght of the vortex, a = −(∂u/∂r)0 is the strength of the suction and H(x) is the

function defined as H(x) =
∫ x

0
exp(f(t)), where f(t) = −t+ 3

∫ t
0
(1− exp(−y))dy/y.

ν is considered to be a constant eddy viscosity which dominates the value of this

coefficient, not molecular viscosity. Moreover, the distribution pressure in the atmo-

sphere is given as p(r, z) = p0 +ρ
∫ r

0
v2

r
dr− ρr2

2
(r2 + 4z2)− 18ρv2

r2
(1− exp(−ar2

2ν
)). The

axial pressure gradient is ∂p/∂z = −4ρza2, and increase vertically without bound.
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Batchelor (1964) vortex is an approximate solution to the Navier-Stokes

equations obtained using a boundary layer approximation. The physical reasoning

behind this approximation is the assumption that the axial gradient of the flow field

of interest is of much smaller magnitude than the radial gradient. The solution pre-

sented are meant for trailing line vortices from lifting surfaces, jet intake vortices,

bath drain vortices, tornadoes etc.

The most simplified form of the Batchelor vortex is q−vortex. It is ax-

isymmetric stretch free columnar vortex. A q−vortex is a model of isolated vortex

flow with both axial and azimuthal velocity components. The q−vortex are defined

by u = 0, w = Γ0

2πaq
{1 − exp(−r2/a2)}, and v = Γ0

2πr
{1 − exp(−r2/a2)}, where a is

the core radius, q is the swirling parameter, the initial parameter Γ0 is an arbitary

parameter.

The Vatistas (1991), proposed the tangential velocity profiles for vortices

with continuous distributions of the flow quantities. The normalized tangential ve-

locity function Vθ of the Vatistas model is given by v = v
Γ∞/(2πrc)

= r
(1+r2n)1/n

, where

r = r/rc, rc is the core radius, v is the tagential velocity, Γ∞ is the vortex circulation

at infinity.

Expermental observations by Vatistas (1986) suggest that in the concen-

trated vortex the azimuthal velocity component does not depend strongly in the

axial direction. Therefore, under these assumptions the radial velocity component

can be obtained from the θ−momentum equation, the normalised radial velocity

function u is given by u = u rc
ν

= −{2(1+n)r2n−1

(1+r2n)
}, where ν is the kinematic viscosity

and the normalized axial velocity function Vz is given by w = wzc
ν

= 4n(1+n)r2n−1

(1+r2n)2
,

where z = z/rc. This approaches Rankine profile as n → ∞. These equations

have singularity on the vortex center for n < 1. Therefore distribution with for

n < 1 should not be permitted. For any finite value of n the values of all velocity

components are well behaved. The Vatistas (1998) model is a generalization of few
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well-known vortex tangential velocity profiles in the aerodynamics community.

Deissler (1977) presented some models to deal with different aspects of at-

mospheric vertices by considering a single gravity driven vortex and a frictionless

adiabatic model. The effects of heat drag, heat transfer and participation induced

downdrafts have also been discussed. It is a generalisation of the model given by

Deissler (1977) and Boldman (1974). The azimuthal velocity v is supposed to be a

function of only radial coordinate r, the axial velocity w depends on z only. The

radial velocity u is then computed and found to be dependent on r and z.

Several attempts have been made to model tornadoes. Ward (1956) stud-

ied temperature inversion as a factures in the formation of tornadoes. He (1972)

later explored certain features of tornado dynamics using a laboratory model. Kuo

(1966) studied the dynamics of convective atmospheric vortices. It was followed

his (1967) note on the similarity solutions of the vortex equations in an unsteady

stratified atmosphere. Bellany-Knights (1970) attempted to get an unsteady two

cell solutions of the Navier-Stokes equations. Serrin (1972) modelled a swirling vor-

tex. Lewellen (1993) propounded a detailed tornado vortex theory. Davies-Jones

(1995) also discussed tornadoes extensively. Larcheveque and Chaskalovic (1994)

discussed tornado genesis and found that the basic flow is generated simultaneously

by a strong vertical gradient of temperature and by a storm in the troposphere,

which is a non rotating updraft.

Subsequent attempts are their generalisations or investigations of particu-

lar aspects following the paths propounded by the authors as described above.

Authors in the most recent reports (Tanamachi et al., 2006; Yih, 2007,

Makarieva and Gorshkov, 2009a, 2009b, 2011; Bestray et al., 2011; Makarieva et

al., 2011; Bistray et al., 2011; Arsen’yev, 2011; Bistray and Lykov, 2012; Rotunno,

2013; Davies-Jones, 2015; Ben-Amots, 2016 etc.) have discussed different aspects

particularly of tornado like vortex, used different methods or reviewed the literature
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extensively.

