
Chapter 5

Analysis of MX/G(a,b)
r /1/N queue with

queue length dependent single and

multiple vacation

5.1 Introduction

Congestion control mechanisms prevent congestion of the system either before it happens or

remove congestion after it has happened. A significant amount of literature on queuing study,

focused on congestion control, is found in literature. In modern telecommunication system

request for service arrive in batches of varying size and are served in batches of varying size,

e.g., e-mail messages. For effective utilization and proper maintenance of the mail server sys-

tems a continuous and repetitive virus scan should be performed on a regular basis whenever

server found to be idle due to non availability of messages to be served. During virus scan

period the server will be unavailable from the system and the period for which server remain

unavailable is termed as vacation period. Bulk arrival and bulk service queue with vacation

(single vacation and multiple vacation) is an appropriate mathematical model to handle such

situation.

Bulk service queues with vacation have been widely studied in past decades by many re-

searchers, see e.g., Krishna et al. (1998), Arumuganathan and Jeyakumar (2005), Samanta
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et al. (2007a), Sikdar and Gupta (2008), Sikdar et al. (2008), Balasubramanian and Aru-

muganathan (2011), Jeyakumar and Arumuganathan (2011), Haridass and Arumuganathan

(2012a), Haridass and Arumuganathan (2012b), Laxmi et al. (2013), Jeyakumar and Senthilnathan

(2014), Sikdar and Samanta (2016), Jeyakumar and Senthilnathan (2016), Singh and Kumar

(2017) and the references therein. Only few of the above literature concern both bulk arrival

and bulk service for the vacation queues, see e.g., Krishna et al. (1998), Arumuganathan and

Jeyakumar (2005), Sikdar and Gupta (2008), Haridass and Arumuganathan (2011), Haridass

and Arumuganathan (2012a), Laxmi et al. (2013), Sikdar and Samanta (2016) etc. for contin-

uous time setup, and Samanta et al. (2007a), Gupta et al. (2007) etc. for discrete time setup.

Sikdar and Gupta (2008), Sikdar and Samanta (2016) considered finite buffer continuous

time bulk arrival and bulk service queue with single and multiple vacation and obtained queue

length distribution at various epochs. Finite buffer discrete time bulk arrival bulk service queue

with server vacation (single vacation and multiple vacation) has been studied by Samanta et al.

(2007a). They obtained queue length distribution at various epochs. However, from their

analysis one can not draw the information regarding the server content and hence their study

can not be extended to batch size dependent bulk arrival bulk service queue with vacation.

Recently, Banerjee et al. (2011) considered MX/GY/1/N queue and obtained joint distribution

of the server content and queue content and then they extend their study to analyze batch size

dependent bulk arrival bulk service queue in Banerjee and Gupta (2012).

In this chapter we have studied MX/G(a,b)
r /1/N queue with single vacation (SV) and mul-

tiple vacation (MV) in an unified way. The service time of the batches are considered to be

generally distributed and vary according to the batch size under service. The vacation rule

must be fixed at the beginning of the analysis and is not allowed to change at intermediate

stage. The vacation time is also considered to be generally distributed and it changes dynam-

ically depending on the number of customers remaining in the queue at vacation initiation

epoch. That is, at the end of a service if server finds less than ‘a’ customers in the queue, say

‘k’ (0 ≤ k ≤ a−1), then the server leaves for a vacation of random length which is dependent

on the number of customers present in the queue (i.e., k), at vacation initiation epoch and
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is referred as kth − typeofvacation taken by the server. On returning from a vacation if the

server finds ‘a’ or more customers are waiting in the queue it resumes service with maximum

capacity of ‘b’ customers, otherwise, it remain idle or leave for another vacation depending

on the vacation rule under consideration, i.e., SV or MV, respectively. The model is analyzed

using the embedded Markov chain technique, and the joint distribution of queue content and

serving batch size at service completion epoch, and queue content and vacation type taken by

the server at vacation completion epoch are obtained. The inclusion of batch size dependent

service along with queue length dependent vacation in bulk arrival bulk service queue makes

the transition probability matrix of associated Markov chain more complex and challenging to

handle. Next using the supplementary variable technique we have obtained a relation between

service/vacation completion epoch and arbitrary epoch joint distributions of queue content and

serving batch size, and queue content and vacation type. Since the buffer size is considered to

be finite and arrivals are in batches of varying size, therefore, whenever buffer becomes full or

insufficient buffer space is available in the queue to accept a new batch, the arrival batch will

be lost fully or partially. We consider here the partial batch acceptance (or rejection) policy of

the arrivals for optimizing the queuing performance.

The outline of the rest of this chapter is as follows: formal description of the model is de-

scribed in Section 5.2. The joint distributions at service/vacation completion epoch, obtained

by using the embedded Markov chain technique, is explained in Section 5.2.1. Next in Section

5.2.2, a relation between the joint distributions of service/vacation completion epoch and arbi-

trary epoch is established with the help of the supplementary variable technique. Section 5.2.3

is assigned for pre-arrival epoch joint probabilities obtained in terms of arbitrary epoch joint

probabilities. Section 5.3 is assigned for the various performance measures. Numerical results

and their discussion are presented in Section 5.4. Some conclusions are drawn in Section 5.5.

5.2 Model description

We consider a finite buffer single server bulk arrival and bulk service vacation queue. The

customers are arriving to the system in batches of random size according to the compound

Poisson process with rate λ . The arriving group size are independently identically distributed
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random variables with probability mass function (pmf) P(G = m) = gm, m = 1,2, . . ., prob-

ability generating function (pgf) G(z) = ∑
∞
m=1 gmzm and mean ḡ. The bulk service rule is

considered to be ‘general bulk service’ (GBS) rule with the minimum threshold limit ‘a’ and

maximum threshold limit ‘b’. For more detail on GBS rule readers are referred to the book

by Chaudhry and Templeton (1972). The service time distribution (Sr(.)) of a batch of size

r (a ≤ r ≤ b) is considered to be generally distributed with probability distribution function

(pdf) sr(.), Laplace Stilzes transformation (LST) s∗r (.) and mean service time s̃r.

After returning from each busy period the server investigate the queue length (k) and if found

less than the minimum threshold limit a, then the server leave for a vacation of random length

V [k], which depends on the queue length at vacation initiation epoch. We term this as kth type

of vacation taken by the server or simply k-th type vacation for future reference. However,

if the queue length is found to be greater than or equal to a, then the server will continue its

service process in bathes of size r (a ≤ r ≤ b). Now after vacation completion if the server

finds that the queue length (k) is still less than a, then the server will go for another kth type

of vacation for the case of multiple vacation or stay in dormant till the queue length attains

the value a and then resume service for the case of single vacation.

In this chapter we have studied SV and MV model in an unified way by defining an indi-

cator δs as follows

δs =


1, forsinglevacation,

0, formultiplevacation.

The vacation time distribution (V [k](.)) is considered to be generally distributed and is depen-

dent on the queue length k (0 ≤ k ≤ a−1) at vacation initiation epoch, with pdf v[k](.), LST

v[k]∗(.) and mean vacation time ṽ[k]. The finite buffer size is considered to be N (> b).

5.2.1 Probability distribution at service/vacation completion epoch

In this section, we obtain (i) the joint distribution of queue content and server content at

service completion epoch, and (ii) the joint distribution of the queue content and the type

of the vacation taken by the server at vacation termination epoch. The embedded points are

considered to be the service completion epoch points and the vacation completion epoch points
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and the corresponding steady state joint probabilities are defined as follows

• p+n,r be the joint probability that there are n customers are in the queue at the service

completion epoch of a batch of size r , 0 ≤ n ≤ N, a ≤ r ≤ b,

• q[k]+n be the joint probability that there are n+ k customers are present in the queue at

k-th type vacation termination epoch of the server, 0 ≤ n+ k ≤ N, n ≥ 0, 0 ≤ k ≤ a−1,

• p+n

(
=

b

∑
r=a

p+n,r

)
be the marginal probability that n customers are in the queue at service

completion epoch of a batch, 0 ≤ n ≤ N,

• q+n

(
=

min(n,a−1)

∑
k=0

q[k]+n

)
be the marginal probability that n customers are in the queue at

vacation termination epoch, 0 ≤ n ≤ N.

The unknown quantities p+n,r and q[k]+n is obtained by solving the system of equations ΠP =

Π, where

• Π = (π̃, γ̃) = (π+
0 ,π+

1 , ...,π+
N ,γ+0 ,γ+1 , ...,γ+N ),

• π̃ and γ̃ are the row vectors, each of dimension (N +1), and is defined as

π̃ =
(
π
+
0 ,π+

1 , ...,π+
N
)
, γ̃ =

(
γ
+
0 ,γ+1 , ...,γ+N

)
,

• each π+
n (0 ≤ n ≤ N) are the row vectors of dimension (b−a+1) and is given by

π
+
n = (p+n,a, p+n,a+1, ..., p+n,b),

• each γ+n are the row vectors of dimension (n+1) for 0 ≤ n ≤ a−2, and of dimension a

for a−1 ≤ n ≤ N, and is given by

γ
+
n ≡


(q[0]+n ,q[1]+n−1, ...,q

[n]+
0 ), 0 ≤ n ≤ a−2,

(q[0]+n ,q[1]+n−1, ...,q
[a−1]+
n−a+1), a−1 ≤ n ≤ N.

