Chapter 5

Analysis of MX /G /1/N queue with
queue length dependent single and

multiple vacation

5.1 Introduction

Congestion control mechanisms prevent congestion of the system either before it happens or
remove congestion after it has happened. A significant amount of literature on queuing study,
focused on congestion control, is found in literature. In modern telecommunication system
request for service arrive in batches of varying size and are served in batches of varying size,
e.g., e-mail messages. For effective utilization and proper maintenance of the mail server sys-
tems a continuous and repetitive virus scan should be performed on a regular basis whenever
server found to be idle due to non availability of messages to be served. During virus scan
period the server will be unavailable from the system and the period for which server remain
unavailable is termed as vacation period. Bulk arrival and bulk service queue with vacation
(single vacation and multiple vacation) is an appropriate mathematical model to handle such

situation.

Bulk service queues with vacation have been widely studied in past decades by many re-

searchers, see e.g., Krishna et al. (1998), Arumuganathan and Jeyakumar (2005), Samanta
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et al. (2007a), Sikdar and Gupta (2008), Sikdar et al. (2008), Balasubramanian and Aru-
muganathan (2011), Jeyakumar and Arumuganathan (2011), Haridass and Arumuganathan
(2012a), Haridass and Arumuganathan (2012b), Laxmi et al. (2013), Jeyakumar and Senthilnathan
(2014), Sikdar and Samanta (2016), Jeyakumar and Senthilnathan (2016), Singh and Kumar
(2017) and the references therein. Only few of the above literature concern both bulk arrival
and bulk service for the vacation queues, see e.g., Krishna et al. (1998), Arumuganathan and
Jeyakumar (2005), Sikdar and Gupta (2008), Haridass and Arumuganathan (2011), Haridass
and Arumuganathan (2012a), Laxmi et al. (2013), Sikdar and Samanta (2016) etc. for contin-

uous time setup, and Samanta et al. (2007a), Gupta et al. (2007) etc. for discrete time setup.

Sikdar and Gupta (2008), Sikdar and Samanta (2016) considered finite buffer continuous
time bulk arrival and bulk service queue with single and multiple vacation and obtained queue
length distribution at various epochs. Finite buffer discrete time bulk arrival bulk service queue
with server vacation (single vacation and multiple vacation) has been studied by Samanta et al.
(2007a). They obtained queue length distribution at various epochs. However, from their
analysis one can not draw the information regarding the server content and hence their study
can not be extended to batch size dependent bulk arrival bulk service queue with vacation.
Recently, Banerjee et al. (2011) considered MX /GY /1 /N queue and obtained joint distribution
of the server content and queue content and then they extend their study to analyze batch size

dependent bulk arrival bulk service queue in Banerjee and Gupta (2012).

In this chapter we have studied M* / Gl /1/N queue with single vacation (SV) and mul-
tiple vacation (MV) in an unified way. The service time of the batches are considered to be
generally distributed and vary according to the batch size under service. The vacation rule
must be fixed at the beginning of the analysis and is not allowed to change at intermediate
stage. The vacation time is also considered to be generally distributed and it changes dynam-
ically depending on the number of customers remaining in the queue at vacation initiation
epoch. That is, at the end of a service if server finds less than ‘a’ customers in the queue, say
‘k’ (0 <k <a—1), then the server leaves for a vacation of random length which is dependent

on the number of customers present in the queue (i.e., k), at vacation initiation epoch and
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is referred as k’" — type of vacation taken by the server. On returning from a vacation if the
server finds ‘a’ or more customers are waiting in the queue it resumes service with maximum
capacity of ‘b’ customers, otherwise, it remain idle or leave for another vacation depending
on the vacation rule under consideration, i.e., SV or MV, respectively. The model is analyzed
using the embedded Markov chain technique, and the joint distribution of queue content and
serving batch size at service completion epoch, and queue content and vacation type taken by
the server at vacation completion epoch are obtained. The inclusion of batch size dependent
service along with queue length dependent vacation in bulk arrival bulk service queue makes
the transition probability matrix of associated Markov chain more complex and challenging to
handle. Next using the supplementary variable technique we have obtained a relation between
service/vacation completion epoch and arbitrary epoch joint distributions of queue content and
serving batch size, and queue content and vacation type. Since the buffer size is considered to
be finite and arrivals are in batches of varying size, therefore, whenever buffer becomes full or
insufficient buffer space is available in the queue to accept a new batch, the arrival batch will
be lost fully or partially. We consider here the partial batch acceptance (or rejection) policy of
the arrivals for optimizing the queuing performance.

The outline of the rest of this chapter is as follows: formal description of the model is de-
scribed in Section 5.2. The joint distributions at service/vacation completion epoch, obtained
by using the embedded Markov chain technique, is explained in Section 5.2.1. Next in Section
5.2.2, arelation between the joint distributions of service/vacation completion epoch and arbi-
trary epoch is established with the help of the supplementary variable technique. Section 5.2.3
is assigned for pre-arrival epoch joint probabilities obtained in terms of arbitrary epoch joint
probabilities. Section 5.3 is assigned for the various performance measures. Numerical results

and their discussion are presented in Section 5.4. Some conclusions are drawn in Section 5.5.

