Chapter 6

Analysis of MAP/ G“?) /1/N queue with
queue length dependent single and

multiple vacation

6.1 Introduction

In the literature on classical vacation queueing models, it is mostly assumed that customers
are arriving at the system following the Poisson distribution, however, these assumptions of
Poisson arrivals fit the model only when the arrival process is uncorrelated. In modern commu-
nication systems and ATM networks the arrivals of packetized data to a statistical multiplexer
are bursty in nature. These bursty arrivals cannot be modeled well by Poisson processes.
The Markovian arrival process (MAP) (Neuts (1979, 1981)) is a very good representation
for modeling next generation communication networks, viz., 4G with bursty and correlated
traffic. MAP is a rich class of point processes which contain many popular arrival processes
such as Poisson process, PH-renewal process, Markov modulated Poisson process (MM PP),
etc. We refer Neuts (1992) for the applications based on MAP. Lucantoni et al. (1990) in-
troduced the correlated arrival process in vacation queueing models. They studied an infinite
buffer MAP/G/1 queue with general vacation time and obtained steady state queue length

and waiting time distribution. In context of MAP arrivals various vacation queueing models,
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either with finite buffer or infinite buffer have been studied, see e.g., Lucantoni et al. (1990),
Blondia (1991), Alfa (1995), Choi et al. (1998), Niu and Takahashi (1999), Ho Woo Lee
and Park (2001), Gupta et al. (2005), Gupta and Sikdar (2006), Banik et al. (2006b), Gupta
et al. (2007), Liu and Wu (2009), Singh et al. (2014b), etc. It seems that Blondia (1991) was
the first who analyzed a finite buffer vacation queueing model with MAP. Further, Niu and
Takahashi (1999) analyzed a MAP/G/1/N queue with single and multiple vacation under ex-
haustive service discipline along with close-down and/or setup times and obtained the queue
length distribution at arbitrary and pre arrival epoch. Gupta and Sikdar (2006) considered
MAP/G/1/N queue with single and multiple vacation and using the supplementary variable
technique and the embedded Markov chain technique obtained the queue length distribution
at various epoch, viz., service completion, vacation termination, departure, arbitrary and pre-

arrival epoch.

Although bulk service queues with MAP have been studied to a great extent, however, bulk
service queues with correlated arrivals under various vacation rules have not been explored
much in literature. Bulk service queues with vacation and correlated arrivals are studied in
past by few researchers, see e.g., Gupta and Sikdar (2004b), Sikdar and Gupta (2005b), Sikdar
(2008), Sikdar and Samanta (2016) and the references therein. Gupta and Sikdar (2004b)
studied MAP/G'“") /1 /N queue with single vacation and then Sikdar (2008) extended their
research to multiple vacation. Recently, Sikdar and Samanta (2016) studied BMAP/GY /1/N
queue with single and multiple vacation in an unified way and obtained the queue length

distributions at various epochs.

Banerjee et al. (2015) analyzed finite buffer batch size dependent bulk service queue with
MAP under GBS rule. By using the supplementary variable technique (remaining service
time as supplementary variable) and the embedded Markov chain technique they obtained
joint distribution of queue content, server content and phase of the arrivals at various epochs.
Pradhan and Gupta (2017a) studied infinite buffer MAP/ Gﬁ””’) /1 queue and using bivariate
vector generating function method obtained the joint distribution of queue content, server
content and phase of arrivals at various epochs. Both the above literature have been studied

in continuous time setup. Alfa et al. (1995) considered DMAP /G4 /1 /N queue in discrete
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time setup and using matrix analytic method and embedded Markov chain technique they

obtained all required joint probabilities at various epochs.

In most of the research on the vacation queueing models it has been considered that the
server will go for a vacation of random length which is independent of the queue length at
the vacation initiation epoch. The vacation queueing models in which the length of vacation
period is modulated depending upon the queue length at vacation initiation epoch is termed
as queue length dependent vacation and have been studied by Harris and Marchal (1988),
Lee and Srinivasan (1989), Shin and Pearce (1998), Banik (2013a). Banik (2013a) considered
BMAP/G/1/N queue with E-limited service and queue length dependent vacation and numer-

ically shown that the queue length dependent vacation policy helps in reducing congestion.

To the best of authors’ knowledge MAP/ Gﬁ“’b) /1/N queue with queue length dependent
single and multiple vacation has not been addressed by the researchers yet. In view of this,
in this chapter we have considered finite buffer bulk service queueing model with single and
multiple vacation and MAP. The two vacation policies : Single vacation (SV) and multiple
vacation (MV) are discussed in this chapter in an unified way. The arrivals of the customers
to the system occur according to the Markovian arrival process (MAP). Service is rendered by
a single server following GBS rule. Batch size dependent service and queue length dependent
vacation policy both are considered here. The model is analyzed using the embedded Markov
chain technique, to obtain the joint distribution of queue content serving batch size and phase
of the arrivals; and queue content, vacation type taken by the server and phase of the arrivals
at service and vacation completion epoch, respectively. Using the supplementary variable
technique we obtain a relation between service/vacation completion epoch and arbitrary epoch

joint probabilities.

For use in sequel, let ¢;(r), e(r) are denoting respectively, the column vector of dimension
(r) with 1 at i*-position and 0 elsewhere, a column vector of dimension (r) with all entries
equal to 1. When there is no need to emphasize the dimension of these vectors we will suppress
the suffix. Thus when there is no need to emphasize the dimension of these vectors we will
suppress the suffix. Thus, e will denote a column vector of 1’s of appropriate dimension,

and ¢; will denote a column vector of appropriate dimension consisting 1 at i*-position and
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0 elsewhere. The notation ‘T” appearing in the superscript will stand for the transpose of a
matrix.

The outline of the rest of this chapter is as follows: mathematical description along with the
use of embedded Markov chain technique, to obtain the joint distributions at service/vacation
completion epoch, is explained in Section 6.2 and Section 6.2.1, respectively. Next in Sec-
tion 6.2.2, a relation between the joint distributions of service/vacation completion epoch and
arbitrary epoch is established with the help of supplementary variable technique. Section 6.3
is assigned for the various performance measures. Numerical results and their discussion for
several service/vacation time distributions are presented in Section 6.5. Some conclusions of

this chapter are drawn in Section 6.6.

6.2 Model description and steady state analysis

Markovian arrival process (MAP)

The Markovian arrival process (MAP) is a generalization of the Poisson process where the
arrivals are governed by an underlying m-state Markov chain. With probability ¢;;, 1 < i, j <
m, there is a transition from state i to state j without an arrival, and with probability d;;,
1 <i, j <m, there is a transition from state i to state j with an arrival. The matrix C = [c¢; j]
has nonnegative off-diagonal and negative diagonal elements, and the matrix D = [d;;] has
nonnegative elements. Let N(¢) denote the number of customers arriving in (0,¢] and J(¢) be
the state of the underlying Markov chain at time 7. Then {N(r),J(¢)} is a two-dimensional

Markov process with state space . The infinitesimal generator of the above Markov process is

given by
C D0 O
. 0 C DO
Q= ;
0 0 C D

{N(t),J(t)} is called the Markovian arrival process (MAP). Since Q is the infinitesimal

generator of the MAP, we have
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(C+D)e=0,

where e is an m X 1 vector with all its elements equal to 1.

Since C + D(= Q, say) represents the irreducible infinitesimal generator of the underlying
CTMC of the MAP, {J(t)}, there exists a stationary probability vector @ satisfying @Q = 0
and @We = 1. The fundamental arrival rate (average arrival rate) of the above Markov process
is given by A* = @De.

Let P(n,t) (n>0,t > 0) be the square matrices of dimension m whose (i, j)th elements are
the conditional probabilities defined as p; j(n,t) = prob.{N(t) = n, J(t) = jIN(0) =0, J(t) =
it;n>0,0,j=12,..m.

These matrices, associated with the counting process {N(t),J(¢)} (t > 0) satisfy the following

system of difference-differential equations

P(0,r) = P0,1)C,

>

‘(n,t) = P(n,t)C+P(n—1,1)D,n>1, (6.1)

with P(0,0) = I,,. For more details see Neuts and Jian-Min (1996).

The matrix generating function P*(z,7), defined by

satisfies

d
SP () =P an)(C+D), |zl

P*(z,0) =1.

Solving the above matrix—differential equation, we get
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Pi(z,0) =P z|<1, t>0.

Model description: We consider a finite buffer MAP/ G(ab) /1 queue with batch size de-
pendent service and queue length dependent vacation. Customer arrivals obey a Markovian
arrival process (MAP) which is a more general arrival process. A customer that arrives to find
the server busy will wait in the waiting room. We assume that the waiting room capacity is
finite. There is a finite waiting room of size N such that any arrival finding the buffer full
will be considered lost. Suppose that a and b satisfying 1 < a,b < N, are two pre-determined
thresholds. The server offers services in batches of varying sizes according to the GBS rule.
That is, if the number of customers waiting in the queue is less than a, then the server waits
until the number of customers reach a. Specifically, The service discipline is first-come-first-
served (FCFS). The service is provided by a single server. The service times are assumed
to be generally distributed and dependent on the batch size. Specifically, let 7,.(¢) denote the
service time for a batch of size r with distribution function S,(.), probability density function
(pdf) s,(.), Laplace—Stieltjes transform (LST) s7(.) and mean service time ;.. If at the end of
a service the queue length is less than ‘a’, then the server will go for vacation under certain

vacation policy considered (for example, single vacation, multiple vacation).

In this chapter, we have studied the queueing model under consideration with two type of
vacation rules: single vacation (SV) and multiple vacation (MV), in an unified way by defining

an indicator variable &, as follows.

I, forSVrule,

0, forMVrule.

It should be noted here that, one can obtain the results for MAP/ Gleb) /1/N queue with SV

by substituting §; = 1 and that of MV by substituting d; = 0.