• P is the one-step transition probability matrix (TPM) of dimension
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(N +1)(b−a+1)+ a(a−1)
2 +a(N −a+1)

)
, and is given by

P =

Φ Θ

Λ Ψ

 ,

where, Φ, Θ, Λ and Ψ are block matrices of dimension (N+1)(b−a+1)×(N+1)(b−a+1),

(N +1)(b−a+1)×
(

a(a−1)
2 +a(N −a+1)

)
,
(

a(a−1)
2 +a(N −a+1)

)
× (N +1)(b−a+1)

and
(

a(a−1)
2 +a(N −a+1)

)
×
(

a(a−1)
2 +a(N −a+1)

)
, respectively.

The block matrix Φ contains the transition probabilities among the service completion epochs

and is given by

0 1 . . . N −b−1 N −b . . . N −1 N

Φ =

0

1
...

a−1

a
...

b

b+1
...

N



0 0 . . . 0 0 . . . 0 0

0 0 . . . 0 0 . . . 0 0
... . . . . . . ... . . . . . . ...

...

0 0 . . . 0 0 . . . 0 0

D(1)
0 D(1)

1 . . . D(1)
N−b−1 D(1)

N−b . . . D(1)
N−1 D̄(1)

N
... . . . . . . ... . . . . . . ...

...

D(b−a+1)
0 D(b−a+1)

1 . . . D(b−a+1)
N−b−1 D(b−a+1)

N−b . . . D(b−a+1)
N−1 D̄(b−a+1)

N

0 D(b−a+1)
0 . . . D(b−a+1)

N−b−2 D(b−a+1)
N−b−1 . . . D(b−a+1)

N−2 D̄(b−a+1)
N−1

... . . . . . . ... . . . . . . ...
...

0 0 . . . 0 D(b−a+1)
0 . . . D(b−a+1)

b−1 D̄(b−a+1)
b



.

Each 0’s and D(i)
j are the square matrices of dimension (b−a+1) and are described as follows

D(i)
j = eT

i ⊗κ
(i+a−1)
j , 1 ≤ i ≤ b−a+1, 0 ≤ j ≤ N −1,

D̄(i)
N = eT

i ⊗κ
(i+a−1)
N + eT

b−a+1 ⊗ κ̄
(i+a−1)
N , 1 ≤ i ≤ b−a,

D̄(b−a+1)
j = eT

b−a+1 ⊗ κ̄
(b)
j−1, b ≤ j ≤ N.

In the above expression

• ei is the column vector of dimension (b−a+1) with 1 at ith-position and 0 elsewhere.
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• κ
(r)
j is the column vector of dimension (b−a+1) consisting of ξ

(r)
j , where ξ

(r)
j is the

probability of j arrivals during the service period of a batch of size r and is given by

ξ
(r)
j =

∞∫
0

j

∑
m=1

e−λ t (λ t) j

j!
g(m)∗

j dSr(t), j ≥ 0, a ≤ r ≤ b,

where g(m)∗
j is m-fold convolution of g j with itself. The corresponding pgf of ξ

(r)
j is

given by W (r)(z) = s∗r (λ −λG(z)) , a ≤ r ≤ b,

• κ̄
(r)
j is the column vector of dimension (b−a+1) consisting of

(
1−∑

j
i=0 ξ

(r)
i

)
.

The block matrix Θ contains the transition probabilities from the service completion epoch to

the vacation completion epoch and is given by

0 1 . . . a−2 a−1 . . . N −1 N

Θ =

0

1
...

a−1

a
...

N



C(1)
0 C(1)

1 . . . C(1)
a−2 C(1)

a−1 . . . C(1)
N−1 C̄(1)

N

0 C(2)
0 . . . C(2)

a−3 C(2)
a−2 . . . C(2)

N−2 C̄(2)
N−1

... . . . . . . ... . . . . . . ...
...

0 0 . . . 0 C(a)
0 . . . C(a)

N−a C̄(a)
N−a+1

0 0 . . . 0 0 . . . 0 0
... . . . . . . ... . . . . . . ...

...

0 0 . . . 0 0 . . . 0 0



.

The i− jth element of Θ, i.e., Θi, j are also matrices and their dimension is described as follows

Θi, j ≡


matrixofdimension (i+1)× (b−a+1) , 0 ≤ i ≤ a−2, 0 ≤ j ≤ N,

matrixofdimensiona× (b−a+1) , a−1 ≤ i ≤ N, 0 ≤ j ≤ N.

The zeros appeared in Θ are matrices of proper dimension and each C(k)
j are described as

follows

C(k)
j = eT

k ⊗ϑ
(k−1)
j , 1 ≤ k ≤ a, 0 ≤ j ≤ N −1,

C̄(k)
j = eT

k ⊗ϑ
(k−1)
j + eT

a ⊗ ϑ̄
(k−1)
j , 1 ≤ k ≤ a−1, N −a+2 ≤ j ≤ N, j+ k = N +1,
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C̄(a)
N−a+1 = eT

a ⊗ ϑ̄
(a−1)
N−a .

In above expression

• ei is the column vector of with 1 in the ith-position and 0 elsewhere, and its dimension

is chosen in such a way that dimension of each C(k)
j is well defined.

• ϑ
(k)
j is the column vector of dimension (b−a+1) consisting of ω

(k)
j , where ω

(k)
j is the

probability of j arrivals during the kth − typevacation period and is given by

ω
(k)
j =

∞∫
0

j

∑
m=1

e−λ t (λ t) j

j!
g(m)∗

j dV [k](t), j ≥ 0, 0 ≤ k ≤ a−1.

The corresponding pgf of ω
(k)
j is given by M(k)(z) = v[k]∗ (λ −λG(z)) , 0 ≤ k ≤ a−1.

• ϑ̄
(k)
j is the column vector of dimension (b−a+1) consisting of

(
1−∑

j
i=0 ω

(k)
i

)
.

The block matrix Λ contains the transition probabilities from the vacation termination epoch

to the service completion epoch and is given by

0 1 . . . N −b−1 N −b . . . N −1 N

Λ =

0

1
...

a−1

a
...

b

b+1
...

N



δsB0,0 δsB0,1 . . . δsB0,N−b−1 δsB0,N−b . . . δsB0,N−1 δsB̄0,N

δsB1,0 δsB1,1 . . . δsB1,N−b−1 δsB1,N−b . . . δsB1,N−1 δsB̄1,N

...
. . . . . .

...
. . . . . .

...
...

δsBa−1,0 δsBa−1,1 . . . δsBa−1,N−b−1 δsBa−1,N−b . . . δsBa−1,N−1 δsB̄a−1,N

B(1)
0 B(1)

1 . . . B(1)
N−b−1 B(1)

N−b . . . B(1)
N−1 B̄(1)

N
...

. . . . . .
...

. . . . . .
...

...

B(b−a+1)
0 B(b−a+1)

1 . . . B(b−a+1)
N−b−1 B(b−a+1)

N−b . . . B(b−a+1)
N−1 B̄(b−a+1)

N

0 B(b−a+1)
0 . . . B(b−a+1)

N−b−2 B(b−a+1)
N−b−1 . . . B(b−a+1)

N−2 B̄(b−a+1)
N−1

...
. . . . . .

...
. . . . . .

...
...

0 0 . . . 0 B(b−a+1)
0 . . . B(b−a+1)

b−1 B̄(b−a+1)
b



.
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The i− jth element of Λ, i.e., Λi, j are also matrices and their dimension is described as follows

Λi, j ≡


matrixofdimension (i+1)× (b−a+1) , 0 ≤ i ≤ a−2, 0 ≤ j ≤ N,

matrixofdimensiona× (b−a+1) , a−1 ≤ i ≤ N, 0 ≤ j ≤ N.

Let us define some notations which will be used in sequel. y0 = 0, y j =
j

∑
m=1

g(m)∗
j , j ≥ 1, For

0≤ n≤ a−1, ϕn,r =
a−n−1

∑
k=0

gr−n−kyk , a−n≤ r ≤N−n−1, and ϕn,N−n =
a−n−1

∑
k=0

(
∞

∑
i=N−k−n

gi

)
yk.