5.2 Model description

We consider a finite buffer single server bulk arrival and bulk service vacation queue. The
customers are arriving to the system in batches of random size according to the compound

Poisson process with rate A. The arriving group size are independently identically distributed
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random variables with probability mass function (pmf) P(G = m) = g,,, m = 1,2, ..., prob-
ability generating function (pgf) G(z) = Y, _; 8»Z" and mean g. The bulk service rule is
considered to be ‘general bulk service’ (GBS) rule with the minimum threshold limit ‘a’ and
maximum threshold limit ‘b’. For more detail on GBS rule readers are referred to the book
by Chaudhry and Templeton (1972). The service time distribution (S,(.)) of a batch of size
r (a <r <b) is considered to be generally distributed with probability distribution function
(pdf) s,(.), Laplace Stilzes transformation (LST) s}(.) and mean service time .
After returning from each busy period the server investigate the queue length (k) and if found
less than the minimum threshold limit a, then the server leave for a vacation of random length
VI, which depends on the queue length at vacation initiation epoch. We term this as kth type
of vacation taken by the server or simply k-th type vacation for future reference. However,
if the queue length is found to be greater than or equal to a, then the server will continue its
service process in bathes of size r (a < r < b). Now after vacation completion if the server
finds that the queue length (k) is still less than a, then the server will go for another kth type
of vacation for the case of multiple vacation or stay in dormant till the queue length attains
the value a and then resume service for the case of single vacation.

In this chapter we have studied SV and MV model in an unified way by defining an indi-
cator Oy as follows

1, forsinglevacation,

65 =
0, formultiple vacation.
The vacation time distribution (V[ (.)) is considered to be generally distributed and is depen-
dent on the queue length k (0 <k <a— 1) at vacation initiation epoch, with pdf vl (.), LST

v () and mean vacation time 7X!. The finite buffer size is considered to be N (> b).

5.2.1 Probability distribution at service/vacation completion epoch

In this section, we obtain (i) the joint distribution of queue content and server content at
service completion epoch, and (i) the joint distribution of the queue content and the type
of the vacation taken by the server at vacation termination epoch. The embedded points are

considered to be the service completion epoch points and the vacation completion epoch points
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and the corresponding steady state joint probabilities are defined as follows

. p;;r be the joint probability that there are n customers are in the queue at the service

completion epoch of a batch of size r ,0 <n < N,a<r <b,

. quH be the joint probability that there are n + k customers are present in the queue at

k-th type vacation termination epoch of the server, 0 <n+k<N,n>0,0<k<a—1,

b
e = Z pzr be the marginal probability that n customers are in the queue at service
r=a

completion epoch of a batch, 0 <n <N,

min(n,a—1)
e qf (: Z q,[qu) be the marginal probability that n customers are in the queue at
k=0
vacation termination epoch, 0 <n < N.

The unknown quantities p;;r and quH is obtained by solving the system of equations [1%7 =

I1, where

c M= (7,9) = (ny, 7m0 o, B0 % Yo V)

* 7 and 7 are the row vectors, each of dimension (N + 1), and is defined as
= (7 ) 7= (00 W)
e each (0 < n < N) are the row vectors of dimension (b —a+ 1) and is given by
Ty = (PuasPrat1s - Pup)s

e each ¥, are the row vectors of dimension (n+ 1) for 0 <n < a—2, and of dimension a

fora—1 <n <N, and is given by

(qLO]+7QL1lT7“~7QEn]+>7 Ognga—2,

0 1 -1
(Ql[’l]+7q,[11—~1_7"'7Q;[flafai_.1_)7 a—1 SHSN

* Z is the one-step transition probability matrix (TPM) of dimension
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((N+1)(b—a—|—1)+@+a(N—a+1)),andis given by

where, @, ©, A and ¥ are block matrices of dimension (N+1)(b—a+1)x (N+1)(b—a+1),
(N+1)(b—at1)x (ﬂ +a(N—a+1)), (@w@v—wn) X (N+1)(b—a+1)
and ( alal) +a(N—a+ 1)) (@ +a(N—a+ 1)), respectively.

The block matrix & contains the transition probabilities among the service completion epochs

and is given by

0 1 ... N—b—1 N-—b ... N—1 N

0 0 0 0 0 0 0

1 0 0 0 0 0 0

a—1 0 0 0 0 0 0

(1) (1) (1) (1) (1) (1)

o a D, D DyZpy Dy Dy, Dy
b D(()b—a—i—l) ng—a—O—l) N D}(\l/)_—baj—ll) DI(\],?__;_H) o D](\lla_—]a—H) D](\l;—a—i-l)
b+1 o plretV . pleth plemath o plreth) pbmatl
v o 0 .. o pPer) . plarh plearh

Each 0’s and D(‘i) are the square matrices of dimension (b —a + 1) and are described as follows
DEZ)—e ok 1<i<b-at1,0<j<N-1,

DY) = el i el ki 1<i<baq,
Pyl = ok b<j<N.

In the above expression

* ¢; is the column vector of dimension (b —a+ 1) with 1 at i""-position and 0 elsewhere.
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. K](.r) is the column vector of dimension (b —a+ 1) consisting of & J(r), where & ](r) is the

probability of j arrivals during the service period of a batch of size r and is given by

PO B J
& = / )3 #gﬁm)*d&m,f >0,a<r<b,
0 m=1 :

(m)

where g i * is m-fold convolution of g j with itself. The corresponding pgf of & ](r) is

given by W) (z) = s* (A —AG(z)),a < r <b,

. fc](.r) is the column vector of dimension (b —a+ 1) consisting of (1 — Z,j:o 51.(’))_

The block matrix ® contains the transition probabilities from the service completion epoch to

the vacation completion epoch and is given by

0 1 a—-2 a—-1 ... N—1 N

(1) A1) DR - eu

o [cV c ch, ¢ Loy, oy

2 2 2 2 ~(2

1ofo oo e, e,
®=4-1]1 0 0 ... 0 C(()“) C](\f'za C‘](\?ZQH

a 0 0 0 0 0 0

N O 0 .. 0 0 .. 0 0

The i — jth element of ©, i.e., ®; ; are also matrices and their dimension is described as follows

matrix of dimension (i+1) X (b—a+1), 0<i<a—-2,0<j<N,
®i,jE

matrix of dimensiona x (b—a+1), a—1<i<N,0<j<N.