We employed here the queue length dependent vacation policy. The vacation rule must
be decided at the beginning of the analysis and is not allowed to change in an intermediate

stage. We have considered that the vacation time of random length changes dynamically
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depending on the number of customers remaining in the system at vacation initiation epoch.
That is, when the server finishes serving a batch and finds less than ‘a’ customers in the
queue, say ‘k’ (0 <k <a—1), then the server leaves for a vacation of random length which
is considered to be dependent on the number of customers remaining in the system (i.e., k), at
vacation initiation epoch and is termed as k' — type of vacation taken by the server throughout
the chapter. On returning from a vacation if server finds ‘a’ or more customers waiting in
the queue it resumes its service with maximum of ‘b’ customers, otherwise it will remain
idle or leave for another vacation depending on the vacation rule under consideration, i.e.,
single vacation or multiple vacation, respectively. The vacation time distribution (VI (+) is
considered to be generally distributed and dependent on queue length k (0 <k <a—1) at

vacation initiation epoch with pdf v/ (-), LST vi¥*(.) and mean vacation time #¥I.

Note:- 1t should be noted here that, whenever server leaves for a vacation of random length
VI, leaving k (0 < k < a—1) in the system, will be termed as k-th type of vacation taken by

the server or simply k-th type of vacation, throughout the chapter.

The steady-state analysis of the model under study will be carried out using the embed-
ded Markov chain approach since the service/vacation times are assumed to be generally dis-
tributed. First, we will look at the semi-Markov process embedded at points of departure of

customers. Towards this end, we define the following conditional probabilities.

[A,(f) (x)} . ;x>0,1<i,j<m,a<r<b: is the conditional probability that, starting with
a service/;lacation completion which left at least a customers in the queue with the arrival
process in state i, the next departure of a batch occurs no later than time x and at that time the
phase of the arrival process is j, and exactly n new customers arrive during the service period
of the batch of size r (a < r < b), servicing with service time distribution S,(z),

[B,(Car)l (x)} 3x>0,1<i,j<m,0<k<a—1: is the conditional probability that, starting
with a vacation completion which left k customers in the queue with the arrival process in
state 7, the next departure of a batch (of size a) occurs no later than time x and at that time the

phase of the arrival process is j, and exactly n new customers arrive during the service period

of the batch, servicing with service time distribution S, (7).

[U,Lk] (x)} 3x>0,1<4,j<m,0<k<a—1:is the conditional probability that, starting with
ij
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a service/vacation completion which left k customers in the queue with the arrival process in
state 7, the (next) vacation completion occurs no later than time x and at that time the phase of
the arrival process is j, and exactly n new customers arrive during the vacation period of k-th

type of vacation time distribution V® (1),

Denote by ne (x), B,(calz (x) and U,Ek] (x), the square matrices of order m corresponding to each

i, j-th element are given by [Aﬁ,r) (x)] ., [B,((ar)l (x)} ~and [U,Lk} (x)} ~ respectively.
i,j ’ 1,] L,J

Hence using the definition of A (x), Bz(f,i (x) and Uk (x) we have, for n > 0,

A,(f)(x) = /PntdS

BY(x) = / Pla—1—kx—1)DAY (1)dr,
’ 0
M = [ Ponaviie),
0
AV 2 Y A, (6.2)
Jj=n+1
390 2y pW@
k,N(x> Z k, (x)7
Jj=N+1
0w 2 Y i),
Jj=n+1
for use in sequel, we define
D 2 ©)'p
Ay 2 A (),
AV 2 AD (),
ull 2 Ul (), (6.3)
—nk} é Ur[lk}(oo%
B/(fn 2 Bl(:’g(oo): pekale)
BY, & B )= AAL

The last two equations in follow from the fact that / P(n,t)Ddt = D", n > 0 (see Appendix
0

A).
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6.2.1 Probability distribution at service/vacation completion epoch

In this section, we obtain the joint distribution of the number of customers in the queue and
number with the serving batch and the phase of the arrival process at service completion-
epoch, by tracking down the number of customers with the server besides observing the num-
ber left behind in the queue by the serving batch and change in phase of the arrival during
service/vacation completion, also we obtain joint distribution of queue content as well as type
of the vacation taken by the server and phase of the arrival at vacation termination epoch by
tracking down the number of customers in the queue when k' — type vacation taken besides
observing the number of customers enters into the queue during vacation period and change
in phase of arrival during service/vacation completion. Towards this end consider the sys-
tem at service completion/vacation termination epochs which are taken as embedded points.
Let ty,t;,12, ..., be the epochs at which either service completion or vacation termination oc-
curs. The state of the system at #; is defined as Q = { N, (;),N;(t;),J (t;) } U {Ny (t;), k(t:),J (t:) }
where, N, (1;) is the number of customers in the queue at time #;, Ny(#;) denotes the number of
customers with the serving batch when server is in busy state at time #;, k(#;) denotes the va-
cation type taken by the server which is about to finish at time epoch #;, J(¢;) denotes phase of
the arrival process when server is in busy/vacation state at time ;. Let us define the following

probabilities at the embedded points :

. 7rl-+(n, r) be the probability that there are n customers are in the queue at the service
completion epoch of a batch of customers of size r and the phase of the arrival process

isini,0<n<N,a<r<b,1<i<m,

. a)l.+ (n,k) be the probability that there are n + k customers are present in the queue at
k'*-type vacation termination epoch of the server and the phase of the arrival process is

mi,0<k<a—1,0<n<N—-k1<i<m,
¢ denote the vectors

A (1,0) = (A7 (10,0, 25 (0,0), s T (1,1)), @ (0,K) = (@F (1,K), @5 (1,K), oo 05 (1K),
The joint distribution 7;" (n, r) and @;" (n,k) can be obtained by solving the system of equations

127 =11, where
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e 1= (%,®) = (x"(0),n"(1),...,x7(N),0"(0), 0" (1),..., 0 (N)), where,
* 7 and @ are row vectors of dimension (N + 1) and is defined by

= (n"(0),x(1),..., 77 (N)), ®@= (0 (0),0"(1),..., 07 (N))

e each 77 (n) (0 <n < N) is arow vector of dimension ‘m(b —a+ 1)’ and is given by

nt(n) = (7" (n,a),7" (n,a+1),....7" (n,b)),

e each ™ (n) is a row vector of dimension (n+ 1) for 0 < n < a—2, and of dimension a

fora—1 <n <N and is given by

(0% (n,0),0"(n—1,1),...,07(0,n)) for0<n<a-2,
o' (n)=
(0t (n,0),0"(n—1,1),....,0T(n—a+1,a—1)) fora—1<n<N,

. (7r+(n)e) be the probability that there are n customers are in the queue at service
completion epoch of a batch, 0 < n < N, where e is a column vector of dimension

mb—a+1),

* (o™ (n)e) be the probability that there are n customers are in the queue at vacation
completion epoch of the server, 0 < n < N, where e is a column vector of appropriate
dimension, i.e., of dimension m(n+ 1) for 0 < n < a— 2 and of dimension ma for

a—1<n<N.

& is the one-step transition probability matrix (TPM) of dimension

m((N—i—1)(b—a+l)+@+a(N—a+l)>,and is given by

> ©
P = ,
A Y
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where, @, ®, A and ¥ are block matrices of dimension m(N+1)(b—a+1) xm(N+1)(b—
a+1),m(N+1)(b—a+1)xm <@+a(N—a+ 1)), m (@ +a(N—a+ 1)) xm(N +
1)(b—a+1)andm (@ +a(N—a+ 1)) X m (@ +a(N—a+ l)), respectively.
Note : It is to be noted here that Jij(r)(l k), ‘B,(lrz(l k), U E.r)(l ,k) are the block matrices
of dimension Im x km. However, in sequel we will denote @/j(’) (1,k), ‘Bfg(l ,k) and U S.r)(l k)
by Jij(r), %% and U y) respectively and they will represent the block matrices of appropriate
dimension.
Let us now describe the block matrices @, ®, A and V¥ in detail for completeness. Each and

every elements of the block matrix ® represents the transition probabilities among the service

completion epochs and is given by

0 1 N—-—b—1 N—-b N-—-1 N
0 0 0 0 0 0 0
a—1 0 0 0 0 0 0
1 1 1 1 1 ~(1
T I N N N R
2 2 2 2 2 (2
T R S R N
b—a+1 b—a+1 b—a+1 b—a+1 b—a+1 Z(b—a+1
b %( ) 'Qfl( ) Ml\s—b—l ) ’Q{]\S—h ) : ’Q{I\g—l ) “Q{I\(I )
b—a+1 b—a+1 b—a+1 b—a+1 Z(b—a+1
b+1 0 ) gl et glbmatl) b at)
N 0 0 o 0 %(b*a‘f’l) o %(bIaJrl) thZ(bfa+1)

where each 0, %(i) and ng_j(i) are the square matrices of dimension m (b —a+ 1) and are given

as follows.

e V=l o™V 1<i<b-at1,0<j<N-1,

with KY) —e ®A§T> and 1‘<§.’> —e ®A§.’).
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The block matrix A describes the transition probabilities from vacation completion epoch to

the service completion epoch and is given by

0 1 N—-b—1 N—-b N-—1 N
i i i i I - (1
0 5Bh) 6By SBYN 1 BN, 5B 8Bl
1 1 1 1 1 = (1
a—1 SS%((; )1 0 53%51 )1 1 55281(17)17N7b71 as%g—)l,N—b SSSBEzJI,Nfl SS%aEI,N
1 1 1 1 1 _(1
a 2 B By 2, 2 2
2 2 2 2 2 _(2
A= a+1 %)(() ) '%)5 ) %71(\1317—1 '@z(vzb f%(vll c%)z(v)
b—a+1 b—a+1 b—a+1 b—a+1 b—a+1 =(b—a+1
b AL gl gl glemar) gl glematl)
(b—a+1) (b—a+1) (b—a+1) (b—a+1) =(b—a+1)
b+1 0o 2 Lo BlD gl gl gl
N 0 o ... 0 AL gt et

where, the dimension of the each element of the matrix A, i.e., A; j is given by

matrixofdimension (i+1)mx (b—a+1)m, 0<i<a—1,0<j<N,
Al"jE

matrix of dimension am x (b—a+1)m, a—1<i<N,0<j<N.