It is thus observed that intended attempts for modelling a particular type of

rotating fluid masses occurring in the atmosphere revolve mainly around tornadoes.

Here we intend to model whirlwind mathematically.

3.2 Mathematical formulation of the problem

Dust devils are observed the world over and occasionally throughout the year. These

are formed due to temperature gradients created locally due to excessive heating

in a locality. This is formed suddenly and is observed to rise into the sky but

unlike tornadoes it is short-lived and dies out soon. Even gustnadoes, which, unlike

tornadoes, fail to connect with clouds, have very similar characteristics. We intend

to model whirlwinds mathematically using a new approach.

Figure 3.1: Diagrammatic representation of the formation of a dust devil.
Dashed curves show the direction of ambient winds blowing hor-
izontally and then moving upward after supressing air the buffer
zone, the innermost and the outermost layers being shown by solid
curves. Heights of the different layers indicate that the innermost
rises the most. The two dotted circles indicate the inner and the
outer boundaries of the rotating annular dust devil around a low
pressure zone and kept intact by centripetal acceleration.
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3.2.1 The physical model of whirlwind vortex

In summer, the sunlight is quite intense. Whenever a particular area of the Earth’s

surface is exposed to excessive heating, the water contents are evaporated and move

upward; the dry and hot air becomes rarer in density and locally creates a void, i.e.

a depleted airy zone, forming a horizontal gradient of temperature and air pressure.

In order to fill the void, colder winds close to the Earth’s surface blow from all

the directions and sometimes culminate into the formation of a rotating columnar

mass of air mixed with dust, leaves etc., called dust devil. Renno et al. (1998)

put forward a thermo-dynamical theory for dust devils explaining how vertical and

horizontal temperature gradients are created. Many more detailed descriptions are

given by Balme and Greeley (2006). We may use this knowledge but won’t dig into

it.

The general analysis of fluid motion puts forth the theory of two velocity

components, one being normal to a quadric surface and another that is ascribed to

rigid body rotation of fluid elements with velocity half the vorticity vector. However,

this tendency of rotation is expected to survive only when there exists a central area

of lower pressure which helps create centripetal forces in the radial direction. A

solid vortex is rare and won’t last long as the driving force required to rotate a solid

mass in the atmosphere is unusual. Formation of vortex motion in bathtubs is due

to water leaving the tub and creating a low pressure zone in the middle. Once exit

of water is stopped, the vortex motion calms down.

The strength of the vortex must be dependent on the intensity of the stormy

wind, created due to temperature difference, rushing to fill the pressure zone. The

layer of the winds closest to the Earth’s surface is hottest and so blows fastest;
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hence when the winds turn and move vertically upward, the innermost layer must

be moving with the highest velocity. This may be used as a boundary condition.

Thus, it may be a cylindrical aerial mass of higher pressure surrounding an

inner cylindrical mass of lower pressure. Moments after its birth, it is observed to

scale some height suddenly, and soon gets grounded only to die out. This may be

possible when a favorable pressure gradient is created for some time in the upward

vertical direction or the winds close to the ground have some kinetic energy to take

the dust to some height.

The reasons we cite to construct the model are as follows:

The winds rushing from opposite directions and pressed by the following

wind compress the air in the buffer zone as much as possible, gradually change the

direction of motion due to the reaction of the compressed air and eventually move

vertically upward because the atmospheric pressure above it becomes less than the

pressure generated due to the compressed air. As a result, a negative pressure

gradient is created in the vertically upward direction. Furthermore, the wind in the

vicinity of the hot ground has some kinetic energy and the changed direction is along

the normal to the ground. The kinetic energy takes the winds to some height by

getting converted into potential energy. The rest of the dusty part floating above the

whirlwind, which is the debris from the surroundings carried along by the blowing

winds, is due to the effects of buoyancy and the electrostatic charges. It is believed

that dust storms can generate significant electrostatic fields due to contact between

diametrically large and small dust particles. Frictional drag on the air and the

electrostatic repulsion owing to electric charge differences between the smaller and

the larger dust particles from the triboelectric effect pull up dust in the core. The

vertical/horizontal flow has a toroidal vorticity which either lifts the dust and sand

directly or balances the downward gravitational force on the sand sufficiently to allow
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electro-static forces from triboelectricity to lift the smaller, lighter sand dust into a

high rising column (Kok and Renno, 2006). Lacks and Levandovsky (2007) add that

saltation, i.e., bouncing of the sand, transfers weakly bound surface electrons from

diametrically larger sand particles, particularly SiO2 to the smaller ones. Further

details are given by Horton et al. (2016). These reports endorse our considerations.