()

. . : : k :
The zeros appeared in © are matrices of proper dimension and each C;" are described as

follows
cW=elool ™ 1<k<a0<j<N-1,
0 T @9t Ll @3 1 <k<a—1,N—at2<j<N, j+k=N+1,
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_ =(a—1
CZ(\?Za—H :ezlw@ﬁNafa)'

In above expression

¢ ¢; is the column vector of with 1 in the ith—position and O elsewhere, and its dimension

is chosen in such a way that dimension of each Cﬁ.k) is well defined.

. ](k) is the column vector of dimension (b —a+ 1) consisting of a)(.k), where w](k) is the

probability of j arrivals during the k' — type vacation period and is given by

T At J
a)](.k) _ / y #gﬁ.’”)*dv[k} ), j>0,0<k<a—1.
0 m=1 :

The corresponding pgf of a)j(.k) is given by M®) () = v+ (4 —1G(2)), 0 <k <a—1.

. 9 ](k) is the column vector of dimension (b —a+ 1) consisting of <1 _ Z{:O a)i(k)).

The block matrix A contains the transition probabilities from the vacation termination epoch

to the service completion epoch and is given by

0 1 N—-b—1 N-—b N-—1 N
0 0sBo.o &Boy ... &Bon-b-1  O&Bon-b ... OBon—1  OBon
1 0sB10 OBi1 ... O&Bin-p-1 OBin-p ... OBin-i 8B N
a—1 | &Ba-10 OBa-11 ... OBa—in-b-1 OBa—in-b ... OBain-1 OBa_in
1 1 1 1 ( (1
A @ B" B .. B, By, ... B, B
b B(()b—a-H) ng—a-&-l) . B[(\l]?:;lj-ll) B](\l/ﬂ:;l-‘rl) o B](\l;——la-i—l) E[(\l;—a-&-l)
b+1 o Byt o gl ploeth o plratl) o plmatl)
N 0 0o .. 0 By—th . gl plbreth
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The i — jth element of A, i.e., A; ; are also matrices and their dimension is described as follows

matrix of dimension (i+1) x (b—a+1), 0<i<a-2,0<j<N,
AiJE

matrix of dimensiona x (b—a+1), a—1<i<N,0<j<N.

J
Let us define some notations which will be used in sequel. yo =0, y; = Z ggm)*, j>1, For

m=1
a—n—1 a—n— )
0<n<a—1,¢,,= Z &r—n—iVk,a—n<r<N—n—1,and @y y_pn = Z Z 8 | Yk
k=0 k=0 i=N—k—n

Hence, B, ;, as appeared in matrix A, are described as follows

b—a+1 (i+a—1)

—a—
Bn,0: Z (Pn,afn+ifleiT®K0 ,0<n<a-—1,
i=1

gt (ita-1) | & ()

Bn,j = Z (Pn7a7n+ifleiT ® Kj + Z(Pn,hfnJrieZ_a_'_l b2y K]‘,ia 0<n<a-1,1<j<N-b—-1,
i=1 i=1
b—a+1 N—b—1
i+a—1 b b

B, ;= Ona—nti-1€] ® K'J(-l oy Z (Pn.,bfrwielf—aﬂ ® Kj('f)l. + (Pn,N—n"I{—aH ® KJ('—)NH:’

i=1 i=1
0<n<a—1,N—-b<j<N-1,

b—a N—-1 b—a
= i+a—1 i+a—1
B,n= Z(pnﬂ_nJr,-_]eiT@K]Sfra )—l—e}{_aH ® (e[n] — (Z B, j+ Z(pnﬂ_nﬂ-_]e,r ® KIS;H )> e[b—a]) ,
i=1 j=0 i=1
0<n<a-—1,

and each BE.k) are described as follows

BV =l o™V 1<i<b-at1,0<j<N-1,

BY =l @iy tep qp® Ry 1<i<hb-a
BS.b—a—l-l) — elf—g-}-l ® K'](ﬁ)], b< ] < N.
Where

* each e[n] is the column vector of dimension n+ 1 consisting of 1 at all entries.

» each ¢; is the column vector of dimension (b —a 4 1) with 1 at i"*-position and 0 else-

where.

e cach k"

; is the column vector, consisting of & ;r), where & ](r) is the probability of j

arrivals during the service period of a batch of size r (a < r < b) and is defined as

previous. The dimension of K(.r) (k)

$ i and

is taken in such a way that dimension of each B

B, ; must be well defined.

. =(7)
each y

is the column vector of appropriate dimension consisting of (1 — ):{:0 5@).
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W contains the transition probabilities among the vacation termination epochs and is given by

0 1 a—2 a—1 N-—1 N
0 [(-8)A0 (1-8)alV (1-8)a (=)Ao (1=8)A0,  (1-8)AY
1 0 (1-8)AF .. (1-8)AT, (1-8)a7, . (1-8)4a], (1-8)A7,
Yo o, _514@ _s14@ s 15@
a—1 0 0 0 (1-8)4 ... (1-8)4Y, (1-8)AY,.,
a 0 0 0 0 0 0
N 0 0 0 0 0 0

The i — jth element of ¥, i.e., ¥;; are also matrices and their dimension is described as

follows.

matrix of dimension (i+1) x (i+1), 0<i,j<a-2,

lPl'J =

matrix of dimensiona X a, a—1<i,j<N,
and each AE.k) are given in accordance of corresponding indexes where each Agk) are given as
follows
AV =l @V 1<k<a0<j<N-1,
AV =l @l rel oo™ 1<k<a—1,N—a+2<j<N, j+k=N+1,
z S(a—1
AI(\?za+1 = eg ® IS/a—a)

« each ¢; is the column vector of dimension i, (0 < i < a— 1) with 1 at i""-position and 0

(k)

elsewhere and are defined in such a way that the dimension of each A j must be well

defined.

e each ﬁ;k) is the column vector of dimension i (1 <i < a), consisting of a)(.k), where a)](.k)

is the probability of j arrivals during k' — type vacation period and is defined as follows

P Y: J
o)’ :/ ) #gﬁm*dv[k}(w, j>0,0<k<a—1.
0 m=1 .