Each of the matrices @y), ‘B(l)., ,%’@ and ‘B(] 1)\1 are described as follows.

n,j J n

c B =l o™ 1<i<b-at1,0<j<N-1,

o %(1)_e{®n(a]),,()§j§N—I,OSnSG_L

nj n,
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The block matrix ® describes the transition probabilities from service completion epoch

to vacation completion epoch and is given by
0 1 a—2 a—1 N—-1 N
() 70 ) (1) (1) (1)
0 u Ui Usmg Ugsy - UyZy Uy
(2) 2 (2) (2) 7(2
1 0 UO : Ua—3 Ua—2 UN—2 UN—l
= (@ W gl
a a rr\a
a—1 0 0 0 U, UN‘a Un—at1
a 0 0 0 0 0 0
0 0 0 0 0 0

where each element of the block matrix ® are again matrices ©; ;,0 < i, j < N of different

dimension and is described as follows.

matrixof dimension (b—a+ 1)mx (j+1)m, 0<i<N,0<j<a-—1,
0<i<N,a<j<N.

®i,j =
matrix of dimension (b —a+ 1)m X am,

b) are described by

The elements U 5

WV 1<k<a0<j<N-1,

(k=1)

0=l 0o 1<k<a—1,N—a+2<j<N,j+k=N+1,

©_ exg¥,

with 9\ = e U and B!
The block matrix ¥ describes the transition probabilities among the vacation completion

epochs and is given by
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0 1 a—2 a—1 N-—1 N
0 (1-swy) (18wt (-sgwl, -swl oa-swy,  a-s)wy
1 0 a-sywi . a=sw, -sw?, . a-swy, (1-8W{,
Y= ' '
a—1 0 0 0 (=s)wl . a=s)wl, (-s)Ww¥ .,
a 0 0 0 0 0 0
N 0 0 0 0 0 0

and the order of each '¥; ; is described as follows.

(

matrix of dimension (i+1)mx (j+1)m, 0<i,j<a-—1,
matrix of dimensionam x am, a<i,j<N,
lP,'J =
matrix of dimension (i 4 1)m x am, 0<i<a—1,a<j<N,
matrix of dimensionam x (j+ 1) m, a<i<N,0<j<a-—1.

\

Each element Wg.k) of the matrix W is described as follows.

e W=l ooV 1<k<a0<j<N-1,
e W =l ool 1<k<a— 1L, N—at2< <N, jrk=N+1,

: 5(a-1)
¢ WI(\?za-‘rl = eZ@ﬁ]\?fa ’

with 91 =e@ U™ and 8 = e V.

Remark : According to Theorem 3.1 given in Abolnikov and Dukhovny (1991) every
Markov chain whose TPM can be represented as a finite positive delta matrix is ergodic. Since
the TPM & of the model considered in this chapter is of finite positive A, ,-type matrix, one
can conclude that the corresponding Markov chain is ergodic which ensures the existence of

steady state distribution.
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6.2.2 Probability distribution at arbitrary epoch

In this section, we obtain two type of joint distributions at arbitrary epoch associated with the
current model. (7). Joint distribution of the number of customers in the queue and number
with the serving batch and the phase of the arrival process at an arbitrary epoch, (if). Joint
distribution of queue content as well as type of the vacation taken by the server and phase of
the arrival at arbitrary epoch.

Towards this end let us notify the required stochastic process as follows
* N,(t) = the number of customers present in the queue at time 7,

* N(t) = the number of customers in service when server is busy,

* J(t) = the state of the underlying Markov chain.

* x(t) = the state of the server, i.e.,

0, ifserverisindormancy state,
x(t) = Qk, ifserverisink™ — typeofvacation (0 <k <a—1),

r, ifserverisbusyinservingbatchofsizer (a <r <b).

* U(t) = the remaining service time of a batch of customers under service, if any.
* V(1) = the remaining vacation time of the server, if any.

Now we define the following state probabilities, at time ¢ for 1 < i < m, as follows.
* pi(n,0,1) = prob{N,(t) =n, x(t)=0,J(t) =i}, 0<n<a-—1.

o fi(n,r,x,t)dx = prob{Ny(t) = n,Ns(t) =1, J(t) =i, x < U(t) < x+dx, x(t) = r},

0<n<N,a<r<b,x>0.

o« Oi(n,k,x,t)dx = prob{N,(t) =n+k, J(t) =i, x <V(r) <x+dx, x(t) =k}, 0<k<

a—1,0<n<N—kx>0.

More precisely,
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* pi(n,0,1) represents the probability that, at time ¢, there are n (0 < n < a — 1) customers

are present in the queue and server is in dormant state and phase of the arrival process

is 1.

* #;(n,r,x,t)dx represents the probability that, at time ¢, phase of the arrival process is

i, there are n customers are in the queue and server is busy in serving r (a < r < b)

customers and remaining service time of the server lies between x and x + dx.

o @;(n,k,x,t)dx represents the probability that, at time 7, phase of the arrival process is i,

there are n+k customers in the queue and server is in k' — type vacation (0 <k <a—1),

and remaining vacation time of the server lies between x and x + dx.

Relating the state of the system at time ¢ and ¢ + dt we obtain the Kolmogrov equations of the

model under consideration nas follows, for 1 <i<mand x>0

d
—pi(0,0,1
dtpl(a 7)

d
. Ai 707t
5P (n,0,1)

d d)\ .
(; - a) TL'I(O,Q,.X',I)

m
8 ) pj(0,0,1)cji+ 6:05(0,0,0,1), (6.4)
j=1
m m
&Y pi(n,0,1)cji+ Z —1,0,1)d
j=1 j=1
n
Z (n—k,k,0,1), 1 <n<a—1, (6.5)
m =0 m
Zﬁ'(Oaxtc],-l-SZp] —1,0,1)djisq(x)
j=1 j=1
b a—1
+Y #i(a,r,0,1)s4(x) + Zé)i(a—k,k,o,t)sa(x)(6.6)

Il
Q

M= .
kb

i(0,7,x,t)cji+ Zir, (r,k,0,1)s,(x)

j=1
a—1

+ Y @(r—k,k,0)s.(x),a+1<r<b, (6.7)
k=0

f . m

i(n,rx,t)cji+ ) Rj(n—1,rx,1)dj,
j=1

~.
Il
—_

a<r<b-—1,1<n<N-1, (6.8)
m m
Z i(n, bxt)cjl+2ﬁj(n—1 b,x,t)d;;

~.
I
I

—

_|_
= 7 5

J

fii(n+b,r,0,1)s5(x) +

\
Il
Q
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S
|

@;(n+b—k,k,0,t)sp(x), | <n<N—b, (6.9)
k=0
m m
Y #j(n.b,x,t)c;i+ ) #j(n—1,b,x,1)dji,
j=1 j=1
N—-b+1<n<N-1, (6.10)
m m
Zfr (N,r,x,t)cji+ Z (N, rx,t)d
= =1
m
—I—Z Ai(N—1,rx,0)dji,a<r<b, (6.11)

I
—_

= _
8)

i(0,k,x,)cji + [Zn,krOt)

.
Il
R

k
Z k:JLOr}“<LOSkSa«mm

_.
|

®j(n,k,x,t)cji+ ij — Lk,x,t)dj,
j=1
n<N—1,0<k<min(a—1,N—n—1),6.13)

uMs

I/\‘

@;(N — kkxtc],+ZwJN k,k,x,t)d;;
j=1

TMS

_|_
T™s ~
>

i(N—k—1kx,0)d;i,0<k<a—1. (6.14)

Since, we are interested in obtaining steady state joint probabilities, let us define the steady

state joint probabilities, as t — oo, as follows, for 1 <i<m

[lirzlop/\i(nvovt) =

lim#ty(n,r,x,t) =

t—o0

lim@;(n,k,x,t) =

t—o0

pi(n,0);0<n<a-1,

#i(n,rx);0<n<N,a<r<b,

@;(n,k,x); 0<k<a—1,0<n<N-—k.