The compressed air close to the ground will also move towards the lower

pressure zone lying above, travel vertically upward and may in some interval of time

annihilate the circumstance that created vortex motion. The height scaled is of a

few meters because the velocity with which the winds blow should be enough to

take them to a great height. Mattsson et al. (1993) claim them to range from a few

meters to 1.0 km. Data reported by Sinclair (1965), Flower (1936) and Williams

(1948) suggest that 12 % of the dust devils are lower than 3 meters in height,

50 % range in 3 − 50 m and only 8 % are taller than 300 m. Some exceptional

cases of taller dust devils are also reported (Bell, 1967). The height of the most

of the dust devils is found to be at least 5 times their width (Hess and Spillane,

1990). Meanwhile, the winds from all the directions put pressure on the whirlwind

and increase its longevity. Sinclair (1966) classified the length of a dust devil into

three parts. The lower part being the surface interface region loaded heavily with

dust particle, the middle one nearly a vertical column of rotating dust with little

exchange of dust between the column and the surrounding air, and the upper one

where rotation decays and which expels dust into the ambient atmospheric flow.

The whirlwind also gets drifted. Once the whirlwind drifts and the pressure

close to the ground equals the atmospheric pressure, the axial velocity sieges; but

the whirlwind may continue rotating due to the azimuthal velocity acquired and

radial force being exerted by the winds from the surroundings. But this dragging is
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neither a part of the proposed model, nor is it seen as important an issue as rotation

at least at this stage of discussion.

Thus, it is likely that such a natural phenomenon is formed by the radial

pressure gradient, survives due to the existence of a lower pressure region and is

governed by the axial pressure gradient. They are expected to survive as long as

the axial pressure gradient continues. The model will help us explore. We attempt

to model the middle part of the vortex motion of a dust devil as characterized by

Sinclair (1966) using the aforementioned considerations.

3.2.2 Mathematical model of whirlwind vortex

We are modelling the dynamics of whirlwinds as physically described above in math-

ematical terms as given below:

We consider the cylindrical polar coordinates (r, θ, z) for modelling the

problem undertaken, r, θ, z respectively stand for radial, angular and axial coordi-

nates. Simplifications are incorporated in the general governing equations in order

to get conformance with the physical model as explained below step-by-step.

It is observed that at least practically, a rotating fluid mass in the form

of a vortex does not seem to differ at different angles during its rotation about the

vertical axis. Thus, it seems reasonable to consider the flow as axi-symmetric. This

removes all terms where the angular coordinate θ is involved. Hence, the three-

dimensional Navier-Stokes governing equations for the steady axi-symmetric flow of

an incompressible Newtonian viscous fluid may be given by

u
∂u

∂r
+ w

∂u

∂z
− v2

r
= −1

ρ

∂p

∂r
+ ν

{
∂2u

∂r2
+

1

r

∂u

∂r
− u

r2
+
∂2u

∂z2

}
, (3.1)
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u
∂v

∂r
+ w

∂v

∂z
+
uv

r
= ν

{
∂2v

∂r2
+

1

r

∂v

∂r
− v

r2
+
∂2v

∂z2

}
, (3.2)

u
∂w

∂r
+ w

∂w

∂z
= −1

ρ

∂p

∂z
+ b+ ν

{
∂2w

∂r2
+

1

r

∂w

∂r
+
∂2w

∂z2

}
, (3.3)

together with the continuity equation

1

r

∂(ru)

∂r
+
∂w

∂z
= 0. (3.4)

where r and z are cylindrical polar coordinates; and u, v and w are the radial,

azimuthal and axial components of velocity vectorand, b is buoyancy.

For modelling a vortex mathematically, which spins vertically and is made

up of an incompressible fluid, i.e., the density ρ remains constant, we consider the

flow to be steady, i.e., it does not change with time. Practically, radial velocity is

insignificant once the whirlwind is fully developed, i.e., the middle part as classified

by Sinclair (1966). Hence is the assumption u = 0. The effect of buoyancy is

significant for the upper part of a dust devil which has decayed rotation and floating

dust particles; therefore we set b = 0. The simplest case is that the azimuthal velocity

is described in terms of an angular frequency or velocity ω. We suppose that the

angular velocities of the innermost and outermost layers are ωi and ωo respectively.

Thus, the azimuthal velocities of the innermost and outermost layers are described

respectively as vi = ωiri and vo = ωoro, ωi and ωo being respectively the innermost

and outermost angular velocities. The radial velocity is still considered as zero, i.e.

u = 0. Under the assumptions described above, the modified boundary equations

are as follows:

ωi = ω (ri) , ωo = ω (ro) , (3.5)
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Figure 3.2: The diagram gives the geometry of the whirlwind modelled as an
annulus, drawn by solid lines and curves, of outermost radius ro and
innermost radius ri measured from the axis oz. The inner region
of radius ri inside the annulus is a region of low pressure. The an-
nulus is filled with air and has comparatively high pressure. Inside
the annulus are shown concentric cylindrical layers shown by dotted
lines, differing in some respect. u, v and w represent the radial, the
azimuthal and the axial velocities respectively and ωi and ωo are re-
spectively the angular velocities of the innermost and the outermost
surfaces of the annulus.