(k)

The dimension of ﬁ](k) ; must be well defined.

is defined in such a way that each A
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. (k) . o . - N0
each 19]. is the column vector of appropriate dimension consisting of (1 —Yio0®; > .

Remark : According to Theorem 3.1 given in Abolnikov and Dukhovny (1991) every Markov
chain whose TPM can be represented as a finite positive delta matrix is ergodic. Since the
TPM & of the model considered in this chapter is of finite positive A, ,-type matrix, one
can conclude that the corresponding Markov chain is ergodic which ensures the existence of

steady state distribution.

5.2.2 Probability distribution at arbitrary epoch

In this section, we obtain the joint distribution of queue content and vacation type taken by
the server when server is in vacation state, and the joint distribution of queue content and the
serving batch size when server is in busy state, at arbitrary epoch. Towards this end, we define

the corresponding stochastic processes as follows
* N,(t) = the number of customers present in the queue, at time ¢,
* N(t) = the number of customers in service when server is busy, at time 7,

» x(t) = the state of the server, at time 7, and is defined as follows

;

0, ifserverisindormantstate,
xt) = k, ifserverisink™ — typeof vacation 0<k<a-1),

r, ifserverisbusyinservingbatchofsizer (a < r <b),
\

e U (1) = the remaining service time of a batch of customers under service, at time ¢, if

any.
* V(t) = the remaining vacation time of the server, at time 7, if any.
Let us define the following state probabilities, at time #, as follows.

* Poo(t) = prob{N,(t) =n, x(t) =0}, 0<n<a-—1,
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o P(x,0)dx = prob.{N,(t) = n,Ny(t) = r,x <U(t) < x+dx, x(t) =r}, 0<n<N,
a<r<b,x>0,

. Q,Lk}(x,t)dx = prob.{N,(t) = n+k,,x <V(t) <x+dx,x(t) =k}, 0<n+k<N,

n>0,0<k<a-—1,x>0.

Now relating the state of the system at time ¢ and 7 + dr we obtain the Kolmogrov equations

of the model under consideration is obtained as follows

d

TR(t) = —8APyo(t) + 8,0(0,1), (5.1)
d z ok
o) = —EAB(O)+EA Y a0 +8),0,5,00), 1 <n<a=1, (52
o 9
5 3 Pos(x,t) = _;LPOF(XI+5}L;)g’l’0 sr(x —i—ZQ (0,1)s,(x
b
+Y Pi(0,0)s,(x),  a<r<b, (5.3)
k=a
2_9 P, (x,1) —AP,,( t)+kn Poir(x,t),a<r<b—1,1<n<N-1, (54
9t ox )™ X, n,r{X, i:ZIgt n—ir\X%,0),d > F > y LN > ) .
0 0 n a—1
(552 ) Bolst) = “ABs(en)+2 Y 6l is(50)+ 52 T, gass- B0
i=1 i=0
b
+ZQn+b L0,055(x) + Y Py (0,0)sp(x), 1 <n<N—b—1, (5.5)

9
ot

— | Pv_ t
x> N—bb(X,1)

r=a

N—b a—1 oo
—lPN,bJ,(x,l‘) +A Z g,-PN,b,Lb(x,t) + SSA, Z ( Z g.,-> P[ﬂ()(l‘)sb(x)
i=1 J

i=0 \Jj=N—i

+ZQN L (0,)sp(x +ZPN, (0,1)sp(x), (5.6)
—AB, p(x,1) + A ZgiP,,_w(x,t), N—-b+1<n<N-1, (5.7
i=1
N oo
Ay (Zgj) Py_ir(x,1), a<r<b, (5.8)
i=1 \Jj=i
b
+ (ZPk,,(o,t) +
ZQ ) lx),0<k<a—1, (5.9)
—lQH(xt —&—lZngL (1), 1<n<N-1,
i=1
0<k<min(a—1,N—n—1), (5.10)
N—k [ oo
) Zg,~> ol (x1),0<k<a-—1 (5.11)
i=1 \J=i
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In steady-state, as t — oo, we define

lim Py (1)

oo

limP, , (x,t)

t—o0

[lL’/’iQn (x,)

Pp,0<n<a-—1,

Por(x),0<n<N,a<r<b,

M), 0<n+k<N,0<k<a—1,n>0.

The corresponding steady state equations are obtained from equations (5.1)-(5.11) as follows

—8APy 0+ 6,01(0), (5.12)
8 AP+ A Y giPr 10+ 8 Y. 0N (0), 1<n<a—1, (5.13)
i=1 k=0
a—1 a—1
APy () + A Y. g iPros, (x) + Y. 0N, (0)s,(x)
i=0 k=0
b
+ Y Pi(0)s,(x), a<r<b, (5.14)
k=a
_)vpmr(x) +2 ZgiPn—i,r(x) ,a<r<b—1,1<n<N-1, (5.15)
a—1
_an b +A th n— zb + ask Z gn-&-b—iPi,Osb(x)
i=0
+ZQn+b L (0)sp(x) + ZP,H,,,,(o)sb(x) ,1<n<N-b-1, (5.16)
N—b — oo
APy pp(x)+A Y giPy-pin(x +57LZ< Z ) .08 (X
i=1 =0 j=N—
a—1
+Y 08 L (0)s(x) + ZPN,V(())sb(x) (5.17)
k=0
—AB,,(x +)LZg, o ip(X), N—b+1<n<N-1, (5.18)
N
Ay Zgj Pv_i;(x), a<r<b, (5.19)
i=1 \j=i
k .
200 (x (Zpk , -5))y o j(0)> VR (x),0 <k < a—~(5,20)
J=0
20M(x +/IZngL" (), 1<n<N-—1,
0§k§min(a—l,N—n—l), (5.21)
N—k o
A (Zgj) ol _(x),0<k<a—1. (5.22)
i=1 \j=i
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Further, let us define LST of few terms, for Re 8 > 0, as follows

/eexPnJ(x)dx = P;,(0),0<n<N,a<r<b,
O )
© —6x K _ oM _
e Qp (x)dx = 0p (0),0<n+k<N,0<k<a-l1,
0
/e_exsr(x)dx = 57(0),a<r<b,
0

/ M xax = W), 0<k<a-—1,
0
The following two results followed immediately from the above definitions.