Hence the corresponding steady state equations of the equations (6.4)-(6.14) are obtained as

follows

= &Y pj(0,0)ci +8(0,0,0), (6.15)

j=

1

= &) pj(n,0)cji+8 Y pj(n—1,0)d;;

j=1

j=1
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n
+68, ) @i(n—k,k,0), 1 <n<a—1, (6.16)

J . L
_am(o,a,x) = Z 7;(0,a,x)cji+ O jZapJ —1,0)djisa(x)

1
b a—1
+Y 7i(a,r,0)s4(x) + Y @i(a—k,k,0)s4(x), (6.17)
r=a k=0
J m b
—aﬁ'f(O,r,x) = Zﬁ~(0,r,x)cjl~+ Zﬁ',-(r,k,O)sr(x)
j=1 k=a
a—1
+ Y @(r—kk,0)s.(x),,a+1<r<b, (6.18)
k=0
m m
-3 #i(n,rx) = th n,nx)cji+ Z —1,n,x)dji,
j=1 j=1
a<r<b—1,1<n<N-1, (6.19)
a m m
—a—ﬁ,(n,b,x) = Y #i(n,b,x)cji+ Y, Tj(n—1,b,x)d
X
j=1 j=1
b
th n+b,r,0)s,(x)
r=a
a—1
+Z @i(n+b—k,k,0)s5(x), 1 <n<N-—b, (6.20)
k=0
a m
—a—ﬁ:,(n,b,x) = Y #j(n,b,x)cji+ Z #i(n—1,b,x)d;;,
j=1 j=1
N—-b+1<n<N-1, (6.21)
a m
—gcnl(N nx) = Z:lﬁr (N, rx c],—l—Zn] (N,r,x)d;
J:
m
+Y #i(N—1,rx)dji, a<r<b, (6.22)

—_

J
a m
—ad),-(o,k,x) = Y @;(0,k,x)cji+ [Zn,krO

j=1

~

—5s)Z@i(k—jaﬁo)]v[k](x),OSkSa—1, (6.23)
m
—aw,(nkx) = Z (nkxc],+Za)j —1,k,x)dji,
j=1 j=1
1<n<N—1,0<k<min(a—1,N—n—1), (6.24)
m m
o (N—k,k,x) = Y @j(N—kkx)cji+ Y @;(N—kkx)dj

=

.
Il

||Ms -

CT)N k—1,kx)d;;,0<k<a-—1. (6.25)
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For use in sequel, we define the vectors p(n,0), &(n,r,x) and @(n,k,x) of dimension m as fol-
(

lows p(l’l,O) = (pl(l’l,()),pz(n,()), "'7pm(n?0))’ T

and @(n,k,x) = (@ (n,k,x), @ (n,k,x),...,On(n,k,x)). Using these vector notations we can

n,r,x) = (R (n,r,x), T (n,r,x), ..., Gp(n,r,x))

write the above equations in the following matrix form

0 = &p(0,0)C+ 8,(0,0,0), (6.26)
0 = &p(n,0)C+8p(n—1,0)D+ 8 Y d(n—k,k,0),
k=0
I<n<a-1, (6.27)
o#(0 b
—_ﬂjﬂﬁ::ﬁmﬂﬁxwam@—nmm4@+zﬁmmmM@
X r=a
a—1
+) @(a—kk,0)s4(x), (6.28)
k=0
97(0,r,x) _ b
0, = n(O,r,x)C—i-];ln(r,k,O)sr +Za) —k,k,0)s,(x),
a+1<r<b, (6.29)
3
_9Rmnx) = #(n,rx)C+a(n—1,rx)D,
ox
a<r<b—1,1<n<N-1, (6.30)
d7(n,b,x) N 3 b
= #(n,b,x)C+7f(n—1,b,x)D+ Zﬂ:(n—f—b,r,())sb(x)
X r=a
a—1
+Y O(n+b—kk0)s,(x), 1 <n<N—b, (6.31)
k=0
_iﬂ%ﬁﬁ = #(n,b,x)C+E(n—1,b,x)D, N—b+1<n<N-—1, (632
X
3
. ﬂ(guryx) — ﬁ(N,r,x)(C+D)+ﬁ(N_l,r,x)D,aS}"Sb, (633)
X
d®(0,k,x) 3 o
-5 = wwimxuw;%whnm+
k
(1-8 Z d(k—j,j,0 ]”<x>,os1<Sa—1, (6.34)
Ja
_IBMKY) k) CA B(n—1,kx)D,
ox
1<n<N-1,0<k<min(la—1,N—n—1), (6.35)
—aMN;hh” — &N —kk,x) (C+D)+®(N—k—1,k,x)D,
X

0<k<a-—l. (6.36)
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Multiplying (6.28)-(6.36) by ¢~ %% and integrating with respect to x over 0 to oo and using

above defined vector notations we find

—07*(0,a,0)+7(0,a,0)

—6r*(0,r,0)+ (0,r,0)

—O0n*(n,r,0)+ t(n,r,0)

—07*(n,b,0) + %(n,b,0)

—07*(n,b,0) + #(n,b,0)

—6n*(N,r,0)+ #(N,r,0)

—00*(0,k,0) + @(0,k,0)

—00*(n,k,0) + @(n,k,0)

—0w* (N —k,k,0)+®(N —k,k,0)

where,

7*(0,a,0)C+ o;p(a—1,0)Ds,(0)
b a—1
+Y 7(a,r,0)s;(0)+ Y @(a—kk0)s;(6),  (6.37)

r=a k=0

n*(0,r,0)C+ Zb:ﬁ:(r, k,0)sy(0)

+Zw —k,k,0)s7(0), a+1<r<b, (6.38)
(n,r,G)C—Ht( —1,r,0)D
a<r<b-—1,1<n<N-1, (6.39)

n*(n,b,0)C+n*(n—1,b,0)D+ iﬁ(n%—b,r,O)sZ(G),
a—1 i

+Y @(n+b—kk0)s;(6),1 <n<N-—b, (6.40)

ﬂf(:r?,b,e)c+7r*(n— 1,b,6)D

N—b+1<n<N-1, (6.41)

n*(N,r,0)(C+D)+n"(N—1,r,0)D

a<r<b, (6.42)

(1—6)f ok—j,j,00M5(0), 0<k<a—1, (6.43)
©*(n,k,0)C+ 0 (n—1,k,0)D
1<n<N-1,0<k<min(la—1,N—n—1), (6.44)
@*(N —k,k,8) (C+D)+w*(N—k—1,k,0)D,

0<k<a-1l (6.45)

/e_exﬁi(n,r,x)dx = 1/(n,r,0),0<n<N,a<r<b02>0,
0

/e exa),(nkx)d = o (n,k0),0<k<a—1,0<n<N—k,6>0,
0

/ e 5. (x)dx = s5(0),a<r<b,0>0,
0
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/ e M (x)ax = VW), 0<k<a—1,0>0.
0

Using above, m;(n,r) = ©t}(n,r,0) and w;(n,k) = o' (n,k,0), we find m;(n,r) is the arbitrary
epoch probability that n customers in the queue and server is busy with r customers and at that
time the phase of the arrival process is in i and w;(n, k) is the arbitrary epoch probability that
n+ k customers in the queue and server is in k¥’ — type vacation and at that time the phase of
the arrival process is i.

Using the above, we define row vectors of order m as :

n(n,r) = n*(n,r,0) = (m(n,r), m(n,r),..., my(n,r)) and

o(n,k) = 0*(n,k,0) = (01 (n,k), w2 (n,k), ..., 0 (n,k)).

Now we first obtain following results in form of Lemma which will be used to develop rela-
tions between service/vacation completion epoch and arbitrary epoch probabilities.

Lemma 6.1. The service completion epoch probabilities 77 (n,r) and vacation termination
epoch probabilities @™ (n,k) are proportional to the probabilities 7 (n,r,0), @(n,k,0) respec-

tively, and are given by

nt(n,r) = o&(nr0),0<n<N,a<r<b, (6.46)
ot (n,k) = oc®dnk0),0<k<a—1,0<n<N-—k, (6.47)
N b a—1N—k
where, 6! =) Y #(n,r,0)e+ ) Y @(n,k,0)e.
n=0r=a k=0 n=0

Proof. Using Bayes’ theorem, for 0 <n < N,a<r<b,1 <i<mwe have

7ri+(n, r) = prob.{n customers are in the queue at the service completion epoch of

a batch of size r}

= prob.{n customers are in the queue and phase of the arrival is i just prior to
the service completion epoch of a batch of size r |< N customers are in the
queue just prior to the service completion epoch of a batch of size a < r <b

or vacation completion epoch of k-th type vacation with 0 < k <a—1.}
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With the similar argument one can write, for 0 < k<a—1,0<n<N—-k 1<i<m

o (n,k) = (nfoizv k
ZZ nr0e+Z ankO
n=0r=

Writing these expressions in vector form we get the required result.
Lemma 6.2. In case of single vacation, the dormant steady state probability vectors

p(n,0) (0 <n<a-—1),are given by

o (5

Proof. Using (6.26) in (6.27), we get our desired result (6.48).

IIM:

i
Z n—k,k,0)D"" l)( O)yl,o<n<a-—1, (6.48)

1

Lemma 6.3. The value of 6~ as appeared in Lemma 6.1 is given by

a—1
Nk I—SSanO
ZZﬂnrOe+ZankO ":;) , (6.49)
n=0r=a

a—1

b n
where, g =) <\7[”] Y 7t (n,r)e+ (355(1 +(1- 55)\7[”]> Y ot(n— k,k)e)

n=0 k=0

+i <§w+(nk,k)e+iﬂ+(n,r)e> Sp+ i <Lfa)+(nk,k)e+i7r+(n,r)e> Sp.

n=a \ k=0 r=a n=b+1 \ k=0 r=a
Proof. Post-multiplying (6.26) and (6.27) by e and adding the resulting equations,and using
the fact that (C+D)e =0, we get

a—1 k

p(a—1,00De= )Y @(k—j,j0e, (6.50)
k=0 j=0

Similarly, post-multiplying (6.37) by e and using (6.50), we get

a—1 k
—67°(0,a,0)e+7(0,a,0)e = 7°(0,a,0)Ce+8 Y. Y d(k—j,j,0)es;(6)
k=0 j=0
b a—1
+Y 7(a,r,0)es;(0)+ Y @(a—k,k,0)es;(6)(6.51)
r=a k=0

again post-multiplying (6.38)-(6.45) by e and summing the resulting equations and (6.51). we
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get
N b a—1N—k a—1 l_v[n]*(e) b
Y Yr(nreet) Yo' (nkole = Y (——p—" Y #nr0et+
n=0r=a =0 n—0 = 9 L
1—8,s55(0) — (1 — §)vl)* n
L o)e) +
0 k=0
b 1 —S;;(e) b - a—1 ~
n;a o | Latnroet k;o D(n—k,k,0)e \6.52)

v 1 =55(0) (- - ol
+ Y —% (Zir(n,r,O)e—l—Z(D(n—k,k,O)e).

r=a k=0

Dividing by 0 in above expression and taking limit as 8 — 0 using L”Hopital’s rule, and the

fact that
a—1N—k

an0e+22nnre+22a)nk (6.53)

n=0r=a

we get

a—1

1—6safp(n,0)e =Y (vwf (n7r,0)e+<(5;s}+(1—5g) H)a><n k,k,0) )

n=0 n=0 r=

b a—1
Zi (Z (n,r,0)e+ Y @(n— kk0)> (6.54)

S

r=a k=0
N —1
+Zsb ZnnrOe+Za)n k,k,0)e
n=b+1 r=a k=0

Now using Lemma 6.1 in (6.54) and manipulating, we obtain the desired result (6.49).
Now we are ready to state the main result of this section.