Hence, Bn, j, as appeared in matrix Λ, are described as follows

Bn,0 =
b−a+1

∑
i=1

ϕn,a−n+i−1eT
i ⊗κ

(i+a−1)
0 , 0 ≤ n ≤ a−1,

Bn, j =
b−a+1

∑
i=1

ϕn,a−n+i−1eT
i ⊗κ

(i+a−1)
j +

j

∑
i=1

ϕn,b−n+ieT
b−a+1 ⊗κ

(b)
j−i, 0 ≤ n ≤ a−1, 1 ≤ j ≤ N −b−1,

Bn, j =
b−a+1

∑
i=1

ϕn,a−n+i−1eT
i ⊗κ

(i+a−1)
j +

N−b−1

∑
i=1

ϕn,b−n+ieT
b−a+1 ⊗κ

(b)
j−i +ϕn,N−neT

b−a+1 ⊗κ
(b)
j−N+b,

0 ≤ n ≤ a−1, N −b ≤ j ≤ N −1,

B̄n,N =
b−a

∑
i=1

ϕn,a−n+i−1eT
i ⊗κ

(i+a−1)
N +eT

b−a+1⊗

(
e[n]−

(
N−1

∑
j=0

Bn, j +
b−a

∑
i=1

ϕn,a−n+i−1eT
i ⊗κ

(i+a−1)
N

)
e[b−a]

)
,

0 ≤ n ≤ a−1,

and each B(k)
j are described as follows

B(i)
j = eT

i ⊗κ
(i+a−1)
j , 1 ≤ i ≤ b−a+1, 0 ≤ j ≤ N −1,

B̄(i)
N = eT

i ⊗κ
(i+a−1)
N + eT

b−a+1 ⊗ κ̄
(i+a−1)
N , 1 ≤ i ≤ b−a,

B̄(b−a+1)
j = eT

b−a+1 ⊗ κ̄
(b)
j−1, b ≤ j ≤ N.

Where

• each e[n] is the column vector of dimension n+1 consisting of 1 at all entries.

• each ei is the column vector of dimension (b− a+ 1) with 1 at ith-position and 0 else-

where.

• each κ
(r)
j is the column vector, consisting of ξ

(r)
j , where ξ

(r)
j is the probability of j

arrivals during the service period of a batch of size r (a ≤ r ≤ b) and is defined as

previous. The dimension of κ
(r)
j is taken in such a way that dimension of each B(k)

j and

Bn, j must be well defined.

• each κ̄
(r)
j is the column vector of appropriate dimension consisting of

(
1−∑

j
i=0 ξ

(r)
i

)
.
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Ψ contains the transition probabilities among the vacation termination epochs and is given by

0 1 . . . a−2 a−1 . . . N −1 N

Ψ =

0

1
...

a−1

a
...

N



(1−δs)A
(1)
0 (1−δs)A

(1)
1 . . . (1−δs)A

(1)
a−2 (1−δs)A

(1)
a−1 . . . (1−δs)A

(1)
N−1 (1−δs)Ā

(1)
N

0 (1−δs)A
(2)
0 . . . (1−δs)A

(2)
a−3 (1−δs)A

(2)
a−2 . . . (1−δs)A

(2)
N−2 (1−δs)Ā

(2)
N−1

...
. . . . . .

...
. . . . . .

...
...

0 0 . . . 0 (1−δs)A
(a)
0 . . . (1−δs)A

(a)
N−a (1−δs)Ā

(a)
N−a+1

0 0 . . . 0 0 . . . 0 0
...

. . . . . .
...

. . . . . .
...

...

0 0 . . . 0 0 . . . 0 0



.

The i − jth element of Ψ, i.e., Ψi, j are also matrices and their dimension is described as

follows.

Ψi, j ≡


matrixofdimension (i+1)× (i+1) , 0 ≤ i, j ≤ a−2,

matrixofdimensiona×a, a−1 ≤ i, j ≤ N,

and each A(k)
j are given in accordance of corresponding indexes where each A(k)

j are given as

follows

A(k)
j = eT

k ⊗ϑ
(k−1)
j , 1 ≤ k ≤ a, 0 ≤ j ≤ N −1,

Ā(k)
j = eT

k ⊗ϑ
(k−1)
j + eT

a ⊗ ϑ̄
(k−1)
j , 1 ≤ k ≤ a−1, N −a+2 ≤ j ≤ N, j+ k = N +1,

Ā(a)
N−a+1 = eT

a ⊗ ϑ̄
(a−1)
N−a .

Where

• each ei is the column vector of dimension i, (0 ≤ i ≤ a−1) with 1 at ith-position and 0

elsewhere and are defined in such a way that the dimension of each A(k)
j must be well

defined.

• each ϑ
(k)
j is the column vector of dimension i(1 ≤ i ≤ a), consisting of ω

(k)
j , where ω

(k)
j

is the probability of j arrivals during kth− typevacation period and is defined as follows

ω
(k)
j =

∞∫
0

j

∑
m=1

e−λ t (λ t) j

j!
g(m)∗

j dV [k](t), j ≥ 0, 0 ≤ k ≤ a−1.

The dimension of ϑ
(k)
j is defined in such a way that each A(k)

j must be well defined.



5.2 Model description 113

• each ϑ̄
(k)
j is the column vector of appropriate dimension consisting of

(
1−∑

j
i=0 ω

(k)
i

)
.

Remark : According to Theorem 3.1 given in Abolnikov and Dukhovny (1991) every Markov

chain whose TPM can be represented as a finite positive delta matrix is ergodic. Since the

TPM P of the model considered in this chapter is of finite positive △m,n-type matrix, one

can conclude that the corresponding Markov chain is ergodic which ensures the existence of

steady state distribution.

5.2.2 Probability distribution at arbitrary epoch

In this section, we obtain the joint distribution of queue content and vacation type taken by

the server when server is in vacation state, and the joint distribution of queue content and the

serving batch size when server is in busy state, at arbitrary epoch. Towards this end, we define

the corresponding stochastic processes as follows

• Nq(t)≡ the number of customers present in the queue, at time t,

• Ns(t)≡ the number of customers in service when server is busy, at time t,

• χ(t)≡ the state of the server, at time t, and is defined as follows

χ(t) =


0 , if server is indormantstate,

k , if server is inkth − typeofvacation (0 ≤ k ≤ a−1) ,

r , if server isbusyinservingbatchofsizer (a ≤ r ≤ b) ,

• Ũ(t) ≡ the remaining service time of a batch of customers under service, at time t, if

any.

• Ṽ (t)≡ the remaining vacation time of the server, at time t, if any.

Let us define the following state probabilities, at time t, as follows.

• Pn,0(t)≡ prob.{Nq(t) = n, χ(t) = 0}, 0 ≤ n ≤ a−1,
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• Pn,r(x, t)dx ≡ prob.{Nq(t) = n, Ns(t) = r, x ≤ Ũ(t) ≤ x+ dx, χ(t) = r}, 0 ≤ n ≤ N,

a ≤ r ≤ b, x ≥ 0,

• Q[k]
n (x, t)dx ≡ prob.{Nq(t) = n+ k, , x ≤ Ṽ (t) ≤ x+ dx, χ(t) = k}, 0 ≤ n+ k ≤ N,

n ≥ 0, 0 ≤ k ≤ a−1, x ≥ 0.

Now relating the state of the system at time t and t + dt we obtain the Kolmogrov equations

of the model under consideration is obtained as follows

d
dt

P0,0(t) = −δsλP0,0(t)+δsQ
[0]
0 (0, t), (5.1)

d
dt

Pn,0(t) = −δsλPn,0(t)+δsλ
n

∑
i=1

giPn−i,0(t)+δs

n

∑
k=0

Q[k]
n−k(0, t),1 ≤ n ≤ a−1, (5.2)(

∂

∂ t
− ∂

∂x

)
P0,r(x, t) = −λP0,r(x, t)+δsλ

a−1

∑
i=0

gr−iPi,0(t)sr(x)+
a−1

∑
k=0

Q[k]
r−k(0, t)sr(x)

+
b

∑
k=a

Pr,k(0, t)sr(x) , a ≤ r ≤ b, (5.3)(
∂

∂ t
− ∂

∂x

)
Pn,r(x, t) = −λPn,r(x, t)+λ

n

∑
i=1

giPn−i,r(x, t) , a ≤ r ≤ b−1, 1 ≤ n ≤ N −1, (5.4)(
∂

∂ t
− ∂

∂x

)
Pn,b(x, t) = −λPn,b(x, t)+λ

n

∑
i=1

giPn−i,b(x, t)+δsλ
a−1

∑
i=0

gn+b−iPi,0(t)sb(x)

+
a−1

∑
k=0

Q[k]
n+b−k(0, t)sb(x)+

b

∑
r=a

Pn+b,r(0, t)sb(x) , 1 ≤ n ≤ N −b−1, (5.5)(
∂

∂ t
− ∂

∂x

)
PN−b,b(x, t) = −λPN−b,b(x, t)+λ

N−b

∑
i=1

giPN−b−i,b(x, t)+δsλ
a−1

∑
i=0

(
∞

∑
j=N−i

g j

)
Pi,0(t)sb(x)