P,=F,,(0) = /OOQPW(x)dx
M= g0y = /O "ol (x)dx

Multiplying (5.14)-(5.22) by e~%* and integrating with respect to x over 0 to oo, we get

a—1

a—1 b
(A—6)P;,(0) = S8AY griPiosi(0)+ Y 0N, (0)5:(8) + Y Pri(0)s:(8) — Po(0),
i=0 k=0 k=a

a+1<r<b, (5.23)
(A—0)P,(6) = AY &Py i, (0)—Ps(0),a<r<b—1,1<n<N-1, (5.24)
i=1
(A_O)P;,b(e) = )ng, ) + 0,4 Zgn-i—b i IOSb )+ ZQrH—b k (0)
+2Pn+b7r(0)s}§(9) —Pp(0), 1 <n<N—-b—1, (5.25)

N—b a1/ o
(A—0)Py_;,,(0) = A Zgipﬁ—b—i,b(9)+5slz< Z ) 0550 +ZQ
i=1 i=0 \

=N—i
b
+Zﬁw®ﬁﬂ®—ﬂwM®%lén§N—b—L (5.26)
(A—0)P;,(0) = AZ& Pp(0), N—b+1<n<N-1, (5.27)
“or(0) = A} (zgj) B (0)Pus(0), a<r<b 52
i=1 \j=i

b k .
(2-0)0y"(8) = <2Pk,r<0>+<1—6s>EOQ,EJL<0>>v[k]*w)—Qé”(ox

0<k<a-—1, (5.29)

(A -0)0"(8) = 1Y 20" (8)- 0l (0),
=1

1<n<N-1,0<k<min(la—1,N—n—1), (5.30)
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—00"" () = 2 Z (Zgj> o (8)—0¥ (0),0<k<a-1. (5.31)

Now using (5.12)-(5.13) and (5.23)-(5.31), we derive the following three important results in
Lemma 5.1 to Lemma 5.3 which will be used in sequel.
Lemma 5.1. The probabilities (p;!,,P,,-(0)) and (q,[lkH, N (O)) are connected by the fol-

lowing relation

Py = OPy(0),0<n<N,a<r<b, (5.32)
= 608(0),0<n+k<N,n>00<k<a-—1, (5.33)

N b a—1 n ] N a—1 ]

where, 6! = Z ZPn,r(O) + Z ZQn_k(O) + Z ZQn—k(O)
n=0r=a n=0k=0 n=a k=0

Proof. Using Bayes’ theorem, for 0 <n < Nanda < r < b, we have

P:f,r = prob.{n customers are in the queue at the service completion epoch of a

batch of size r}

= prob.{n customers are in the queue just prior to the service completion
epoch of a batch of size r |[< N customers are in the queue just prior to the
service completion epoch of a batch of size a < r < b or vacation completion

epoch of k-th type vacation with 0 <k <a—1.}

nrO
= N a—1 : © N a—1
Zan +ZZQ +ZZQ
n=0r= n=0k= n=ak=

With the similar argument we obtain

= 0O g<k<a—1,0<n<N-k
Y Z i +Z ZQn 0+ Y Y Y0
n=0r= n=0k= n=a k=0

Lemma 5.2. The steady state dormancy period probabilities P, o (0 < n < a— 1) for the case

of single vacation are given by

APRO_ZZlanm [0); 0<n<a—1, (5.34)
m=0k=

where
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ll’l,l’lzl (Oﬁnfa—l),lmn,l :gl (1 Snga_l)’
Z] i1 lnj8j—it &n—i 2<n<a-1,0<i<n-2).
Proof. Using (5.12) in (5.13) we obtain the desired result (5.34).

Lemma 5.3. The value of 6!, as appearing in Lemma 5.1, is given by

a—1
N b a—1N—k I_SS;)P”@
o '=Y Y P, (0)+ Z Z o )= (5.35)

a—1

n b a—1 o0
where, w= )" [pﬁ[”} - Zq,[,k]_Z (65 (Z ConnSm+ Y Ljm ( ) gk) 5b> +(1- 5s)\7["]>]
= m=a ] =n

n=0 k=b+1—j
k]+
+Z (an k+Pn>Sn+ Y ( —I—pn> b
= n=b+1
8m—n; n:a—L
and Cpp =< a-1 a<m<b.
Z Cn,j8j-n~+8m-—n, 0<n<a—2,
j=n+1

Proof. Using (5.34) in (5.23), (5.25) and (5.26) and summing over the range of n and r we

obtain
N b —1N—k a—1 l_v[n]*e b 1—m(0) &
(£fmorETor0) - 5 (=50 o2 f ol o)
n=0r=a k=0 n= n=0 r=a k=0
b 1 —S:; 0 b a—1
+3 9( ) (Z Pn,r(0>+];)QL"]k(0)>
1—s%(0 N b a—1
55(6) ) <Z Por(0)+ ) Q,E"%(O)) , (5.36)
6 L\ k=0
where
b a—l [}
6) = lés (Z ConnS(8) + Y, L ( )3 gk> sz<6>> +(1- 6s>v["]*<9)].
m=a Jj=n k=b+1—j
Taking limit as 6 — O in above expression and using L’Hopital’s rule and the normalizing
condition
—IN—k
6ZP,,O+ZZPM+Z ZQ (5.37)
n=0r=a
we obtain

b a—1 oo
65 (Z Cm7n§m+ Z lj,n < Z gk) 5}))
m=a j=n

k=b+1—j
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‘7["]

5 Q,Lkik<o>) . (ipn,,«» 5> Q,[f]_k(o)> ;
k=0 n=a \r=a k=0
N b a—1
+ ) <Z Por(0)+ ) QLklk(0)> $b. (5.38)
r=a k=0

n=b+1

Now using Lemma 5.1 in (5.38), after little algebraic manipulation, we obtain the desired

result (5.35).