Theorem 6.1. The steady state probability vectors {p(n,0), 7(n,r), @(n,r)} and {7 " (n,r), @ (n,r)}

are related by
p(n,0) = E*! (;)kxo ot (n —k,k)é”"’) (-O)" ', 0<n<a-—1, (6.55)
n(0,a) = |E*! {n+(o,a) — zb: " (a,r) — :Z‘;aﬁ (a— k,k)} (6.56)
—pla—1,0D|(C)7", (6.57)

m(0,r) = E*1{yﬁ(o,r)—zb:n+(r,k)—fw+(r—k,k)}<C)—‘,
k=a k=0
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a+1<r<b, (6.58)

n(n,r) = {E*_1n+(n,r)—7r(n—l,r)D}(C)_l,1§n§N—1,a§r§b—](ﬁ.59)

b a—1
n(n,b) = (E*1{n+(n,b)—2n+(n+b,r)—Zco+(n+b—k,k)}
r=a k=0
—n(n—1,b)D|(C)"", 1<n<N-—b, (6.60)
n(nb) = [E*'nt(n,b)— (n—lb) }(C)—1 N—b+1<n<N-1, (6.61)
k
0(0,k) = E*~ {aﬁOk Zn+kr Z (k— ]]}(C)_],
0<k<a-—1, (6.62)
onk) = [E o (nk)—wn—1,kD] ()",
1<n<N-1,0<k<min(N—n—1,a—1), (6.63)
where, E* = g+ZZZw+] k,k)D"/ (— C) , and g is given in Lemma 6.3.

n=0 j=0k=
Proof. On dividing (6.26)- (6.27) by 6! and with the help of Lemma 6.3, after some algebraic

manipulations we get

<g+ ) Z Z o (j—k kD' (-C)! >p(0,0)e: 0t (0,0)(—C) e, (6.64)

n=0 j=0k=0

Using recursively equation (6.27) and with the help of (6.64) we get the desired result (6.55).
Now putting 8 = 0 in (6.37)-(6.41) and (6.43)-(6.45), solving it recursively after some alge-
braic manipulations, we get the desired results (6.56)-(6.63).

It may here note that Theorem 6.1 does not have any expression for the probability vectors
(N,r)(a<r<b)and (N —k,k) (0 <k <a—1). However, one can obtain the probabilities

useful in defining key system performance measures, in the following section.

6.2.2.1 Evaluation of 7(N,r)e(a <r <b)

As mentioned earlier that the probability vectors 7(N,r), cannot be obtained using the rela-
tions given in Theorem 6.1. However, some probabilities useful in defining key system per-
formance measures can be obtained. In the following we will denote n*l(n, r,0) the derivative

of m*(n,r,0) with respect to 0 evaluated at & = 0. Differentiating the functions in equations
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(6.37)-(6.42) with respect to 0, setting 8 = 0 and post-multiplying the resulting ones by e and
using (C+D)e =0 we get

b
n*(0,a,0)De = n(0,a)e— O p(a—1,0)De — Zs}ﬁ:(a, r,0)e

r=a
a—1
—Y sud(a—k,k,0)e, (6.65)
k=0
7 (0,,0)De = Zsr rkOe—Zs, —k,k,0)e
a+1 Sréb, (6.66)

7 (n,r,0)De = m(n,r)e+7x* (n—1,r,0)De
a<r<b—1,1<n<N-1, (6.67)

b
7 (n,b,0)De = m(n,b)e+n" (n—1,b,0)De— Y $57(n+b,r,0)e

r=a
a—1
Y §@(n+b—kk0)e, 1<n<N-b, (6.68)
k=0
n* (n,b,0)De = m(n,b)e+7n* (n—1,b,0)De, N—b+1<n<N-—1, (6.69)
n(N,r)e = —n"(N—1,r,0)De, a<r<b, (6.70)

Using the facts of Lemma 6.1 and Lemma 6.3 in the equations (6.65)-(6.69) yield a recursive

procedure to solve ¥ (N — 1,r,0)De, and hence from (6.70) we can calculate 7T(N, r)e.

6.2.2.2 Evaluation of o(N —k,k)e (0<k<a—1)

In the following we will denote @* (n,r,0) as the derivative of @*(n,r,®) with respect to 6
evaluated at 6 = 0. Differentiating the functions in (6.43)-(6.45) with respect to 0, setting

0 = 0 and post-multiplying the resulting ones by e and using (C+ D)e = 0 we get

©* (0,k,0)De = ®(0,k)e k]anrO Zk: (k—3j,j,0)e
0<k<a-—1, ~ (6.71)
0" (n,k,0)De = o(n,kle+o* (n—1,k0)De,
1<n<N-1,0<k<min(a—1,N—n—1), (6.72)

o(N—kkle = —o*(N—k—1,k,0)De,0<k<a—1. (6.73)
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Using the facts of Lemma 6.1 and Lemma 6.3 in the equations (6.71)-(6.72) yield a recursive
procedure to solve o* (N —k—1,k,0)De, and hence from (6.73) we can calculate @(N —k, k)e.

Henceforth, we have obtained important joint distribution of queue and server content,
joint distribution of queue content as well as type of the vacation taken by the server. Now the
other significant distribution, which are useful in computing various performance measures,

can be obtained as follows.
« the distribution of queue content, 7*““ (0 < n < N), is given by

n

b
osp(n,0)e+ Z rt(n,r)e+ Za)(n—k,k)e, 0<n<a-1,
r=a k=0
b a—1
Zﬂ:(mr)e—{— Za)(n—k,k)e. a<n<N.
r=a k=0

queue __
T, =

* the distribution of the system content (including number of customers with the server),

7" (0 <n < N+b),is given by

( n
o;p(n,0)e + Z(o(n—k,k)e, 0<n<a-1,
k=0
min(b,n) a—1
Z t(n—rr)e+ Za)(n—k,k)e, a<n<N,
s — r=a k=0
n b
Zn’(n—r,r)e, N+1<n<N-+a,
r=a
b
Z n(n—rr)e. N+a+1<n<N+b.
\ r=n—N

b
« the queue length distribution when server is busy is given by 75 = Y w(n,rle,(0<n<N).
=a

* the queue length distribution when server is in vacation w,[1vac] (0 <n < N), is given by

min(n,a—1)
ol = Y  o@m—kke
k=0

* the probability that the server is in dormant state (pg,,), busy (mmy) and in vacation

a—1 b N a—1N—k
(Wyqc) are given by pg,r = Zp(n,O)e, Tpusy = Z Z n(n,r)eand @y, = Z Z w(n,k)e,
n=0 r=an=0 k=0n=0

respectively.

* the distribution of the server content given that the server is busy, 75" (a <r <b), is
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given by

T = Zﬂ n,r)e/ Tpygy.

« the distribution that the server is in k' — type vacation given that the server is in vacation
N—k
state, §; (0 <k <a—1),is given by §; = Z o(n,k)e/ Oy
n=0

6.3 Performance measure
The performance measures of the present model are evaluated and presented as follows.

1. Average queue length (L Z nitene,

N+b
2. Average system length (L) = Z nm”.

3. Average number of customers with the server when server is busy (L;) = Z rme’.

4. Average vacation type (average number of customers in the queue at vacation initiation

epoch) () = ¥ k&
k=0

5. Average queue length when server is in dormancy (Ldor ), busy (mey ) and in vacation
a—1
(L;“C) are obtained as Lg”’ = Z np(n,0)e/pgor L busy Z n. nb”sy / Tpusy and Ly =
n=0 n=0

Z n.o, [vac] / @yqc respectively.

6. Blocking Probability : The probability that an arriving customer will be lost is given by

1 b a—1
TBlock = 7+ (Zﬂ(N, riDe+ Y a)(N—k,k)De) :

7. Finally, using Little’s law, the average waiting time of an arbitrary customer in the queue

(W,) = L,/2 as well as the system (W) = L/2,

where, A is the effective arrival rate of the system and is given by A=A* (1 — Tgiock)-
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6.4 Phase type services and vacations

A PH-distribution is the time until absorption in a finite state Markov chain with one absorp-

tion state. It is characterized by an initial probability vector and a square matrix governing the

transitions among the transient states. For details on PH-distributions and their properties, we

refer the reader to Neuts (1981). The following theorem shows the computational aspects in

the case of PH-services and PH-vacations.

Theorem 6.2. Suppose that S,(¢) (a < r < b) follows a PH-distribution with an irreducible

representation (B,,%,) of dimension 7; and VK (r) (0 <k <a—1) follows PH-distribution

with irreducible representation (o, uy) of dimension 7. Then the matrices appearing in (6.3)

are given by

AY = (2B )M (lu@ k)] 0<k<Na<r<b,
AV = (,®8,) ~/Er)(lm®h9)],OSkSN,aSer,
o = (e (lnouf) | 0<k<N,0<n<a-1,
0 = (@) L (o) | 0<k<N,0<n<a-1,
BY) = DAY 0<k<N,0<n<a-1,
B, = DAY, 0<n<a-1,

where,

W =—he M =-M" (DoL,)(Cah) M =—(Can),

1) = M (Do) [(Con)+ (Do),

W0 = —ue, L") = L") (D& 1)) (Cdu,) ", L = — (CDuyp) ",

L =-m" (D& 1) [(Cou) + (Do)

Proof. For 0 <k <N, a <r <b, we have

AV = [ B(k,1)dS,(t)

St~ O T—3

P(k,t) @ B,e" n0dr

(6.74)
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/ Pk,0)1,, @ B, R0dr
0
= In®p,) / (k1) @ e dt (In®h)),
0

Therefore we obtain

A = (1@ BIM (Taoh?), (6.75)
Where,

/ P,y @edr, 0<k<N,a<r<b (6.76)

0

Now in order to calculate M,Er), we integrate RHS of (6.76) by parts, and obtain

M = — (Pk,0)@h; ) — [ P (k1)@ e n dr. (6.77)

o\..g

[ast — coand P(k,t) — 0]

Now setting k = 01in (6.77), we obtain fora <r < b

MY =~ (P(0,0) @k ") — /ﬁ’(o,t) @ e dr

= —(ln@h 1) — /13(0 NC®e " p1dr
0

= — (lyoh ") — / (PO.))@ear) (Con;)
0

— —(lnoh =M (con™).