+
a−1

∑
k=0

Q[k]
N−k(0, t)sb(x)+

b

∑
r=a

PN,r(0, t)sb(x) , (5.6)(
∂

∂ t
− ∂

∂x

)
Pn,b(x, t) = −λPn,b(x, t)+λ

n

∑
i=1

giPn−i,b(x, t) , N −b+1 ≤ n ≤ N −1, (5.7)(
∂

∂ t
− ∂

∂x

)
PN,r(x, t) = λ

N

∑
i=1

(
∞

∑
j=i

g j

)
PN−i,r(x, t) , a ≤ r ≤ b, (5.8)

(
∂

∂ t
− ∂

∂x

)
Q[k]

0 (x, t) = −λQ[k]
0 (x, t)+

( b

∑
r=a

Pk,r(0, t)+

(1−δs)
k

∑
j=0

Q[ j]
k− j(0, t)

)
v[k](x) , 0 ≤ k ≤ a−1, (5.9)(

∂

∂ t
− ∂

∂x

)
Q[k]

n (x, t) = −λQ[k]
n (x, t)+λ

n

∑
i=1

giQ
[k]
n−i(x, t) , 1 ≤ n ≤ N −1,

0 ≤ k ≤ min(a−1, N −n−1), (5.10)(
∂

∂ t
− ∂

∂x

)
Q[k]

N−k(x, t) = λ

N−k

∑
i=1

(
∞

∑
j=i

g j

)
Q[k]

N−k−i(x, t) , 0 ≤ k ≤ a−1. (5.11)
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In steady-state, as t → ∞, we define

lim
t→∞

Pn,0 (t) = Pn,0, 0 ≤ n ≤ a−1,

lim
t→∞

Pn,r (x, t) = Pn,r(x), 0 ≤ n ≤ N, a ≤ r ≤ b,

lim
t→∞

Q[k]
n (x, t) = Q[k]

n (x), 0 ≤ n+ k ≤ N, 0 ≤ k ≤ a−1, n ≥ 0.

The corresponding steady state equations are obtained from equations (5.1)-(5.11) as follows

0 = −δsλP0,0 +δsQ
[0]
0 (0), (5.12)

0 = −δsλPn,0 +δsλ
n

∑
i=1

giPn−i,0 +δs

n

∑
k=0

Q[k]
n−k(0) , 1 ≤ n ≤ a−1, (5.13)

− ∂

∂x
P0,r(x) = −λP0,r(x)+δsλ

a−1

∑
i=0

gr−iPi,0sr(x)+
a−1

∑
k=0

Q[k]
r−k(0)sr(x)

+
b

∑
k=a

Pr,k(0)sr(x) , a ≤ r ≤ b, (5.14)

− ∂

∂x
Pn,r(x) = −λPn,r(x)+λ

n

∑
i=1

giPn−i,r(x) , a ≤ r ≤ b−1, 1 ≤ n ≤ N −1, (5.15)

− ∂

∂x
Pn,b(x) = −λPn,b(x)+λ

n

∑
i=1

giPn−i,b(x)+δsλ
a−1

∑
i=0

gn+b−iPi,0sb(x)

+
a−1

∑
k=0

Q[k]
n+b−k(0)sb(x)+

b

∑
r=a

Pn+b,r(0)sb(x) , 1 ≤ n ≤ N −b−1, (5.16)

− ∂

∂x
PN−b,b(x) = −λPN−b,b(x)+λ

N−b

∑
i=1

giPN−b−i,b(x)+δsλ
a−1

∑
i=0

(
∞

∑
j=N−i

g j

)
Pi,0sb(x)

+
a−1

∑
k=0

Q[k]
N−k(0)sb(x)+

b

∑
r=a

PN,r(0)sb(x) , (5.17)

− ∂

∂x
Pn,b(x) = −λPn,b(x)+λ

n

∑
i=1

giPn−i,b(x) , N −b+1 ≤ n ≤ N −1, (5.18)

− ∂

∂x
PN,r(x) = λ

N

∑
i=1

(
∞

∑
j=i

g j

)
PN−i,r(x) , a ≤ r ≤ b, (5.19)

− ∂

∂x
Q[k]

0 (x) = −λQ[k]
0 (x)+

(
b

∑
r=a

Pk,r(0)+(1−δs)
k

∑
j=0

Q[ j]
k− j(0)

)
v[k](x) , 0 ≤ k ≤ a−1,(5.20)

− ∂

∂x
Q[k]

n (x) = −λQ[k]
n (x)+λ

n

∑
i=1

giQ
[k]
n−i(x) , 1 ≤ n ≤ N −1,

0 ≤ k ≤ min(a−1, N −n−1), (5.21)

− ∂

∂x
Q[k]

N−k(x) = λ

N−k

∑
i=1

(
∞

∑
j=i

g j

)
Q[k]

N−k−i(x) , 0 ≤ k ≤ a−1. (5.22)
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Further, let us define LST of few terms, for Reθ ≥ 0, as follows

∫
∞

0
e−θxPn,r(x)dx = P∗

n,r(θ), 0 ≤ n ≤ N, a ≤ r ≤ b,∫
∞

0
e−θxQ[k]

n (x)dx = Q[k]∗
n (θ), 0 ≤ n+ k ≤ N, 0 ≤ k ≤ a−1,∫

∞

0
e−θxsr(x)dx = s∗r (θ), a ≤ r ≤ b,∫

∞

0
e−θxv[k](x)dx = v[k]∗(θ), 0 ≤ k ≤ a−1,

The following two results followed immediately from the above definitions.

Pn,r ≡ P∗
n,r(0) =

∫
∞

0
Pn,r(x)dx,

Q[k]
n ≡ Q[k]∗

n (0) =
∫

∞

0
Q[k]

n (x)dx.

Multiplying (5.14)-(5.22) by e−θx and integrating with respect to x over 0 to ∞, we get

(λ −θ)P∗
0,r(θ) = δsλ

a−1

∑
i=0

gr−iPi,0s∗r (θ)+
a−1

∑
k=0

Q[k]
r−k(0)s

∗
r (θ)+

b

∑
k=a

Pr,k(0)s∗r (θ)−P0,r(0) ,

a+1 ≤ r ≤ b, (5.23)

(λ −θ)P∗
n,r(θ) = λ

n

∑
i=1

giP∗
n−i,r(θ)−Pn,r(0) , a ≤ r ≤ b−1 , 1 ≤ n ≤ N −1, (5.24)

(λ −θ)P∗
n,b(θ) = λ

n

∑
i=1

giP∗
n−i,b(θ)+δsλ

a−1

∑
i=0

gn+b−iPi,0s∗b(θ)+
a−1

∑
k=0

Q[k]
n+b−k(0)s

∗
b(θ)

+
b

∑
r=a

Pn+b,r(0)s∗b(θ)−Pn,b(0) , 1 ≤ n ≤ N −b−1, (5.25)

(λ −θ)P∗
N−b,b(θ) = λ

N−b

∑
i=1

giP∗
N−b−i,b(θ)+δsλ

a−1

∑
i=0

(
∞

∑
j=N−i

g j

)
Pi,0s∗b(θ)+

a−1

∑
k=0

Q[k]
N−k(0)s

∗
b(θ)

+
b

∑
r=a

PN,r(0)s∗b(θ)−PN−b,b(0) , 1 ≤ n ≤ N −b−1, (5.26)

(λ −θ)P∗
n,b(θ) = λ

n

∑
i=1

giP∗
n−i,b(θ)−Pn,b(0) , N −b+1 ≤ n ≤ N −1, (5.27)

−θP∗
N,r(θ) = λ

N

∑
i=1

(
∞

∑
j=i

g j

)
P∗

N−i,r(θ)−PN,r(0) , a ≤ r ≤ b, (5.28)

(λ −θ)Q[k]∗
0 (θ) =

(
b

∑
r=a

Pk,r(0)+(1−δs)
k

∑
j=0

Q[ j]
k− j(0)

)
v[k]∗(θ)−Q[k]

0 (0) ,

0 ≤ k ≤ a−1, (5.29)

(λ −θ)Q[k]∗
n (θ) = λ

n

∑
i=1

giQ
[k]∗
n−i(θ)−Q[k]

n (0) ,

1 ≤ n ≤ N −1, 0 ≤ k ≤ min(a−1, N −n−1), (5.30)
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−θQ[k]∗
N−k(θ) = λ

N−k

∑
i=1

(
∞

∑
j=i

g j

)
Q[k]∗

N−k−i(θ)−Q[k]
N−k(0) , 0 ≤ k ≤ a−1. (5.31)

Now using (5.12)-(5.13) and (5.23)-(5.31), we derive the following three important results in

Lemma 5.1 to Lemma 5.3 which will be used in sequel.