Theorem 5.1. The steady state probabilities {Pn,o, P Q,[f]} and { Pty P q,LkH} are re-

lated by the following relations

n m
Poo = E*Zlmmzqﬂﬂjk,ognga—l, (5.39)
m=0 k=
R, = SZgr,Zl,qu —I—Zq +pf p&r],a<r<b, (5.40)
P, = Zg,n,r E-'py1<n<N—la<r<b-l, (5.41)
i=1
Z = [+
}%ﬁ = z:gJ% lb#_s z:gn+b lzoﬁ_E' z:qn+b k*‘p:¥b__p2b s
5
ISHSN—b—l (5.42)
n a—1 [}
Py-pp = ZgiPni,b+5sZ< Y ¢ > Po+E™! quH +Py—Pr- bb]7 (5.43)
i=1 i=0 \ j=N—i
n
Py = Y gPiip—E 'p,,,N—b+1<n<N-—1, (5.44)
i=1
0 S
Q' = E'pi+(1-8)Y ¢ —qy |, 0<k<a—1, (5.45)
=0
n
or = ZgiQLk],,-—E’qukH, 0<k<a-1,1<n<N-a (5.46)
oy . = ZngNj, E'g 1<j<a—1,0<k<j—1, (5.47)

where E = Aw+ 0} Z Lnm Z q,k]Jr

Proof : Multiplying (5.12) by o, using Lemma 5.1 and Lemma 5.2, after algebraic manipula-

tion, we obtain

a—1
AwPy (= (1 - ZP,,()) b+, (5.48)
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With similar argument, from (5.34), we obtain

a—1 n m
AwPo = (1 = ZPH70> Y b Y g 0<n<a—1. (5.49)
n=0 m=0 k=0

Using (5.48) in (5.49) we obtain

Po \ ¢ L
Poo = (W) y zn,m];)q;g, 0<n<a-—1. (5.50)
[ =

m=0
Using (5.50) in (5.48) yields

q([)O] +

0 _ : (5.51)
).W—F ZZ;(I) Z ln,m Z q[mk}jk
m=0 k=0

Pyo=

Now using (5.51) in (5.49) yields the desired result (5.39).
Now setting 8 = 0 in (5.23)-(5.27) and (5.29)-(5.30) and then multiplying the equations by o,

using Lemma 5.1 we obtain

a—1 i m a—1
AoRy, = SAGY g Y lin Y+ Y a0t ot —pl, a<r<b, (5.52)
i=0  m=0 k=0 k=0

n
AGP,, = AGY gPiir—py1<n<N-1l,a<r<b-1, (5.53)
i=1

n a—1 a—1
3
Aok, = Ao Zgipn—i,b + A0 6 Z gntb—iPip+ Z QLE,_k
i=1 i=0 k=0

FPpir— Pups 1<n<N-b—1, (5.54)

n a—1 a—1
AGPy_pp = AGY giPuip+A08 ) ( ) gj> Po+ Y, q[Nk]jk PN PNy (5.55)
i=1 i=0 k=0

j=N—i
b ko
a0y = Yoo +(1-8) el gt 0<k<a-1, (5.56)
r=a j=0
Ac0l = 20Y g0M, — gl 0<k<a-1,1<n<N-a (5.57)

i=1

Then using Lemma 5.2 in (5.52)-(5.57) and solving recursively, after algebraic manipulations,
we obtain the desired results (5.40)-(5.47).

Remark. It may be noted here that the probabilities Py (a < r < b) and Q[NkL [(0<k<a—1)
could not be obtained from Theorem 5.1 by using the normalizing condition given in (5.37).

However, these probabilities is obtained using a slightly different approach as explained in
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next section.

5.2.2.1 Evaluation of Py, (a <r <b)

To obtain Py, (a < r < b) we use equation (5.28). Differentiating (5.28) with respect to 6 and

then setting 6 = 0 we get

i=1

PN,r:_AZ<igk> N— lr a§r§b, (558)

where P;\}(_l) (0) is the derivative of Py _; .(8) with respect to 6 at 6 = 0. Now to get P;(_ll?’r(O),

Lr

differentiate (5.24)-(5.27) with respect to 0 and set 6 = 0. Hence, we obtain
APY0) = P,+AY eP(0),a<r<b-1,1<n<N-1, (5.59)
i=1 '

n a—1
AP’;(bl) (O) - anb +A ZgiP:gi,)b (0) - A‘SS Z gn+b7iPi,OS~b
i=1 i=0

a—1 b
—Y M, (0)5— Y Pup (005, | <n<N—b—1, (5.60)
k=0

r=a

>
ij\
&=
=
(@]
S~—
Il

N—b
Py_pp+A Y, giP;,(,ll),,,b — A0 Z ( Y ¢ ) 05D

i=1 j=N—i
a—1 ] b
— Y Oy (005, — Y Py (0)s5, (5.61)
k=0 r=a
AP:,S)(O) = Pp+A Zgip,ﬁl,-?b(O) S N—b+1<n<N-1. (5.62)

i=1

From (5.59)-(5.62) one can obtain the values of P;(j27r(0) (a < r <) recursively in terms of
Pg(rl)(O) (a <r <b). Hence, Py, (a <r<b) we obtained in terms of Pg(rl)(O) (a<r<b)
from (5.58). Now to obtain Pg.(rl) (0) (a < r < b) we differentiate (5.23) with respect to 6 and

then setting 6 = 0 we get

a—1 a—1 b
)~P6k75,1)(0) = P07r - )»35 Z gr—iPi,OSNr - Z QLklk(O)s:’ - ZPHk«))SN”’ asrs b(563)
i=0 k=0 k=a