Therefore,
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My M (Con ) =—(uh) ™, (as(AwB) ' =A" @B

So the above expression can be now written in the following form:

M) (I, + (C ")) = (Iy@hy) 7!

Since both C and h, are invertible, the term (I,m1 + (C ®hr_1)) is invertible. Hence, post

multiplying both side of the above expression by (Iur, + (C®h, ') ! we have fora < r < b

— (I @)™ (e, + (C 1))

(Int, + (C® R 1)) (Im®hr)}_1
~1

-
— ey In @ he) + (CRO M) (B @ hy)]
[ 1

Ln@hy)+Cly @by ' he|
= [(Im@hr)“f’C@Iﬁ]il

—[C®Ly +In@h] ",

Therefore,

M) =—(Ceh)", [asA®B=A®1,+1,®B] (6.78)

So (6.78) gives the value of Mér) (a <r<b). Now from (6.77) for | <k < N,a<r<b,we

have

(o)

M = — (P(k,0) @ k! / (k1) @ PR dr
0

=—(0n@h ") —/(ﬁ(k,t)c+ﬁ(k—1,t)D)®e(hrf>h;1dz,
0

[ P(k,0) = 0, &P (k,t) = P(k,t)C + P(k—1,t)D, Vk > 1]
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= Oy, /PktC@e(h”)h Ldr — /P (k—1,0)D®@ e p L dr,

[} o)

—— /P(k,t)@e(h”)dt (Cen,! / (k—1,5)@e"dr | (Do)
0 0

M (con ) -m” (Don ")

- [_M,E’) (CoIL,)—M", (D@Iq)} (Ln@h").

Now post-multiplying both sides of the above expression by (I, ® h,), we have

My (In @ hy) = =M (C@ L)) =M1, (DB 1),

The above expression can be written in the following form
My, (COhy) = —My—1,(D®Iy).

My, =My 1, (DRIg)Mo,, [asMy, = —(CDh,) . (6.79)

Since My, (a < r < b) are known from (6.78), hence the value of M , (0 <k < N,a <r <b)

can be calculated recursively from (6.79).

Now forO < k< N,a<r<b,

J
= (Ln® B,) M,” (In @ 1) . (6.80)
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Where, M,Er) = ( ) M](.r)> which we have to evaluate. Hence, from (6.80) we have
j=k+1

"
_ (i M,(-r_)1> (DI,) (Coh,)~",

M7+ Y MJ(-’_)1> (D& IL,) (C®h,) "
k42

=~ (M +),) (Do) Con) !

) (b + (D& 1) (Com) ™) = =M (D L) (Con,)

-1
Now post multiplying both side of the above expression by <ImT1 +(D®I)(C EBh,)fl) ,

we obtain

1) =M (Do) (Coh) " (b + (Do) CoR) ')
== ér)(D®Ifl)[(Imn+(D®IT,)(C@h,)—1)(C@hr)}_l,

=M (Do) [(Coh)+ (DL,

Therefore from (6.80) we obtain

AD = (1@ B,) [-M (DL [(COn) + (D& 1) ™| (U @hD),

(@)

Since A,(:) and A,(:) are known now, B, and E,(la])\, can be obtained as
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B(a)

N :Da_"A](\?)7 0<n<a-—1.

Similar steps will follow for the computation of U, k["} and U,E"].

6.5 Numerical results

This section discusses the implementation of the analytical results, derived in this chapter,
in the form of tabular representation and presents a comparative analysis of our model with
the existing ones in terms of congestion. To bring out the implementation of analytical result
we present the tabular representation of joint probability distribution of queue content, server
content and phase of arrival process at service completion epoch and at arbitrary epoch in Table
6.1 and Table 6.2, respectively, for SV. Also joint probability distribution of queue content,
vacation type taken by the server and phase of the arrival process at vacation termination
epoch and at arbitrary epoch are presented in Table 6.3 and Table 6.4, respectively, for SV.
The similar tabular representation of joint probability distribution of queue content, server
content and phase of the arrival process at service completion epoch and at arbitrary epoch are
shown in Table 6.5 and Table 6.6, respectively, for MV, and the joint probability distribution
of queue content, vacation type taken by the server and phase of the arrival process at vacation
termination epoch and at arbitrary epoch in Table 6.7 and Table 6.8, respectively, for MV.
The input parameters for Tables 6.1-6.8 are taken as a =4, b =7, N = 15 and the matrix

corresponding to MAP are taken as

—1.00222 1.00222 0 0 0 0
C= 0 —1.00222 0 ,D=10.99220 0 0.01002 | so that @ =
0 0 —225.75 2.2575 0 223.4925

{0.4989 0.4989 ()_()()221} and A* = 1.0. The service time distribution is considered as PHD

_3ur 3“,‘ O
(E3) with irreducible representation (f3,,h,), with B, = (1 0 ()) Jhy= 0 3w 3u |

0 0 -3y
W =1/$, =1/2r (a <r <b) and the vacation time distribution is again a PHD with irre-
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—Vik 0.25v; 0 0
. . 0 Vo 0.3V27k 0
ducible representation (o, u;) where,x =11 0 0 0], w= ,
0 0 —V3k 0.5\/371{
0 0 0 —Vai

Vik= Vi+ﬁ 0<k<a—1,1<i<4)withv; =2.0,v, =2.1, v3 =2.3, v4 = 2.5. These
results are presented here to show the numerical compatibility of our analytical results. The
important performance measures of the queueing model under consideration are also presented
at the bottom of the Table 6.2 and Table 6.6.

After demonstrating the tabular representation of implementation of the analytical result,
we now turn our attention to specify the advantage of our current model with the existing
ones in terms of congestion (performance measures). For this purpose we have considered
MAP/ G£6’9) /1/N queue with SV and MV and presented a comparison between queue length

dependent vacation policy with queue length independent vacation for both SV and MV. The

—1.00222 1.00222 0 0 0 0
MAP parameters are taken as C = 0 —1.00222 0 D=1 0.01002 0 0.99220
0 0 —225.75 223.4925 0 2.2575
sothat @ = |(0.4989 (.4989 0,()0221] and A* = 1.0. The service time distribution (STD) is
oy ) . —L5u,  1.5u,

taken as PHD with irreducible representation (f3,,%,), where B, = ((),7 0. 3) Jhy=

0.2u, —1.5u,
with u, = 1.5/r (a <r <b) and the vacation time distribution is again a PHD with irre-

. . —2.0v,  1.5v; .
ducible representation (ot,uy) where, oy = (0,4 0.6>, U = with
0.5vp, —2.5v;

v, =0.25(k/4+1) (0<k<a—1). These PHD representation of service time distribution
are chosen in such a way that mean service time of a batch is increasing with the increase
in batch size. On the other hand the PHD representation of vacation time distribution ensures
that the mean vacation time is decreasing when more customers (< @) are waiting in the queue

at vacation initiation epoch.
For the comparison purpose the following inputs are considered for two different cases,

Case 1. The queue length dependent vacation rates are taken as ﬁ,
kg

Case 2. The queue length independent vacation rate is considered as ——

Qoug € ’

The corresponding mean vacation time and mean service time is shown in the Table 6.9.
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Table 6.2: Arbitrary epoch joint distributions for SV when server is busy

r=4 r=>5 r=6 7 r=17 busy

" my (n,4) m(n,4) m3(n,4) 7 (n,5) m(n,5) m3(n,5) m (n,6) m(n,6) 3 (n,6) 7 m (n,7) m(n,7) m3(n,7) ™