Lemma 5.1. The probabilities
(

p+n,r,Pn,r(0)
)

and
(

q[k]+n ,Q[k]
n (0)

)
are connected by the fol-

lowing relation

p+n,r = σPn,r(0), 0 ≤ n ≤ N, a ≤ r ≤ b, (5.32)

q[k]+n = σQ[k]
n (0) ,0 ≤ n+ k ≤ N, n ≥ 0, 0 ≤ k ≤ a−1, (5.33)

where, σ−1 =
N

∑
n=0

b

∑
r=a

Pn,r(0)+
a−1

∑
n=0

n

∑
k=0

Q[k]
n−k(0)+

N

∑
n=a

a−1

∑
k=0

Q[k]
n−k(0).

Proof. Using Bayes’ theorem, for 0 ≤ n ≤ N and a ≤ r ≤ b, we have

p+n,r = prob.{n customers are in the queue at the service completion epoch of a

batch of size r}

= prob.{n customers are in the queue just prior to the service completion

epoch of a batch of size r |≤ N customers are in the queue just prior to the

service completion epoch of a batch of size a ≤ r ≤ b or vacation completion

epoch of k-th type vacation with 0 ≤ k ≤ a−1.}

=
Pn,r(0)

N

∑
n=0

b

∑
r=a

Pn,r(0)+
a−1

∑
n=0

n

∑
k=0

Q[k]
n−k(0)+

N

∑
n=a

a−1

∑
k=0

Q[k]
n−k(0)

.

With the similar argument we obtain

q[k]+n = Q[k]
n (0)

N

∑
n=0

b

∑
r=a

Pn,r(0)+
a−1

∑
n=0

n

∑
k=0

Q[k]
n−k(0)+

N

∑
n=a

a−1

∑
k=0

Q[k]
n−k(0)

, 0≤ k ≤ a−1, 0≤ n≤N−k.

Lemma 5.2. The steady state dormancy period probabilities Pn,0 (0 ≤ n ≤ a−1) for the case

of single vacation are given by

λPn,0 =
n

∑
m=0

m

∑
k=0

ln,mQ[k]
m−k(0) ; 0 ≤ n ≤ a−1, (5.34)

where
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ln,n = 1 (0 ≤ n ≤ a−1), ln,n−1 = g1 (1 ≤ n ≤ a−1),

ln,i = ∑
n−1
j=i+1 ln, jg j−i +gn−i (2 ≤ n ≤ a−1, 0 ≤ i ≤ n−2).

Proof. Using (5.12) in (5.13) we obtain the desired result (5.34).

Lemma 5.3. The value of σ−1, as appearing in Lemma 5.1, is given by

σ
−1 =

N

∑
n=0

b

∑
r=a

Pn,r(0)+
a−1

∑
k=0

N−k

∑
n=0

Q[k]
n (0) =

1−δs

a−1

∑
n=0

Pn,0

w
, (5.35)

where, w=
a−1

∑
n=0

[
p+n ṽ[n]+

n

∑
k=0

q[k]+n−k

(
δs

(
b

∑
m=a

Cm,ns̃m +
a−1

∑
j=n

l j,n

(
∞

∑
k=b+1− j

gk

)
s̃b

)
+(1−δs)ṽ[n]

)]

+
b

∑
n=a

(
a−1

∑
k=0

q[k]+n−k + p+n

)
s̃n +

N

∑
n=b+1

(
a−1

∑
k=0

q[k]+n−k + p+n

)
s̃b,

and Cm,n =


gm−n, n = a−1,

a−1

∑
j=n+1

Cm, jg j−n +gm−n, 0 ≤ n ≤ a−2,
a ≤ m ≤ b.

Proof. Using (5.34) in (5.23), (5.25) and (5.26) and summing over the range of n and r we

obtain(
N

∑
n=0

b

∑
r=a

P∗
n,r(θ)+

a−1

∑
k=0

N−k

∑
n=0

Q[k]∗
n (θ)

)
=

a−1

∑
n=0

(
1− v[n]∗(θ)

θ

b

∑
r=a

Pn,r(0)+
1−m(θ)

θ

n

∑
k=0

Q[k]
n−k(0)

)

+
b

∑
n=a

1− s∗n(θ)
θ

(
b

∑
r=a

Pn,r(0)+
a−1

∑
k=0

Q[k]
n−k(0)

)

+
1− s∗b(θ)

θ

N

∑
n=b+1

(
b

∑
r=a

Pn,r(0)+
a−1

∑
k=0

Q[k]
n−k(0)

)
, (5.36)

where

m(θ) =

[
δs

(
b

∑
m=a

Cm,ns∗m(θ)+
a−1

∑
j=n

l j,n

(
∞

∑
k=b+1− j

gk

)
s∗b(θ)

)
+(1−δs)v[n]∗(θ)

]
.

Taking limit as θ → 0 in above expression and using L’Hôpital’s rule and the normalizing

condition

δs

a−1

∑
n=0

Pn,0 +
N

∑
n=0

b

∑
r=a

Pn,r +
a−1

∑
k=0

N−k

∑
n=0

Q[k]
n = 1 (5.37)

we obtain

1−δs

a−1

∑
n=0

Pn,0 =
a−1

∑
n=0

(
ṽ[n]

b

∑
r=a

Pn,r(0)+

[
δs

(
b

∑
m=a

Cm,ns̃m +
a−1

∑
j=n

l j,n

(
∞

∑
k=b+1− j

gk

)
s̃b

)
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+(1−δs)ṽ[n]
]

n

∑
k=0

Q[k]
n−k(0)

)
+

b

∑
n=a

(
b

∑
r=a

Pn,r(0)+
a−1

∑
k=0

Q[k]
n−k(0)

)
s̃n

+
N

∑
n=b+1

(
b

∑
r=a

Pn,r(0)+
a−1

∑
k=0

Q[k]
n−k(0)

)
s̃b. (5.38)

Now using Lemma 5.1 in (5.38), after little algebraic manipulation, we obtain the desired

result (5.35).

Theorem 5.1. The steady state probabilities
{

Pn,0, Pn,r, Q[k]
n

}
and

{
p+n , p+n,r, q[k]+n

}
are re-

lated by the following relations

Pn,0 = E−1
n

∑
m=0

ln,m
m

∑
k=0

q[k]+m−k, 0 ≤ n ≤ a−1, (5.39)

P0,r = E−1

[
δs

a−1

∑
i=0

gr−i

i

∑
m=0

li,m
m

∑
k=0

q[k]+m−k +
a−1

∑
k=0

q[k]+r−k + p+r − p+0,r

]
, a ≤ r ≤ b, (5.40)

Pn,r =
n

∑
i=1

giPn−i,r −E−1 p+n,r, 1 ≤ n ≤ N −1, a ≤ r ≤ b−1, (5.41)

Pn,b =
n

∑
i=1

giPn−i,b +δs

a−1

∑
i=0

gn+b−iPi,0 +E−1

[
a−1

∑
k=0

q[k]+n+b−k + p+n+b − p+n,b

]
,

1 ≤ n ≤ N −b−1, (5.42)

PN−b,b =
n

∑
i=1

giPn−i,b +δs

a−1

∑
i=0

(
∞

∑
j=N−i

g j

)
Pi,0 +E−1

[
a−1

∑
k=0

q[k]+N−k + p+N − p+N−b,b

]
, (5.43)

Pn,b =
n

∑
i=1

giPn−i,b −E−1 p+n,b , N −b+1 ≤ n ≤ N −1, (5.44)

Q[k]
0 = E−1

[
p+k +(1−δs)

k

∑
j=0

q[ j]+k− j −q[k]+0

]
, 0 ≤ k ≤ a−1, (5.45)

Q[k]
n =

n

∑
i=1

giQ
[k]
n−i −E−1q[k]+n , 0 ≤ k ≤ a−1, 1 ≤ n ≤ N −a, (5.46)

Q[k]
N− j =

N− j

∑
i=1

giQ
[k]
N− j−i −E−1q[k]+N− j , 1 ≤ j ≤ a−1, 0 ≤ k ≤ j−1, (5.47)

where E = λw+δs∑
a−1
n=0

n

∑
m=0

ln,m
m

∑
k=0

q[k]+m−k.

Proof : Multiplying (5.12) by σ , using Lemma 5.1 and Lemma 5.2, after algebraic manipula-

tion, we obtain

λwP0,0 =

(
1−

a−1

∑
n=0

Pn,0

)
q[0]+0 . (5.48)
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With similar argument, from (5.34), we obtain

λwPn,0 =

(
1−

a−1

∑
n=0

Pn,0

)
n

∑
m=0

ln,m
m

∑
k=0

q[k]+m−k, 0 ≤ n ≤ a−1. (5.49)

Using (5.48) in (5.49) we obtain

Pn,0 =

(
P0,0

q[0]+0

)
n

∑
m=0

ln,m
m

∑
k=0

q[k]+m−k, 0 ≤ n ≤ a−1. (5.50)

Using (5.50) in (5.48) yields

P0,0 =
q[0]+0

λw+∑
a−1
n=0

n

∑
m=0

ln,m
m

∑
k=0

q[k]+m−k

. (5.51)

Now using (5.51) in (5.49) yields the desired result (5.39).