A whirlwind is a vertical circularly rotating fluid mass. We model this as

a cylindrical annulus of dense aerial mass, inside which lies a region of an aerial

mass of low pressure, thus creating a favourable radial gradient of pressure (cf Fig.

3.1). Thus, there are two concentric vertical cylindrical surfaces, say innermost and

outermost surfaces. The annular mass has concentric cylindrical forms rotating with

varying azimuthal velocities.

It is practically observed that the innermost part of a dust devil reaches the

top height. That is, the innermost part, which is in contact with the low pressure

region, rotate and move vertically with the highest axial velocity. Hence, there is
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nothing wrong in the assumption that the maximum axial velocity is achieved at the

innermost surface of the annular cylindrical mass. If we move towards the outermost

surface, we find that the concentric layers slow down and the axial velocity of the

outermost layer is minimum and asymptotically maybe even zero. We believe that

the distance is practically finite, say ro from the axis oz.

In view of the assumption that u = 0, the continuity Eq. (3.4) reduces to

∂w/∂z = 0, and yields the axial velocity which is independent of the axial coordinate,

i.e. w = w(r). Taking this revelation into consideration, Eqs. (3.1) and (3.3) may

be presented for the steady flow, in reduced form, as

v2

r
=

1

ρ

∂p

∂r
, (3.6)

1

ρ

∂p

∂z
= ν

{
∂2w

∂r2
+

1

r

∂w

∂r

}
, (3.7)

It is noticed that Eq. (3.6) describes the centripetal acceleration.

In fact, the mutual frictional/viscous forces acting between consecutive

layers diminish velocity and as a consequence, the highest part of the whirlwind is

seen to be surrounded by spinning wind of lesser height which is itself surrounded

by unmoved air. Under this consideration, the axial velocity is derived from Eq.

(3.7) under the boundary conditions

w(ro) = 0 and w(ri) = wmax, (maximum axial velocity) , (3.8)

Since w(r) does not depend on z, it is evident from Eq. (3.7) that the right side of

the equality sign is a function of r only. As a consequence, ∂p/∂z is either a function

of r or is a constant or both the sides are equal to a constant. Later we shall see in

Eq. (3.17) that though p is a function of r and z both but not a product of them or
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their functions, therefore it is merely a constant. Hence, integrating Eq. (3.7) under

the condition that w(ro) = wo, we get

w(r) = wo +
P

2µ

(
r2 − r2

o

2

)
+K × loge

(
r

ro

)
, (3.9)

where the axial pressure gradient, ∂p/∂z = P , a constant and K is a constant of

integration required to be evaluated for w(ri) = wmax. Maximisation of the axial

velocity gives K = − P
2µ
r2
i , so that,

w(r) = wo −
P

2µ

(
r2
o − r2

2
+ r2

i × loge

(
r

ro

))
, (3.10)

The kinetic energy ρw2
initial(r)/2 due to the initial velocity winitial(r) of the wind can

take it to some height h(r) = w2
initial(r)/2g; and hence it may be added to the right

side of Eq. (3.10), so that

w(r) = wo +
√

2gh(r)− P

2µ

(
r2
o − r2

2
+ r2

i × loge

(
r

ro

))
, (3.11)

In the absence of the logarithmic term, the axial velocity, given by Eq. (3.10), re-

duces to Hagan-Poiseuille flow. The logarithmic term appears due to the assumption

that the axial velocity is maximum at the inner radius while in the Hagan-Poiseuille

flow, the inner radius is zero. This is notable that this model is valid only when the

axial pressure gradient is constant. Once the axial pressure gradient changes, this no

longer holds. After a particular height, change in pressure gradient is not ruled out;

and so the model governing the flow will also change. Due to the velocity, normal to

the quadric surface, the vortex keeps drifting; and consequently it probably reaches

a place with pressure gradient inadequate to sustain the vortex.

The modification brought about in this case is that the angular velocities
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of the innermost and the outermost layers are supposed to be ωi and ωo respectively.

Thus, the innermost and outermost layer azimuthal velocities are described respec-

tively as vi = ωiri and vo = ωoro, where ωi and ωo being respectively the innermost

and outermost angular velocities. The radial velocity is still considered as zero, i.e.

u = 0. Under the assumptions described above, the modified boundary equations

are as follows:

ωi = ω (ri) , ωo = ω (ro) , (3.12)

In view of the varying azimuthal velocity, Eq. (3.2) reduces to

∂2v

∂r2
+

1

r

∂v

∂r
− v

r2
= 0, (3.13)

which is homogeneous Euler-Cauchy’s equation with the following solution:

v(r) = Ar +
B

r
(3.14)

where A, B are arbitrary constants of integration.