0 0.01646077  0.01841628  0.00000119  0.00245013  0.00470147  0.00000000  0.00221923  0.00432085  0.00000000  0.00206444  0.00404169  0.00000000 0.05467607
1 0.01704789  0.01557913  0.00000199  0.00448209  0.00424412  0.00000021  0.00416904  0.00401324  0.00000020  0.00590343  0.00779227  0.00000019  0.06323381
2 0.01381945 0.01216541  0.00000267  0.00391734  0.00360055  0.00000040  0.00377973  0.00355563  0.00000037  0.00957762  0.01141243  0.00000054  0.06183213
3 0.01044950  0.00894403  0.00000318  0.00323605  0.00290429  0.00000055  0.00327865  0.00302495  0.00000053  0.01306074  0.01473105  0.00000104 0.05963457
4 0.00749960  0.00628359  0.00000354  0.00255603  0.00225116  0.00000068  0.00274107  0.00248901  0.00000065 0.01612036  0.01750519  0.00000169 0.05745257
5 0.00517360  0.00426361  0.00000378  0.00194870  0.00169066  0.00000077  0.00222363  0.00199297  0.00000076  0.01853792  0.01955686  0.00000246 0.05539572
6 0.00346206  0.00281611  0.00000393  0.00144443  0.00123803  0.00000084  0.00176001  0.00156054  0.00000084  0.02018611  0.02081000  0.00000331 0.05328621
7 0.00226302  0.00182173  0.00000402  0.00104671  0.00088826  0.00000088  0.00136516  0.00119963  0.00000090  0.02103827  0.02128198  0.00000420  0.05091477
8 0.00145326  0.00116023  0.00000406  0.00074480  0.00062686  0.00000091  0.00104136  0.00090821  0.00000094  0.02872870  0.03536236  0.00000590 0.07003758
9 0.00092170  0.00073114  0.00000407  0.00052226  0.00043656  0.00000093  0.00078347  0.00067894  0.00000097  0.03339421  0.03163226  0.00000741 0.06911393
10  0.00058055  0.00045843  0.00000406  0.00036204  0.00030091  0.00000094  0.00058280  0.00050231  0.00000099  0.02948557  0.02757191  0.00000874 0.05985924
11 0.00036559  0.00028795  0.00000404  0.00024885  0.00020587  0.00000095  0.00042958  0.00036855  0.00000101  0.02539013  0.02346673  0.00000987 0.05077911
12 0.00023217  0.00018285  0.00000401  0.00017014  0.00014024  0.00000094  0.00031441  0.00026870  0.00000101  0.02137989  0.01955972  0.00001081  0.04226489
13 0.00015039  0.00011878  0.00000397  0.00011612  0.00009546  0.00000094  0.00022899  0.00019507  0.00000101  0.01765755  0.01601264  0.00001157 0.03459250
14 0.00010076  0.00008010  0.00000394  0.00007946  0.00006523  0.00000094  0.00016633  0.00014134  0.00000101  0.01434350  0.01290905  0.00001216 0.02790382
15 0.005563878 0.001695069 0.002596445 0.125097656 0.134953048

p(0,0) =(0.00024969 0.00096544 0.000004) p(1,0) =(0.00220551 0.00393882 0.000004), p(2,0) = (0.00602776

0.00841008  0.000002), p(3,0) =(0.01093193 0.013566570 0.0000005).

L=13.38011, W = 28.28986, L, = 7.385073, W, = 15.61442, L, = 6.33772, { = 1.822217, L} = 2.126077, pyor = 0.04629667, sy = 0.94593, Tpjoci = 0.5269834, T, = 0.007773,
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Table 6.4: Arbitrary epoch joint distributions for SV when server is in vacation

) k=0 k=1 k=2 k=3 ol
n
; (n,0) > (n,0) 3(n,0) o (n—1,1) mmn-1,1) w@xr—-1,1) | o;(n—2,2) @n-2,2) wn-2,2) | o(n—3,3) @(”n-33) w3(n—3,3)

0  0.00014894  0.00042689  0.00000000 0.00057583
1 0.00015773  0.00005861  0.00000002  0.00056668  0.00094020  0.00000000 0.00172324
2 0.00002143  0.00000784  0.00000002  0.00033954  0.00012329  0.00000004  0.00080633  0.00115680  0.00000000 0.00245530
3 0.00000283  0.00000102  0.00000002  0.00004404  0.00001574  0.00000005  0.00039993  0.00013902  0.00000005  0.00079735  0.00105186  0.00000000  0.00245190
4 0.00000038  0.00000013  0.00000002  0.00000555  0.00000195  0.00000005  0.00004753  0.00001626  0.00000006  0.00032251  0.00009944  0.00000005  0.00049392
5 0.00000006 0.00000002  0.00000002  0.00000071  0.00000024  0.00000005  0.00000549  0.00000184  0.00000006  0.00003015  0.00000914  0.00000005  0.00004784
6 0.00000002  0.00000001  0.00000002  0.00000012  0.00000004  0.00000004  0.00000065  0.00000021  0.00000006  0.00000275  0.00000082  0.00000005  0.00000479
7 0.00000002  0.00000001  0.00000002  0.00000005  0.00000002  0.00000004  0.00000011  0.00000004  0.00000005  0.00000027  0.00000008  0.00000005  0.00000077
8 0.00000002  0.00000001  0.00000002  0.00000004  0.00000002  0.00000004  0.00000006  0.00000002  0.00000005  0.00000006  0.00000002  0.00000005  0.00000040
9 0.00000002  0.00000001  0.00000002  0.00000004  0.00000001  0.00000004  0.00000005  0.00000002  0.00000005  0.00000004  0.00000001  0.00000005  0.00000036
10 0.00000002  0.00000001  0.00000002  0.00000004  0.00000001  0.00000004  0.00000005  0.00000002  0.00000005  0.00000004  0.00000001  0.00000005  0.00000035
11 0.00000002  0.00000001  0.00000002  0.00000004  0.00000001  0.00000004  0.00000005  0.00000002  0.00000005  0.00000004  0.00000001  0.00000005 0.00000034
12 0.00000002  0.00000001  0.00000002  0.00000004  0.00000001  0.00000004  0.00000005  0.00000002  0.00000005  0.00000003  0.00000001  0.00000004 0.00000034
13 0.00000002  0.00000001  0.00000002  0.00000004  0.00000001  0.00000004  0.00000004  0.00000002  0.00000005  0.00000003  0.00000001  0.00000004 0.00000033
14 0.00000002  0.00000001  0.00000002  0.00000004  0.00000001  0.00000004  0.00000004  0.00000002  0.00000005  0.00000003  0.00000001  0.00000004  0.00000032
15 0.00000232 0.00000497 0.00000575 0.00000430 0.00000173
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Table 6.6: Arbitrary epoch joint distributions for MV when server is busy

; r=4 r=>5 r=6 r=17 ﬁmi‘(_
7y (n,4) m(n,4) m(n,4) 71 (n,5) m(n,5) m3(n,5) m(n,6) m(n,6) m3(n,6) m(n,7) m(n,7) m(n,7)
0 0.01168473  0.01645774  0.00000001  0.00324955  0.00571986  0.00000001  0.00229391  0.00442009  0.00000001  0.00208006  0.00407029  0.00000001  0.04997629
1 0.01529998  0.01403809  0.00000074  0.00544866  0.00515550  0.00000027  0.00426453  0.00410490  0.00000021  0.00594697  0.00785128  0.00000021  0.06211134
2 0.01249440 0.01103294  0.00000136  0.00475531  0.00436809  0.00000049  0.00386584  0.00363643  0.00000039  0.00965346  0.01150479  0.00000057  0.06131407
3 0.00949996  0.00815021  0.00000183  0.00392377  0.00351981  0.00000068  0.00335300  0.00309341  0.00000055 0.01316938  0.01485482  0.00000109  0.05956852
4 0.00684558  0.00574565  0.00000218  0.00309643  0.00272605  0.00000083  0.00280301  0.00254516  0.00000068  0.01625781  0.01765477  0.00000175  0.05767990
5 0.00473566  0.00390777  0.00000241  0.00235901  0.00204601  0.00000094  0.00227374  0.00203783  0.00000078  0.01869745  0.01972474  0.00000253  0.05578888
6 0.00317445  0.00258450  0.00000256  0.00174756  0.00149747  0.00000102  0.00179959  0.00159560  0.00000087  0.02035989  0.02098822  0.00000340  0.05375514
7 0.00207624  0.00167222  0.00000264  0.00126581  0.00107397  0.00000108  0.00139582  0.00122655  0.00000093  0.02121856  0.02146316  0.00000431  0.05140129
8  0.00133227  0.00106367  0.00000269  0.00090037  0.00075768  0.00000112  0.00106474  0.00092858  0.00000097  0.02897306  0.03561240  0.00000644  0.07064400
9  0.00084272  0.00066810  0.00000271  0.00063118  0.00052753  0.00000114  0.00080106  0.00069418  0.00000101  0.03362976  0.03185391  0.00000795  0.06966124
10 0.00052794  0.00041624  0.00000271  0.00043745  0.00036355  0.00000115  0.00059590  0.00051360  0.00000103  0.02969199  0.02776388  0.00000928  0.06032472
11 0.00032930  0.00025861  0.00000270  0.00030064  0.00024870  0.00000115  0.00043925  0.00037685  0.00000104  0.02556711  0.02362962  0.00001042  0.05116540
12 0.00020587  0.00016133  0.00000268  0.00020554  0.00016942  0.00000115  0.00032152  0.00027478  0.00000104  0.02152880  0.01969557  0.00001136  0.04257906
13 0.00013016  0.00010200  0.00000266  0.00014030  0.00011534  0.00000115  0.00023419  0.00019951  0.00000105  0.01778094  0.01612436  0.00001212  0.03484377
14 0.00008422  0.00006617  0.00000264  0.00009603  0.00007883  0.00000114  0.00017014  0.00014459  0.00000104  0.01444450  0.01299994  0.00001271  0.02810195
15 0.003375132 0.002068865 0.002677865 0.127447461 0.13556932

L=13.46785, W = 28.51894, L, = 7.445622, W, = 15.76652, L, = 6.376208, { = 2.244066, L} =7.0758928, M5, = 0.9444849, Tgjoct = 0.5277061, 7,4 = 0.0555151,
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Table 6.8: Arbitrary epoch joint distributions for MV when server is in vacation

) k=0 k=1 k=2 k=3 ol
n
; (n,0) > (n,0) 3(n,0) o (n—1,1) mmn-1,1) w@xr—-1,1) | o;(n—2,2) @n-2,2) wn-2,2) | o(n—3,3) @(”n-33) w3(n—3,3)