Now setting θ = 0 in (5.23)-(5.27) and (5.29)-(5.30) and then multiplying the equations by σ ,

using Lemma 5.1 we obtain

λσP0,r = δsλσ

a−1

∑
i=0

gr−i

i

∑
m=0

li,m
m

∑
k=0

q[k]+m−k +
a−1

∑
k=0

q[k]+r−k + p+r − p+0,r , a ≤ r ≤ b, (5.52)

λσPn,r = λσ

n

∑
i=1

giPn−i,r − p+n,r, 1 ≤ n ≤ N −1, a ≤ r ≤ b−1, (5.53)

λσPn,b = λσ

n

∑
i=1

giPn−i,b +λσδs

a−1

∑
i=0

gn+b−iPi,0 +
a−1

∑
k=0

q[k]+n+b−k

+p+n+b − p+n,b , 1 ≤ n ≤ N −b−1, (5.54)

λσPN−b,b = λσ

n

∑
i=1

giPn−i,b +λσδs

a−1

∑
i=0

(
∞

∑
j=N−i

g j

)
Pi,0 +

a−1

∑
k=0

q[k]+N−k + p+N − p+N−b,b, (5.55)

λσQ[k]
0 =

b

∑
r=a

p+k,r +(1−δs)
k

∑
j=0

q[ j]+k− j −q[k]+0 , 0 ≤ k ≤ a−1, (5.56)

λσQ[k]
n = λσ

n

∑
i=1

giQ
[k]
n−i −q[k]+n , 0 ≤ k ≤ a−1, 1 ≤ n ≤ N −a. (5.57)

Then using Lemma 5.2 in (5.52)-(5.57) and solving recursively, after algebraic manipulations,

we obtain the desired results (5.40)-(5.47).

Remark. It may be noted here that the probabilities PN,r(a ≤ r ≤ b) and Q[k]
N−k(0 ≤ k ≤ a−1)

could not be obtained from Theorem 5.1 by using the normalizing condition given in (5.37).

However, these probabilities is obtained using a slightly different approach as explained in
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next section.

5.2.2.1 Evaluation of PN,r (a ≤ r ≤ b)

To obtain PN,r (a ≤ r ≤ b) we use equation (5.28). Differentiating (5.28) with respect to θ and

then setting θ = 0 we get

PN,r =−λ

N

∑
i=1

(
∞

∑
k=i

gk

)
P∗(1)

N−i,r(0) , a ≤ r ≤ b, (5.58)

where P∗(1)
N−i,r(0) is the derivative of P∗

N−i,r(θ) with respect to θ at θ = 0. Now to get P∗(1)
N−i,r(0),

differentiate (5.24)-(5.27) with respect to θ and set θ = 0. Hence, we obtain

λP∗(1)
n,r (0) = Pn,r +λ

n

∑
i=1

giP
∗(1)
n−i,r(0) , a ≤ r ≤ b−1 , 1 ≤ n ≤ N −1, (5.59)

λP∗(1)
n,b (0) = Pn,b +λ

n

∑
i=1

giP
∗(1)
n−i,b(0)−λδs

a−1

∑
i=0

gn+b−iPi,0s̃b

−
a−1

∑
k=0

Q[k]
n+b−k(0)s̃b −

b

∑
r=a

Pn+b,r(0)s̃b , 1 ≤ n ≤ N −b−1, (5.60)

λP∗(1)
N−b,b(0) = PN−b,b +λ

N−b

∑
i=1

giP
∗(1)
N−b−i,b(0)−λδs

a−1

∑
i=0

(
∞

∑
j=N−i

g j

)
Pi,0s̃b

−
a−1

∑
k=0

Q[k]
N−k(0)s̃b −

b

∑
r=a

PN,r(0)s̃b, (5.61)

λP∗(1)
n,b (0) = Pn,b +λ

n

∑
i=1

giP
∗(1)
n−i,b(0) , N −b+1 ≤ n ≤ N −1. (5.62)

From (5.59)-(5.62) one can obtain the values of P∗(1)
N−i,r(0) (a ≤ r ≤ b) recursively in terms of

P∗(1)
0,r (0) (a ≤ r ≤ b). Hence, PN,r (a ≤ r ≤ b) we obtained in terms of P∗(1)

0,r (0) (a ≤ r ≤ b)

from (5.58). Now to obtain P∗(1)
0,r (0) (a ≤ r ≤ b) we differentiate (5.23) with respect to θ and

then setting θ = 0 we get

λP∗(1)
0,r (0) = P0,r −λδs

a−1

∑
i=0

gr−iPi,0s̃r −
a−1

∑
k=0

Q[k]
r−k(0)s̃r −

b

∑
k=a

Pr,k(0)s̃r , a ≤ r ≤ b.(5.63)

As P∗(1)
0,r (0) (a ≤ r ≤ b) is known from (5.63), PN,r (a ≤ r ≤ b) can be obtained from (5.58) in

known terms.
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5.2.2.2 Evaluation of Q[k]
N−k (0 ≤ k ≤ a−1)

Differentiating (5.31) with respect to θ and then setting θ = 0 we get

Q[k]
N−k =−λ

N−k

∑
i=1

(
∞

∑
n=i

gn

)
Q[k]∗(1)

N−k−i(0) , 0 ≤ k ≤ a−1, (5.64)

where Q[k]∗(1)
N−k−i(0) is the derivative of Q[k]∗

N−k−i(θ) with respect to θ at θ = 0. Now to get

Q[k]∗(1)
N−k−i(0) we differentiate (5.30) with respect to θ and set θ = 0 which yields the following

expression

λQ[k]∗(1)
n (0) = Q[k]

n +λ

n

∑
i=1

giQ
[k]∗(1)
n−i (0) , 1 ≤ n ≤ N −1, 0 ≤ k ≤ min(a−1, N −n−1).(5.65)

From (5.65) we obtain the values of Q[k]∗(1)
N−k−i(0)(0≤ k≤ a−1) recursively in terms of Q[k]∗(1)

0 (0)(0≤

k ≤ a− 1) and hence, Q[k]
N−k (0 ≤ k ≤ a− 1) is known in terms of Q[k]∗(1)

0 (0) (0 ≤ k ≤ a− 1)

from (5.64). Now to obtain Q[k]∗(1)
0 (0) (0 ≤ k ≤ a− 1) differentiate (5.29) with respect to θ

and then setting θ = 0 we get

λQ[k]∗(1)
0 (0) = Q[k]

0 −

(
b

∑
r=a

Pk,r(0)+(1−δs)
k

∑
j=0

Q[ j]
k− j(0)

)
ṽ[k] , 0 ≤ k ≤ a−1. (5.66)

Now Q[k]
N−k (0 ≤ k ≤ a−1) is obtained from (5.64) in known terms.

Henceforth, we have completely obtained the joint distributions of the queue content and

server content, joint distribution of queue content and type of the vacation taken by the server.

Next we obtain some significant marginal probability distributions as follows

• the distribution of queue content pqueue
n (0 ≤ n ≤ N) is given by

pqueue
n =


δsPn,0 +

b

∑
r=a

Pn,r +
n

∑
k=0

Q[k]
n−k, 0 ≤ n ≤ a−1,

b

∑
r=a

Pn,r +
a−1

∑
k=0

Q[k]
n−k, a ≤ n ≤ N.

• the distribution of the system content (including number of customers with the server)
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psys
n (0 ≤ n ≤ N +b) is given by

psys
n =



δsPn,0 +
n

∑
k=0

Q[k]
n−k, 0 ≤ n ≤ a−1,

min(b,n)

∑
r=a

Pn−r,r +
a−1

∑
k=0

Q[k]
n−k, a ≤ n ≤ N,

b

∑
r=a

Pn−r,r, N +1 ≤ n ≤ N +a,

b

∑
r=n−N

Pn−r,r, N +a+1 ≤ n ≤ N +b.

• the probability that the server is in dormant state is given by Pdor =
a−1

∑
n=0

Pn,0, probability

that the server is busy is given by Pbusy =
b

∑
r=a

N

∑
n=0

Pn,r, probability that the server is in

vacation state is given by Qvac =
a−1

∑
k=0

N−k

∑
n=0

Q[k]
n .

• the conditional probability distribution that the server is in kth− typevacation given that

the server is in vacation state is given by

ζk =
N−k

∑
n=0

Q[k]
n /Qvac, 0 ≤ k ≤ a−1.

• the conditional probability distribution of the server content given that the server is busy

is given by

pser
r =

N

∑
n=0

Pn,r/Pbusy, a ≤ r ≤ b.

• the probability of the number of customers in the queue when server is busy is given by

pbusy
n =

b

∑
r=a

Pn,r, 0 ≤ n ≤ N.