Under the boundary conditions (3.12), Eq. (3.14), in terms of angular

velocity, is of the form

ω (r) =
r2
o

r2
o − r2

i

[
ωi

(
r2
o − r2

i

r2
o

− r2 − r2
i

r2

)
+ ωo

(
r2 − r2

i

r2

)]
. (3.15)

This is standard Couette flow.

Hence, the flow of the vortex thus created may be given, in the consolidated form,
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by

u(r) = 0,

v(r) = rω (r) =
1

r2
o − r2

i

[(
ωor

2
o − ωir2

i

)
r − (ωo − ωi)

r2
i r

2
o

r

]
,

w(r) = wo +
√

2gh(r)− P

2µ

(
r2
o − r2

2
+ r2

i × loge

(
r

ro

))
.


(3.16)

The corresponding vorticity vector is given by

ζ = r̂0 + θ̂
P

2µ

(
r2
i

r
− r
)

+ ẑ
2 (ωor

2
o − ωir2

i )

r2
o − r2

i

, (3.17)

where ζ, r̂, θ̂, ẑ are respectively vorticity vector and unit vectors along the radial,

azimuthal and axial directions.

The models presented by Rankine (1882), Oseen (1912), Taylor’s (1918)

model and Lamb (1932) do not describe any axial fluid motion despite the fact

that the azimuthal velocity have more general and complex expressions representing

more general forms of azimuthal velocity. Hence, those models are not suitable for

a vortex model describing the motion of dust devil.

For ωo = ωi = ω, the flow described in set of Eqs. (3.16), will reduce to

u(r) = 0,

v(r) = rω,

w(r) = wo +
√

2gh(r)− P

2µ

(
r2
o − r2

2
+ r2

i × loge

(
r

ro

))
.


(3.18)

In view of the angular velocity given by Eq. (3.15) together with Eq. (3.6), the

radial pressure gradient will take the following form:

∂p

∂r
= rρ

(
r2
o

r2
o − r2

i

)2 [
ωir

2
i

(
1

r2
− 1

r2
o

)
+ ωo

(
1− r2

i

r2

)]2

, (3.19)
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Integrating Eq. (3.19) with respect to r, the pressure is given by

(3.20)
p (r, z) = f (z) + ρ
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where f (z) is a function of z. Evaluating the pressure at r = ri, we get

p (r, z) = p (ri, z) + ρ
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(3.21)

If we evaluate the pressure at r = ro using Eq. (3.20), we get

p (r, z) = p (ro, z)− ρ
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(3.22)

The pressure across the width of the whirlwind may therefore be given, by subtract-

ing Eq. (3.22) from Eq. (3.21), as

p (ro, z)−p (ri, z) = ρ

[
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(3.23)
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under the assumption that the axial pressure gradient, ∂p/∂z = P , is a constant,

the axial velocity is the same as Eq. (3.11).

For ωi = ωo = ω, Eq. (3.21) and Eq. (3.22) give

p (r, z) = p (ri, z) +
ρω2 (r2 − r2

i )

2
, (3.24)

or equivalently,

p (r, z) = p (ro, z)−
ρω2 (r2

o − r2)

2
, (3.25)

The pressure across the two layers, in view of Eq. (3.24) and Eq. (3.25) may be

given by

p (ro, z)− p (ri, z) =
ρω2 (r2

o − r2
i )

2
> 0. (3.26)

3.3 Discussions and physical interpretations

Unlike earlier models, in which the axial velocity was considered either zero or of a

definite form and subsequently the azimuthal velocity was deduced, we considered

the azimuthal velocity of a particular form and tried to work out the axial velocity

for physical models resembling whirlwinds, particularly dust devils, occurring in the

nature.

3.3.1 Axial velocity vs. radius

A whirlwind is observed to shoot up into the sky immediately after it is born. It is

clear from Eq. (3.11) that surging up into the sky is possible only when the winds

move upward with some initial velocity or there is a favourable pressure gradient in

the axial direction or both. Absence of both will let the whirlwind siege its growth.
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For the present analysis and discussion based on numerical solutions, we consider

the axial velocity of the outermost layer w0 = 0 and further do not consider the

contribution made by the initial winds’ velocities
√

2gh(r).

Figure 3.3: The diagrams (a − d) represent the variation of axial velocity w(r)
with respect to radius, w(r) has been given by Eq. (3.11) as a
sum of w0, w1 and w2, where w0 = 0, w1 = −P

(
r2
o − r2

)
/4µ and

w2 = −Pr2
i loge

(
r
ro

)
/2µ as described in the discussion. w1 and w2,

are separately plotted and later as a sum w(r). The outer radius
is ro = 1.0 m, (a) ri = 0.1 m, (b) ri = 0.3 m, (c) ri = 0.5 m and
(d) ri = 0.9 m. Other parameters used here are: dynamic viscosity
µ = 0.0000198 Pl, and P = −0.01 Pa/m.