0  0.00031080 0.00117109  0.00000000 0.00148189
1 0.00043276  0.00016085  0.00000005  0.00212947  0.00426233  0.00000000 0.00698546
2 0.00005882  0.00002153  0.00000006  0.00153952  0.00055917  0.00000019  0.00495471  0.00836084  0.00000000 0.01549484
3 0.00000778  0.00000279  0.00000006  0.00019980  0.00007143  0.00000021  0.00289095  0.00100516  0.00000037  0.00823521  0.01277889  0.00000001  0.02519266
4 0.00000103  0.00000036  0.00000006  0.00002521  0.00000884  0.00000021  0.00034378  0.00011761  0.00000041  0.00391867  0.00120850  0.00000057  0.00562526
5 0.00000017  0.00000006 0.00000006  0.00000321  0.00000111  0.00000021  0.00003976  0.00001334  0.00000041  0.00036659  0.00011114  0.00000061  0.00053667
6 0.00000007  0.00000002  0.00000005  0.00000054  0.00000019  0.00000020  0.00000471  0.00000155  0.00000040  0.00003344  0.00000993  0.00000060  0.00005171
7 0.00000005  0.00000002  0.00000005  0.00000023  0.00000008  0.00000020  0.00000082  0.00000027  0.00000039  0.00000331  0.00000097  0.00000059  0.00000699
8 0.00000005  0.00000002  0.00000005  0.00000019  0.00000007  0.00000020  0.00000040  0.00000014  0.00000038  0.00000069  0.00000021  0.00000058  0.00000298
9 0.00000005  0.00000002  0.00000005  0.00000018  0.00000007  0.00000019  0.00000035  0.00000012  0.00000038  0.00000046  0.00000014  0.00000057  0.00000259
10 0.00000005  0.00000002  0.00000005  0.00000018  0.00000007  0.00000019  0.00000034  0.00000012  0.00000037  0.00000044  0.00000013  0.00000056  0.00000251
11 0.00000005  0.00000002  0.00000005  0.00000018  0.00000006  0.00000019  0.00000033  0.00000011  0.00000036  0.00000043  0.00000013  0.00000055  0.00000246
12 0.00000005  0.00000002  0.00000005  0.00000017  0.00000006  0.00000018  0.00000032  0.00000011  0.00000036  0.00000042  0.00000013  0.00000054  0.00000241
13 0.00000005  0.00000002  0.00000005  0.00000017  0.00000006  0.00000018  0.00000032  0.00000011  0.00000035  0.00000041  0.00000013  0.00000052  0.00000237
14 0.00000005  0.00000002  0.00000005  0.00000017  0.00000006  0.00000018  0.00000031  0.00000011  0.00000034  0.00000040  0.00000012  0.00000051  0.00000233
15 0.00000636 0.00002253 0.00004140 0.00005171 0.000122
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Table 6.9: Mean service time and mean vacation time for Figs. 6.1-6.6

Service Vacation
batch size (r) Sy queue length (k) ikl (Case 1) | #K(Case 2)

6 5.3538 0 2.9176 2.9176
7 6.2462 1 2.3341 2.9176
8 7.1384 2 1.9451 2.9176
9 8.0307 3 1.6672 2.9176

4 1.4588 2.9176

5 1.2967 2.9176

The assumptions for vacation rates, in Case 1 and Case 2, are made in such a way that for

Case 2 the server always takes a vacation with constant vacation rate irrespective of the

aougle

queue length at vacation initiation epoch, and for Case 1 the server will start a vacation with

vacation rate when it finds an empty queue and start a vacation with higher vacation

(xouale ’
1 1

rate (i.e., ——— > — ,k=1,2,...a—1.) depending on queue length. These assumptions
Qu, € QU €

ensure us that due to queue length dependent vacation (Case 1) the server is modulating the
length of the vacation periods in such a way that the server is taking a longer vacation for
empty queue and shorter vacation when queue is non empty.

Figure 6.1- Figure 6.6 present the various performance indices with the variation in the
queue capacity N for above considered cases under both vacation models SV and MV. It is
clearly observed from Figure 6.1- Figure 6.4 and Figure 6.6 that the measures L, W, L;*,
@yqc and T p,c corresponding to Case 1 is dominated by the corresponding measures of Case
2, while in Figure 6.5 the probability 7;,,, for Case 2 is dominated by Case 1. The above
observation is similar for both the vacation models SV and MV. Thus we can conclude that
the queue length dependent vacation policy helps in reducing the congestion in a vacation
queuing system, and increases the availability of the server to our system, in terms of busy
probability 7p,,.

It is also observed from Figure 6.1- Figure 6.4 and Figure 6.6 that the measures (L, W, L;“C,

Wyqc and Tgy,er) corresponding to SV model are lesser than the the corresponding measures
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for MV model. Which is quite obvious, because in SV model the availability of the server to
the system is much more in compare to MV model. It can be depicted through Figure 6.5, i.e.,
(Tousy) s > (Fousy) pry-

Another observation can be made from Figure 6.1- Figure 6.2 that with the increase in
value of N, the measures L and W are increasing. Again Figure 6.3- Figure 6.4 show that with
the increasing value of NV, initially the values of L;ac and o, decreases rapidly, however these
decrements is very slow for large value of N. Figure 6.5 and Figure 6.6 reveal that for large
value of N, the measures 7, and T, are almost constant which implies that the effect
of N is insignificant for larger N. Also from Figure 6.6 we can say that when N — oo, Tg;,cr
reduces to zero. Hence under the above observation extracted from Figure 6.1- Figure 6.6
we can conclude that for large queue capacity the considered finite buffer vacation queueing
system will behave like an infinite buffer vacation queuing system.

Another numerical example is taken to observe the effect of vacation time distribution
(VTD) for our current model, which deals with three qualitatively different PH type distribu-
tions for vacation time, viz., EXV (exponential), ERV (E,) and HEV (HE»), for a fixed PH

type distribution of service time. Towards this end, the input parameters are taken as a = 35,

—4.657 1.761 1.657 1.239
b =", the matrix parameters of MAP are C = ,D= SO

1.128 —3.941 0.872 1.941

that @ = [0_4() 0-6()} and A* = 2.8462. The service time distribution is considered as PHD

o . . —0.5u, 0.4y,
with irreducible representation (f3,,%,), where 3, = (0,7 0,3> ,hy =

L.5u,  —2.5u,
with u, = 1.5+ ﬁ (a < r < b) and the different PH type distributions for vacation time with
irreducible representation (0, uy) are as follows

Forvi=_-L (0<k<a-1),
—2.0v,  2.0v;

(i). ERV : a; = (1,() ()), up =
0 —2.0v;

(ii). EXV : oy = (1_0), Uy = (_Vk>'

—1.9Vk 0
(iif). HEV : oy = (0,9 o,1>, up =

0  —0.19v
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Figure 6.1: Effect of N on L. Figure 6.2: Effect of N on W.
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] o
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0.15

0.6 1
1 0.10
0.4

Figure 6.3: Effect of N on L;“C. Figure 6.4: Effect of N on ®,.

The above PHD of VTD are taken in such a way that each PHD having the equal mean
time for a particular k-th type of vacation.

Figure 6.7- Figure 6.11 illustrate the effect of N on various performance measures under
the above considered three kinds of vacation time distributions (VTD). It can be seen from
Figure 6.7- Figure 6.9 that the similar behavior of gy, Tpusy and @y, is observed as in Fig-
ure 6.4- Figure 6.6, i.e., enlarging the queue capacity (N) reduces the probabilities 7, and
®yqc While 7y, increases. Also the relations (Tgjock) sy < (TB1ock) prv> (@vac) sy < (@vac)yy
and (Tpusy) ¢ > (Wpusy) 5y hold good as previous one for each corresponding VTD. The ef-
fect of different kinds of VID (having equal mean) can be seen from Figure 6.7- Figure 6.9
for both the models SV and MV. From Figure 6.7 and Figure 6.9 we observe that for a fixed
N the measures Ty, and m,,. are largest for HEV, and smallest for ERV. Figure 6.8 reveals

the reverse nature, 1.e., the measure 7y, I8 largest for ERV while it is smallest for HEV. The
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Figure 6.7: Effect of N on 7gj,ck- Figure 6.8: Effect of N on 7y,,.
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Figure 6.9: Effect of N on @,,. Figure 6.10: Effect of N on .
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Figure 6.11: Effect of N on pgo;-

reason behind that the coefficient of variation for ERV is less than 1 while for HEV it is greater

than 1.

An interesting performance measure { is plotted in Figure 6.10. It depicts the effect of
N on expected number of customer present in the queue when a vacation starts (or expected
vacation type §) for different kinds of VTD. It shows a relation ({)g, < ({),,, which is
quite obvious, as server is taking more than one vacation with a same or higher vacation type,
depending on the queue length, in case of MV. Also it is observed that the larger value of N
(> 20) shows the insignificant change in the value of . Further a relation can be extracted for

various VTD as follows (separately for SV and MV) :

(i) for SV (&) gy < (8)gxy < (§)ggy and

(ii) For MV (&) gy > (8)pxv > (8)gry-

Figure 6.11 accomplish to support the raising interest of reverse nature of relation (i) and
(ii), which depicts the effect of various kind of VTD on py,, for the case of SV policy. It
shows that (Paor) gy > (Pdor)gxy > (Pdor)ggy» Which implies that in case of ERV server
waits (for customers to start the service) much lesser time than in case of HEV. In case of MV
these dormancy period are utilized in terms of recurring vacations. Thus the fraction of time

that the server is in k —th type vacation is largest for HEV, and hence it justifies the relation

(ii).
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6.6 Concluding remarks

In this chapter, we have considered MAP/ Gﬁ“’b)/ 1/N queue with queue length dependent
vacation (single vacation and multiple vacation). The service time depends on the size of the
batches under service and the vacation time depends on the queue length at vacation initiation
epoch. The service time distribution and vacation time distribution both are considered to be
generally distributed. Using the supplementary variable technique and the embedded Markov
chain technique we analytically obtained all the required joint distributions at various epoch.
However, for computation purpose we have considered PH type service and PH type vacation
time distribution and presented an efficient procedure. Several illustrative numerical examples
to show the impact of the various parameters on selected system performance measures is
also presented. It is established that the implementation of queue length dependent vacation
in batch size dependent bulk service queue with MAP further reduces the congestion. The
analysis carried out in this chapter may be extended to analyze queuing models involving

BMAP.