• the probability of the number of customers in the queue when server is in vacation is

given by

q[vac]
n =


n

∑
k=0

Q[k]
n−k, 0 ≤ n ≤ a−1,

a−1

∑
k=0

Q[k]
n−k, a ≤ n ≤ N.
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5.2.3 Probability distribution at pre-arrival epoch of a random customer

In this section, we obtain the joint distribution of queue content and server content, joint

distribution of queue content and type of the vacation taken by the server at pre-arrival epoch

of a random customer in terms of arbitrary epoch joint distributions.

Without loss of generality, we assume that the customers within each arriving batch are ran-

domly ordered and that they enter the system according to their order. Let us define

P−
n,0 ≡ the probability that a random customer of an arriving batch finds n customers in the

queue and server is idle (0 ≤ n ≤ N) (for SV)

P−
n,r ≡ the probability that a random customer of an arriving batch finds n customers in the

queue and server is busy in serving a batch of size r, 0 ≤ n ≤ N, a ≤ r ≤ b.

Q[k]−
n ≡ the probability that a random customer of an arriving batch finds n+ k customers

in the queue and server is in k-th type of vacation , 0 ≤ n ≤ N, 0 ≤ k ≤ a−1.

Thus the joint probabilities {P−
n,0 , P−

n,r, Q[k]−
n } and {Pn,0, Pn,r, Q[k]

n } are related by

P−
n,0 = δs

n

∑
j=0

g−n− jPj,0, 0 ≤ n ≤ a−1,

P−
n,0 = δs

a−1

∑
j=0

g−n− jPj,0, a ≤ n ≤ N −1,

P−
N,0 = δs

a−1

∑
j=0

∞

∑
k=N− j

g−k Pj,0,

P−
n,r =

n

∑
j=0

g−n− jPj,r, 0 ≤ n ≤ N −1, a ≤ r ≤ b,

P−
N,r =

N

∑
j=0

∞

∑
k=N− j

g−k Pj,r, a ≤ r ≤ b,

Q[k]−
n =

n

∑
j=0

g−n− jQ
[k]
j , 0 ≤ k ≤ a−1, 0 ≤ n ≤ N − k−1,

Q[k]−
n =

n

∑
j=0

∞

∑
m=n− j

g−mQ[k]
j , 0 ≤ k ≤ a−1, n = N − k,

where, g−j =
1
ḡ

∞

∑
i= j+1

gi, j ≥ 0, is the probability of j customers are ahead of an arbitrary

customer in his batch.

Once we get the joint distribution of the number of customers in the queue and number with
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the server at arrival-epoch of a random customer, the other distributions such as distribution

of the number of customers in the queue when server is busy at arrival-epoch of a random

customer and distribution of the number of customers with the server at arrival epoch of a

random customer, can be easily obtained.

5.3 Performance measure

As all the state probabilities are known, the performance measures of the present model are

evaluated and presented as follows.

(i) Average queue length is given by (Lq) =
N

∑
n=0

npqueue
n .

(ii) Average system length is given by (L) =
N+b

∑
n=0

npsys
n .

(iii) Average queue length when server is in vacation is given by (Lvac
q ) =

N

∑
n=0

n.q[vac]
n /Qvac.

(iv) Average number of customers with the server is given by (Ls) =
b

∑
r=a

rpser
r .

(v) Average vacation type (average number of customer in the queue at vacation initiation

epoch) is given by (ζ ) =
a−1

∑
k=0

kζk.

Next we obtain the blocking probabilities of the first customer, an arbitrary customer and the

last customer of an arriving batch as follows.

Blocking probability of the first customer in a batch

Let PBF be the probability that the first customer in a batch (and therefore the whole batch) is

being lost upon arrival. The first customer is being lost if there is no waiting space, i.e., there

have been N customers in the queue upon arrival. Hence, PBF = pqueue
N .

Blocking probability of an arbitrary customer in a batch

Let PBA be the probability that an arbitrary customer in a batch is being lost upon arrival.

An arbitrary customer in a batch is being lost if he finds n (0 ≤ n ≤ N) customers in the

queue upon arrival and k (≥ N −n) customers ahead of him in his batch. Hence, we have

PBA =
N

∑
n=0

∞

∑
k=N−n

g−k pqueue
n .
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Blocking probability of the last customer in a batch

Let PBL be the probability that the last customer in a batch is being lost upon arrival. The last

customer in a batch is being lost if he finds n (0 ≤ n ≤ N) customers in the queue upon arrival

and his batch size is k (≥ N −n+1). Hence, we have PBL =
N

∑
n=0

∞

∑
k=N−n+1

gk pqueue
n .

Finally, using Little’s law the average waiting time of an arbitrary customer in the queue

(Wq) as well as the system (W ) is given by (Wq) = Lq/λ̄ and (W ) = L/λ̄ , respectively, where

λ̄ is the effective arrival rate of the system and is given by λ̄ = λ ḡ(1−PBA).

5.4 Numerical results

This section consists of four fold numerical investigations which extracts several important

features of the considered model. In the first part, the joint probabilities at various epoch,

viz., service/vacation completion epoch, pre-arrival epoch and arbitrary epoch, are presented

in tabular form along with useful performance measures. In the second part, we perform the

sensitive analysis of the performance measures by varying the queue capacity N. In the third

part, we have presented the effect of ‘a’ (lower threshold limit of the serving capacity of the

server) on the selected performance measures by fixing the range of the serving capacity of

the server, i.e., b−a. A cost function is defined in the fourth part, named as total system cost

(TSC), in terms of the decision variables a, b and N to discuss several optimal control policy

of the considered model.

Here below we are defining few abbreviation which are used in sequel.

SV : single vacation

MV : multiple vacation

STD : service time distribution

VTD : vacation time distribution

IP : inversely proportional

DP : directly proportional

Let us now focus ourselves to the first part of this section. Here, we have considered

M/G(4,7)
r /1/18 queue with SV (Table 5.2 to Table 5.4) and MV (Table 5.5 to Table 5.7) with



5.4 Numerical results 127

E4 STD and deterministic VTD. The arrival rate is taken as λ = 1.0. The service rates are

taken as µr = µ/r (a ≤ r ≤ b) with µ = 7.5 and the vacation rates are taken as νk = (k+1)ν

(0 ≤ k ≤ a−1) with ν = 0.75. The input parameter for the service rates and the vacation rates

for Table 5.2- Table 5.7 are taken as presented in Table 5.1.

Table 5.1: Service and vacation rates for Table 5.2-Table 5.7

Service rate Vacation rate

batch size (r) IP queue length (k) DP

4 1.875 0 0.75

5 1.50 1 1.5

6 1.25 2 2.25

7 1.0714 3 3.0

Table 5.2-Table 5.4 present the service/vacation completion epoch joint probabilities, ar-

bitrary epoch joint probabilities and pre-arrival epoch joint probabilities, respectively, for SV

and Table 5.5-Table 5.7 present the same distributions for MV. These results are presented

here to show the numerical compatibility of our analytical results. The important performance

measures of the queueing model under consideration are also presented at the bottom of the

Table 5.3 and Table 5.6.

Let us now turn our attention to some other numerical examples of this section presented

in the form of graphs. Towards this end, we consider the input parameters as given in Set I to

Set III.

Set I : a = 3, b = 7, λ = 0.9, g2 = 0.15,g3 = 0.20,g4 = 0.25,g5 = 0.10,g6 = 0.05,g7 =

0.05,g8 = 0.10,g9 = 0.05,g10 = 0.05, µr = µ+ 1
r−1 with µ = 0.5, νk = ν− 1

k+0.5 with ν = 3.0,

deterministic STD and exponential VTD , varying N from 10 to 200.

Set II : b = a+4, N = 40 and all other input parameters are same as given in Set I.

Set III : a = 5, b = 8, λ = 0.7, g3 = 0.10,g4 = 0.20,g5 = 0.25,g6 = 0.25,g7 = 0.10,g8 =

0.05,g9 = 0.05, µr = µ/r with µ = 5.5, νk = ( k
4 +1)ν with ν = 0.75, E4 STD and determin-

istic VTD, varying N from 20 to 150.

The input parameters presented in Set I are used for Figure 5.1- Figure 5.4, Set II are used
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Table
5.2:

Jointdistributions
atservice/vacation

com
pletion

epoch
for

M
X
/G

(4,7
)

r
/1

/18
queue

w
ith

SV,E
4

ST
D

,determ
inistic

V
T

D
,

λ
=

1.0
and

g
i =

0
.1
(1

≤
i≤

10)
.

n
p
+n,4

p
+n,5

p
+n,6

p
+n,7

p
+n

q
[0]+
n

q
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n−

1
q
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n−

2
q
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n−

3
q
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0.044872

0.030205
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2
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3

0.002237
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0.002655
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0.000247
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0.000311

0.000340
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0.100067
0.101167

0.002105
0.000212

0.000135
0.011562

0.014013
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Figure 5.1: Effect of N on PBlock.