Axial velocity, w (r) given by Eq. (3.11) has two parts − P
2µ
×
(
r2o−r2

2

)
, say

w1 (r) and − P
2µ
r2
i loge

(
r
ro

)
, say w2 (r). The former part w1 (r), which has parabolic

profile, gives the main contribution to the axial velocity while the latter part w2 (r),

which is also parabolic, reduces the magnitude of the axial velocity. This is be-

cause under the consideration of favourable pressure gradient, i.e. P < 0, we have

loge

(
r
ro

)
< 0 for ri < r < ro. This is also revealed through the Fig. 3.2(a− d)

plotted for r vs. w (r).
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The dynamic viscosity, µ = 0.0000198 Pl is reported in the literature. We

set the outermost radius as ro = 1 m (based on the reports by Hess and Spillane,

1990; Flower, 1936 and Williams, 1948) and vary the innermost radius ri in the

range 0.1 m − 0.9 m. The axial pressure gradient is assumed to be −0.01 Pa/m

for the plots. Graphs are plotted by varying inner radius and depicted through Fig.

3.3(a− d). Inside the region within the innermost radius, there is no axial velocity.

It varies between the innermost and the outermost radii. The resultant velocity w(r)

is less than that of the first part i.e. w1(r). This gives rise to curiosity about the

role the second part, i.e. w1(r), plays. The investigation follows.

This is observed through Fig. 3.3(a− d) that the axial velocity reduces as

the innermost radius ri is increased. The part of the expression for the axial velocity

contributing negatively, denoted by w2(r), also increases in magnitude; and hence

the total sum is further reduced. For ri = 0.9 m with r0 = 1 m, the axial velocity

w(r) is very much reduced. This may be concluded that the whirlwind can scale a

good height only when the annulus thus formed is thick. We name it inference−1.

We further observe that the axial velocity componen loge

(
r
ro

)
is negative

for the entire range ri < r < ro, and loge

(
r
ro

)
→ −∞ as ri → 0. This is also

observed that ri and |w2 (r)| decrease simultaneously; and w2 (r) → 0 as ri → 0.

This leads to the conclusion that in the limiting case ri → 0, the axial velocity is

maximum. This we name inference−II.

Further, for ri < r < ro, we have w(r) → −P (r2
o − r2) /4µ (= w1 (r)) as

ri → 0. Hence, the latter part w2 (r) of the axial velocity w (r) is due to the inner

region of low pressure of the whirlwind. The second part w2 (r) of the axial velocity

w (r) thus plays a vital role in the whirlwind dynamics as predicted by the model

and it characterises, in fact, all the phenomena similar to whirlwinds.
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3.3.2 Azimuthal velocity vs. radius

Due to the frictional forces acting between consecutive layers, the velocity of the

outer layer is evidently less. It is observed that the maximum angular velocity of a

whirlwind occurring in the nature is found at the innermost radius. Taking this fact

into consideration, we go ahead with further discussions.

It is evident from the Eq. (3.6) that absence of radial pressure gradient

∂p/∂r = ω2r is possible when either the angular velocity ω or the radial length

r is zero. In either of the cases, the whirlwind will die out. Thus, it may be

predicted that the moment the low pressure region disappears, the whirlwind will

vanish. Hence, the inner radius, ri is never zero and consequently, r 6→ 0, at the

most r → ri (6= 0). This may be physically interpreted that a whirlwind with no

low pressure region inside it cannot survive. Thus, this may be regarded as the

fundamental characteristic.

Inference−II together with the fundamental characteristic leads to the

conclusion that that the axial velocity of the innermost layer increases but ω(ri)→ 0

when the inner radius ri → 0. Thus, in such a case the whirlwind attains the

maximum axial velocity and then dies out. This is practically observed.

The characteristics discussed above have never been under investigation for

any of the models available in the literature. Models not considering vertical velocity

cannot represent whirlwinds that surge up into the sky. The Burgers (1940, 1948)

models predict a linearly increasing vertical velocity which is not realistic and un-

acceptable for dust devils that surge up into the sky and die out in a short while.

With more realistic and experimentally verified considerations of radial

and azimuthal velocities, it is possible to predict more useful results following the

methodology involved in this model. This is worth mentioning that if we artificially
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create these circumstances using concentrated sun energy, stationed whirlwinds may

be created which may facilitate us generate electric power for domestic and industrial

consumptions.

The azimuthal velocity in this model is dependent on three factors, namely,

the radius and the inner and outer angular velocities. In order to study their effects,

three sets of Figs. (3.4−3.6) have been drawn which exhibit how the angular and

azimuthal velocities depend on the radial distance; and further what impacts the

changes in the inner and outer angular velocities give.