As P(;i(rl) (0) (a < r < b)is known from (5.63), Py, (a < r < b) can be obtained from (5.58) in

known terms.
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5.2.2.2 Evaluation of Q% , (0<k<a—1)

Differentiating (5.31) with respect to 8 and then setting 6 = 0 we get
Nk——?LZ(Zgn>QN ),0<k<a-—1, (5.64)

where QN k l( ) is the derivative of Qk]* ;(0) with respect to 6 at 6 = 0. Now to get
Q ( ) we differentiate (5.30) with respect to 6 and set & = 0 which yields the following

CXpI'CSSlOl’l

208 W0) = 4+ Y g0 0),1 <n<N-1,0 <k <min(a—1,N—n—1)(5.65)
=1

From (5.65) we obtain the values of Q[Nk]jl({l_) :(0) (0 <k <a—1)recursively in terms of Q([)k]*(l) (0)(0<
k <a—1) and hence, Q[Nk]_k (0 <k <a-—1) is known in terms of Q([)k}*(l)(O) 0<k<a-1)
from (5.64). Now to obtain Q([)k]*(l)(O) (0 < k < a-—1) differentiate (5.29) with respect to 0

and then setting 0 = 0 we get

b k
20100y = gl _ (Zpkl(o) ZQk . > ,0<k<a—1. (5.66)

Now Q[Nk}_k (0 <k <a-—1)is obtained from (5.64) in known terms.

Henceforth, we have completely obtained the joint distributions of the queue content and
server content, joint distribution of queue content and type of the vacation taken by the server.

Next we obtain some significant marginal probability distributions as follows

« the distribution of queue content p7““““ (0 < n < N) is given by

6Pno+ZPnr+ZQn e 0<n<a-—1,
queue

Pn =
ZPnr+ZQn . a<n<N.

* the distribution of the system content (including number of customers with the server)
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pi” (0 <n<N+b) is given by

6PnO+ZQn k> Ognéa_la
min(b,n)
Z Pn rr-l-ZQn k? ClSI’ISN,
sys
Pr b
Y P, N+1<n<N+a,
b
Y P N+a+1<n<N+b.
\ r=n—N

a—1
* the probability that the server is in dormant state is given by Py, = Z P, 0, probability

n=0
b N

that the server is busy is given by Py, = Z ZPn r» probability that the server is in

r=an=0
a—1N—k

vacation state is given by Oy = Z Z Q

» the conditional probability distribution that the server is in k' — type vacation given that

the server is in vacation state is given by
N—k 0
= ZQn /Qvam 0<k<a-—1.
n=0

* the conditional probability distribution of the server content given that the server is busy
is given by

ser ZPnr/Pbusyva<r<b
n=0

* the probability of the number of customers in the queue when server is busy is given by

phsy — ZPnr,O<n<N

r=a

* the probability of the number of customers in the queue when server is in vacation is

given by
n
ZQLk]_ka O<n<a—1,
vac] _ ) k=0
qn "= a-1
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5.2.3 Probability distribution at pre-arrival epoch of a random customer

In this section, we obtain the joint distribution of queue content and server content, joint
distribution of queue content and type of the vacation taken by the server at pre-arrival epoch

of a random customer in terms of arbitrary epoch joint distributions.
Without loss of generality, we assume that the customers within each arriving batch are ran-
domly ordered and that they enter the system according to their order. Let us define

P, , = the probability that a random customer of an arriving batch finds n customers in the
queue and server is idle (0 < n < N) (for SV)

B, , = the probability that a random customer of an arriving batch finds n customers in the
queue and server is busy in serving a batch of size r, 0 <n < N,a <r <b.

Lk]_ = the probability that a random customer of an arriving batch finds n 4 k customers

in the queue and server is in k-th type of vacation,0 <n <N, 0<k<a—1.
Thus the joint probabilities { P 0> Py Q ~}and {P, 0, P, Q,[lk]} are related by
n
Py= ESZgn:jPLO, 0<n<a-—1,
j=0

a—1
Po=208) 8, jPio,a<n<N-—1,

j=0
a—1 oo
Pyo=06), ), &P
j=0k=N—j
n
P,;r:Zg;_ijjr,OSngN—l,aSrgb,
=0
N oo
Po,=Y, Y &Pra<r<b,
j=0k=N—j
n
=Yg 0 0<k<a-1,0<n<N—k-1,
j=0
n e
=Y ¥ o o<k<a-1,n=N-k
j=0m=n—j

I & ) . . )
where, g]f = - Z gi, J > 0, is the probability of j customers are ahead of an arbitrary
i=j+1
customer in his batch.

Once we get the joint distribution of the number of customers in the queue and number with
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the server at arrival-epoch of a random customer, the other distributions such as distribution
of the number of customers in the queue when server is busy at arrival-epoch of a random
customer and distribution of the number of customers with the server at arrival epoch of a

random customer, can be easily obtained.

5.3 Performance measure

As all the state probabilities are known, the performance measures of the present model are

evaluated and presented as follows.

(i) Average queue length is given by (L Z npduene,
N +b
(ii) Average system length is given by (L Z npy”.