2 0 4 0 6 0 8 0 1 0 0 1 2 0 1 4 0 1 6 0 1 8 0 2 0 0
0 . 7 6
0 . 7 8
0 . 8 0
0 . 8 2
0 . 8 4
0 . 8 6
0 . 8 8
0 . 9 0
0 . 9 2
0 . 9 4

P bu
sy

 S V
 M V

N

Figure 5.2: Effect of N on Pbusy.

in Figure 5.5- Figure 5.7 and Set III are used in Figure 5.8. Figure 5.1- Figure 5.4 illustrate

the effect of buffer size N on blocking probabilities (PBF ,PBA,PBL), Pbusy, Qvac, Lq and W . It

is noticed that the values of blocking probabilities, Qvac, Lq and W for SV is lower for SV

than the corresponding values for MV. However, the values of Pbusy is higher for SV than the

corresponding values for MV, irrespective of the values of N. These behavior are according

to our intuitive expectations, because of the increase in chance of server’s availability to the

system for SV model in comparison to MV model. Further, it is observed from Figure 5.1-

Figure 5.4 that enlarging the buffer size reduces the blocking probabilities and Qvac, however,

increases Pbusy, Lq and W . It is also observed that for large N (i.e., N > 110) these performance

measures become insensitive, which implies the fact that for larger values of N our finite

buffer model behaves like an infinite buffer queueing system. Figure 5.1- Figure 5.4 reveal an

interesting observation that for N > 60 the rate of change of various measures is much lower.

Figure 5.5- Figure 5.6 illustrate the effect of minimum threshold limit a on Lq, W and

blocking probabilities (PBF ,PBA,PBL) by considering fixed service capacity (i.e., b− a = 4).

Similar observation as seen in Figure 5.1- Figure 5.4 is observed in Figure 5.5- Figure 5.6.

The values of Lq, W and blocking probabilities (PBF ,PBA,PBL) corresponding to SV are lesser

in compare to values correspond to MV. It is observed from Figure 5.5 that for a < 10 the

values of Lq and W decreases rapidly, however, for a > 10 these values increases rapidly for

both the considered model, i.e., SV and MV. The analogous behavior is noted for blocking

probabilities (PBF ,PBA,PBL); when a < 14 in the virtue of MV and a < 22 in the virtue of SV.
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In the following section we carry out a numerical investigation to optimize the values of

a, b and N which may eventually minimize the total system cost. A comparative study of

the TSC for queue length dependent vacation with queue length independent vacation is also

presented. The purpose of such comparison is to see whether queue length dependent vacation

is leaving any effect on the total system cost or not.

5.4.1 Optimal control problem

In this section, we develop the expression for total system cost (TSC) per unit time, which is a

function of the decision variables a, b and N. Our goal is to find optimal values of the control

parameters a, b and N which may minimize TSC function. Towards this end, we define the

following state dependent costs incurred at various stages as follows.

• Ch(n) be the unit time cost for holding n customers in the queue. Thus in long run the

holding cost is given by
N

∑
n=1

Ch(n)pqueue
n .

• Cr be the unit time service cost of a batch of size r. Thus in long run the total service

cost is given by
b

∑
r=a

Cr

N

∑
n=0

Pn,r.

• Ck be the unit time cost when server is in k−th type of vacation (cost occurs in terms of

penalty). Thus in long run the total penalty incurred is given by
a−1

∑
k=0

Ck

N−k

∑
n=0

Q[k]
n .

• In case of SV, Cd be the fixed operating cost per unit time while system is dormant. Thus

the associated long run operating cost when server is dormant is CdPdor.

• Cl be the fixed cost for each lost order while there is no space to take more order, i.e.,

queue capacity is full. Thus in long run the lost cost is Clλ
∗PBA, where λ ∗ is the mean

arrival rate of customers given by λ ∗ = λ ḡ.

• Cs(N) is per unit time cost for holding the buffer size N (this cost penalizes when the

system capacity is expanded in excess).
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Therefore, in long run, the total system cost defined as

T SC(a,b,N) =
N

∑
n=1

Ch(n)pqueue
n +

b

∑
r=a

Cr

N

∑
n=0

Pn,r +
a−1

∑
k=0

Ck

N−k

∑
n=0

Q[k]
n +δsCdPdor +Clλ

∗PBA+Cs(N).

(5.67)

Hence, for each selection of any two fixed parameter among a, b and N, the optimal value

of remaining parameter can be determined by satisfying certain inequality, e.g., for optimal

value of N (denote by N∗) we must have a relation of the following form

T SC(a,b,N∗−1)≥ T SC(a,b,N∗)≤ T SC(a,b,N∗+1).

Here we consider the following two examples :

Example 1. Let us considered the following different cost parameters

1. Unit time cost for holding queue capacity of N, Cs(N) 12N3/5 unit

2. Holding cost per unit time for n customers, Ch(n) 5n+12n3/5 unit

3. Serving cost per unit time of a batch of size r, Cr 1500+10r unit

4. Penalty cost incurred per unit time when server is in k−th type of vacation, Ck 2000−50k unit

5. Operating cost per unit time while system is dormant, Cd 1000 unit

6. Cost for each lost customer, Cl 8000 unit

Let us suppose that the range of server capacity is fixed at 4. Now we want to find out the

optimal values of the threshold limits, a and b for which TSC is minimized. For this purpose

we have considered the above cost structure and the input parameter as presented in Set II. In

Figure 5.7, we have presented the effect of a on TSC, which reveals that the optimal value of

a is 24 for MV while it is 31 for SV. Hence, the optimal batch size for MV is (24, 28) and that

for SV (31, 35) and the corresponding min TSC are 1782.439 unit and 1485.736 unit for MV

and SV respectively.

Next we have considered another example to find out the optimal value of N for fixed

values a and b, with the above cost parameters as presented in Example 1.
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Example 2. We have considered the costs parameter as presented in Example 1. The input

parameters are taken as given in Set III. For the purpose of comparative study we consider the

following two cases.

Case 1. The queue length dependent vacation rates are taken as νk =( k
4 +1)ν (0 ≤ k ≤ a−1).

Case 2. The queue length independent vacation rate are taken as νk = ν0 (0 ≤ k ≤ a−1).

Remark : For Case 2, i.e., queue length independent vacation, the cost for server’s vacation

(cost occurs in terms of penalty) is considered to be C0 per unit time, thus in long run the total

penalty incurred due to vacation is given by C0

a−1

∑
k=0

N−k

∑
n=0

Q[k]
n , and required modification in TSC

is also done.

The assumptions for the vacation rates for Case 1 and Case 2 are made in such a way

that for Case 2 the server always takes a vacation with constant rate ν0, irrespective of the

queue length at vacation initiation epoch, and for Case 1 the server will start a vacation with

rate ν0, when it finds an empty queue and start a vacation with higher rate (i.e., νk>νk−1,

k = 1,2, ...a−1) depending on queue length. These assumptions ensure us that due to queue

length dependent vacation (Case 1) the server is modulating the length of the vacation periods

in such a way that the server is taking a longer vacation for empty queue and shorter vacation

as queue length increases. In Figure 5.8 we have presented the effect of N on TSC for Case

1 and Case 2. Figure 5.8 reveals the fact (in terms of TSC) that queue length dependent

vacation is much effective over queue length independent vacation as it minimizes TSC for

Case 1. It is also observed from Figure 5.8 that for SV the optimal value of N is 70 and 71

under Case 1 and Case 2, respectively and the corresponding TSC are 1804.161 units and

1839.74 units respectively. For MV model it is 71 for Case 1 and 72 for Case 2 and the

corresponding TSC are 1936.125 units and 1963.572 units respectively. Further it is noticed

that (T SC)SV < (T SC)MV , which is as of our intuitive expectation.

5.5 Concluding remarks

In this chapter, we perform analysis of a finite buffer bulk arrival bulk service vacation queue-

ing system with queue length dependent vacation (single vacation and multiple vacation). The

service time, which depends on the size of the batches under service, is considered to be gener-
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ally distributed and the vacation time, which depends on the queue length at vacation initiation

epoch, is also considered to be generally distributed. We present a procedure to obtain steady

state joint distribution of number of customers in the queue and number of customers with the

server, joint distribution of number of customers in the queue and vacation type taken by the

server, at various epochs, e.g., pre-arrival, arbitrary and service/vacation completion epochs.

Several illustrative numerical results are presented to show the impact of the various parame-

ters on system performance measures. We have considered an example of an optimal control

problem which yields the fact that total system cost is minimal when queue length dependent

vacation is considered along with batch size dependent service in bulk arrival bulk service

queue with vacation. The analysis presented in this chapter can be extended to analyze more

complex queuing models involving correlated arrival processes, i.e, batch Markovian arrival

process (BMAP).