Balme and Greeley (2006) summarised the various reports available on the

velocities etc. of dust devils. The values for the discussion are more or less based

on them. In Fig. 3.4(a − d), the outer and inner angular velocities are set as

ωo = 20 cycles s−1, and ωi = 25 cycles s−1 and the innermost radius is varied in the

range ri = 0.1 m − 0.9 m. As expected, the angular velocity decreases as we move

outward along the radius. In Fig. 3.4, where the two angular velocities are close

in magnitude, it is observed that the azimuthal velocity, however, increases along

the radius in the outward direction when the innermost radius is small. But when

the innermost radius is very large, i.e., the whirlwind is quite thin, the azimuthal

velocity, too, starts decreasing along with the angular velocity as we move outward

along the radius.
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Figure 3.4: The diagrams (a−d) represent the variation of angular velocity and
corresponding azimuthal velocity with radius based on Eq. (3.15).
Here the angular velocities are fixed as ωo = 20 cycles s−1, and
ωi = 25 cycles s−1, the outer radius is set as ro = 1.0 m while the
inner radius has been varied in the range ri = 0.1 m− 0.9 m.

In Fig. 3.5(a−d), the angular velocities are fixed as ωo = 5 cycles s−1, and

ωi = 25 cycles s−1, the outermost radius is set as ro = 1.0 m while the innermost

radius has been varied in the range ri = 0.1 m − 0.9 m. In Fig. 3.4, where the

two angular velocities differ largely in magnitude, it is observed that the azimuthal

velocity increases along the radius in the outward direction when the inner radius is

very small. But when the inner radius is somewhat larger, i.e., the whirlwind is still

thick, the azimuthal velocity, too, starts decreasing along with the angular velocity

as we move outward along the radius.
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Figure 3.5: The diagrams (a − d) display the variation of angular velocity and
corresponding azimuthal velocity with radius based on Eq. (3.15).
The various parameters used for the plots are: ωo = 5 cycles s−1,
ωi = 25 cycles s−1, ro = 1.0 m, ri = 0.1 m− 0.9 m.

In Fig. 3.6(a−d), we consider no outer angular velocity. The inner angular

velocity is fixed as ωi = 25 cycles s−1, the outer radius is set as ro = 1.0 m while the

innermost radius has been varied once again in the range ri = 0.1 m−0.9 m. In Fig.

3.6, in which the outer angular velocity is set to zero, the angular and azimuthal

velocities decrease simultaneously as we move outward along the radius.

One can conclude from this that it is not the magnitude of azimuthal

velocity but that of angular velocity which determines motion of a vortex. Thus, a

fundamental parameter for such a fluid motion is the angular velocity and not the

azimuthal velocity.
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Figure 3.6: The diagrams (a − d) display the variation of angular velocity and
corresponding azimuthal velocity with radius based on Eq. (3.15).
The various parameters used for the plots are: ωo = 0 cycles s−1,
ωi = 25 cycles s−1, ro = 1.0 m, ri = 0.1 m− 0.9 m.

3.3.3 Pressure vs. radius

We plot graphs, given in Figs. (3.7−3.9), for p (r, z) − p (ri, z) vs. r, ri ≤ r ≤ 1,

under the consideration that ωo = 0 cycles s−1, and ωi = 25 cycles s−1. It is

observed that pressure rises very sharp in the vicinity of the innermost radius but

then relaxes and rises very slowly and near the outer boundary, the pressure rise

seems to be almost zero. A similar pattern is observed when we use Eq. (3.22). To

avoid unnecessary repetition, we do not include those graphs here.
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Figure 3.7: The diagrams (a − d) represent the variation of pressure difference
with radius. This is based on Eq. (3.21). This corresponds to
ωo = 0 cycles s−1, and ωi = 25 cycles s−1. In the four cases the
inner radius varies as (a) ri = 0.1 m, (b) ri = 0.3 m, (c) ri = 0.5 m,
(d) ri = 0.9 m.

Similar graphs we plot under the consideration that ωo = 5 cycles s−1, and

ωi = 25 cycles s−1. The difference observed is that when the innermost radius is

very small for example, r = 0.1 m, the pressure rises in the close vicinity of the inner

radius but does not slow down rapidly, it rather once again increases a bit. This is

confirmed by plotting graphs for pressure gradient shown in Fig. 3.9(a− d).

We further increase the outer angular velocity and set ωo = 20 cycles s−1,

so that it is close to the inner one. In this case, the pressure increases right from

the beginning.
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Figure 3.8: The diagrams (a − d) represent the variation of pressure difference
with radius. This is based on Eq. (3.21). This corresponds to
ωo = 5 cycles s−1, and ωi = 25 cycles s−1. In the four cases the
inner radius varies as (a) ri = 0.1 m, (b) ri = 0.3 m, (c) ri = 0.5 m,
(d) ri = 0.9 m.

From the above discussion, it is inferred that pressure increases from the

innermost to the outermost layer; and if the two angular veocities are close in mag-

nitude, the pressure gradient increses towards the outermost layer but if the two

angular velocities are farther in magnitude, the pressure gradient near the innermost

layer is very large and decreases at a fast rate as we move towards the outermost

layer.

Finally, we draw diagrams for ’pressure across the whirlwind width’ vs. the

innermost radius given through the Figs. (3.10−3.12) based on Eq. (3.23). Through

the Fig. 3.10(a − d), it is observed that, when the difference in the magnitudes of

the two angular velocities is large (e.g., ωo = 0 cycles s−1, and ωi = 25 cycles s−1),
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Figure 3.9: The diagrams (a − d) represent the variation of pressure difference
with radius. This is based on Eq. (3.21). This corresponds to
ωo = 20 cycles s−1, and ωi = 25 cycles s−1. In the four cases the
inner radius varies as (a) ri = 0.1 m, (b) ri = 0.3 m, (c) ri = 0.5 m,
(d) ri = 0.9 m.

two different values of the inner radius correspond to the same pressure except a

particular case when the pressure is the maximum. But if the whirlwind is thin, the

pressure across the two layers decreases if the inner radius increases.

We diminish the difference in the magnitudes of the two angular velocities

taking ωo = 5 cycles s−1, and ωi = 25 cycles s−1, the maximum pressure increases

which corresponds to only one value of the inner radius (see Fig. 3.11(a− d)).
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Figure 3.10: The diagrams (a − d) exhibit the variation of pressure difference
across the innermost and the outermost layers with inner radius.
This is based on Eq. (3.23). This corresponds to ωo = 0 cycles s−1,
and ωi = 25 cycles s−1. In the four cases the inner radius varies as
(a) ri = 0.1 m, (b) ri = 0.3 m, (c) ri = 0.5 m, (d) ri = 0.9 m.

But when the difference further decreased with ωo = 20 cycles s−1, and ωi =

25 cycles s−1, the pressure across the two layers decreases with increasing inner

radius (see Fig. 3.12(a− d)).
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Figure 3.11: The diagrams (a − d) exhibit the variation of pressure difference
across the innermost and the outermost layers with inner radius.
This is based on Eq. (3.23). This corresponds to ωo = 5 cycles s−1,
and ωi = 25 cycles s−1. In the four cases the inner radius varies as
(a) ri = 0.1 m, (b) ri = 0.3 m, (c) ri = 0.5 m, (d) ri = 0.9 m.



Chapter 3. Fundamental characteristics governing dynamics of whirlwinds 67

Figure 3.12: The diagrams (a − d) exhibit the variation of pressure differ-
ence across the innermost and the outermost layers with inner
radius. This is based on Eq. (3.23). This corresponds to
ωo = 20 cycles s−1, and ωi = 25 cycles s−1. In the four cases the
inner radius varies as (a) ri = 0.1 m, (b) ri = 0.3 m, (c) ri = 0.5 m,
(d) ri = 0.9 m.

3.4 Conclusions

The most important conclusion with regard to the characteristics of whirlwinds,

particularly dust devils, is that a low pressure region is essentially required for the

existence of a whirlwind. The radial pressure gradient caused by the variation of

temperature creates it. Even when there are no radial temperature gradients, once

a region with low pressure is created, it will help the whirlwind survive. Hence,

it is never a uniformly distributed high/low pressure rotating mass. The presence

of low pressure region inside the whirlwind may be termed as the fundamental

characteristic.
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Moreover, a whirlwind scales up some height into the sky because there is

a favourable pressure gradient in the vertical direction and its absence will let the

whirlwind lose its growth and lead to its disappearance. The innermost layer reaches

the highest point. It is further concluded that the whirlwind can scale a good height

only when the annulus thus formed is thick.

It is further concluded that angular velocity will be uniformly zero if the

innermost radius tends to zero. This means there is no whirlwind. This endorses

the fundamental characteristic that there must be a zone of low pressure inside the

whirlwind with no angular velocity.

The axial velocity has two parts. One of them is due to the inner region of

low pressure of the whirlwind. This plays a vital role in the whirlwind dynamics as

predicted by the model and it characterises all the phenomena similar to whirlwinds.

Moreover, larger the radial pressure difference across the outermost and

innermost layers, thicker will be the whirlwind. Thus, if the radial pressure difference

between the outermost and innermost layers is larger, the whirlwind is thicker and

consequently, it will last longer.

While discussing the model for variable azimuthal velocity, it was inferred

that it is the angular velocity, not the azimuthal velocity, which determines whether

a whirlwind will be created or not. Thus, a fundamental parameter for such a fluid

motion is the angular velocity and not the azimuthal velocity.

***********
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