(iii) Average queue length when server is in vacation is given by (L;*) = Z n. q[vac] /Ovac-

(iv) Average number of customers with the server is given by (L Z rpy’.
(v) Average vacation type (average number of customer in the queue at Vacatlon initiation

a—1

epoch) is given by (§) = Z k&
k=0
Next we obtain the blocking probabilities of the first customer, an arbitrary customer and the

last customer of an arriving batch as follows.

Blocking probability of the first customer in a batch

Let Ppr be the probability that the first customer in a batch (and therefore the whole batch) is
being lost upon arrival. The first customer is being lost if there is no waiting space, i.e., there

have been N customers in the queue upon arrival. Hence, Pgr = p?\,"e”e

Blocking probability of an arbitrary customer in a batch

Let Pg4 be the probability that an arbitrary customer in a batch is being lost upon arrival.
An arbitrary customer in a batch is being lost if he finds n (0 <n < N) customers in the

queue upon arrival and k (> N —n) customers ahead of him in his batch. Hence, we have

N oo
Pea=) ) 8 P

n=0k=N—
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Blocking probability of the last customer in a batch

Let Ppr be the probability that the last customer in a batch is being lost upon arrival. The last
customer in a batch is being lost if he finds n (0 < n < N) customers in the queue upon arrival
N oo
and his batch size is k (> N —n+ 1). Hence, we have Pg; = Z Z grprene,
n=0k=N—n+1
Finally, using Little’s law the average waiting time of an arbitrary customer in the queue

(W,) as well as the system (W) is given by (W,) = L,/ and (W) = L/, respectively, where

A is the effective arrival rate of the system and is given by A = 13 (1 — Pgy).

5.4 Numerical results

This section consists of four fold numerical investigations which extracts several important
features of the considered model. In the first part, the joint probabilities at various epoch,
viz., service/vacation completion epoch, pre-arrival epoch and arbitrary epoch, are presented
in tabular form along with useful performance measures. In the second part, we perform the
sensitive analysis of the performance measures by varying the queue capacity N. In the third
part, we have presented the effect of ‘a’ (lower threshold limit of the serving capacity of the
server) on the selected performance measures by fixing the range of the serving capacity of
the server, i.e., b — a. A cost function is defined in the fourth part, named as total system cost
(TSC), in terms of the decision variables a, b and N to discuss several optimal control policy
of the considered model.

Here below we are defining few abbreviation which are used in sequel.

SV : single vacation

MYV : multiple vacation

STD : service time distribution

VTD : vacation time distribution

IP : inversely proportional

DP : directly proportional

Let us now focus ourselves to the first part of this section. Here, we have considered

M/ G£4’7) /1/18 queue with SV (Table 5.2 to Table 5.4) and MV (Table 5.5 to Table 5.7) with
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E4 STD and deterministic VTD. The arrival rate is taken as A = 1.0. The service rates are
taken as W, = p/r (a < r < b) with u = 7.5 and the vacation rates are taken as v, = (k+1)v
(0 <k <a—1) with v=0.75. The input parameter for the service rates and the vacation rates

for Table 5.2- Table 5.7 are taken as presented in Table 5.1.

Table 5.1: Service and vacation rates for Table 5.2-Table 5.7

Service rate Vacation rate
batch size (r) IP queue length (k) | DP
4 1.875 0 0.75
5 1.50 1 1.5
6 1.25 2 2.25
7 1.0714 3 3.0

Table 5.2-Table 5.4 present the service/vacation completion epoch joint probabilities, ar-
bitrary epoch joint probabilities and pre-arrival epoch joint probabilities, respectively, for SV
and Table 5.5-Table 5.7 present the same distributions for MV. These results are presented
here to show the numerical compatibility of our analytical results. The important performance
measures of the queueing model under consideration are also presented at the bottom of the
Table 5.3 and Table 5.6.

Let us now turn our attention to some other numerical examples of this section presented
in the form of graphs. Towards this end, we consider the input parameters as given in Set I to
Set III.

Setl:a=3,b=7,2=0.9, go =0.15,g3 = 0.20,g4 = 0.25,g5 = 0.10,g6 = 0.05,g7 =
0.05,88 =0.10,89 =0.05,810 = 0.05, 1, = i + 15 with £ = 0.5, vy = v — =5 with v = 3.0,
deterministic STD and exponential VTD , varying N from 10 to 200.

SetIl: b =a+4, N =40 and all other input parameters are same as given in Set /.

Setlll: a=5,b=28, A =0.7, g3 =0.10,g4 = 0.20,g5 = 0.25,g¢ = 0.25,g7 = 0.10,gg =
0.05,g9 =0.05, u, = pu/rwith u =5.5, vy = (f;f +1)v with v =0.75, E4 STD and determin-
istic VID, varying N from 20 to 150.

The input parameters presented in Set I are used for Figure 5.1- Figure 5.4, Set II are used
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Table 5.2: Joint distributions at service/vacation completion epoch for MX / Qmﬁd /1/18 queue with SV, E4 STD, deterministic VTD, A = 1.0 and

gi=0.1(1<i<10).

noop, s Pie e Py gt gt a7 g ay

0 0044872 0.030205 0.026939 0.023850 0.125865 0.033178 0.033178
1 0.002112 0.001726 0.001796 0.026056 0.031689 0.004424 0.016270 0.020694
2 0002174 0001788 0.001871 0.028627 0.034459 0.004719 0.001085 0.022095 0.027898
3 0.002237 0.001851 0.001948 0.031356 0.037393 0.005027 0.001121 0.000982 0.026793 0.033923
4 0.002302 0.001916 0.002028 0.045999 0.052246 0.005348 0.001158 0.001004 0.000893 0.008403
5 0002369 0.001983 0.002110 0.027301 0.033764 0.005684 0.001196 0.001026 0.000908 0.008813
6 0002437 0.002052 0.002196 0.026555 0.033240 0.006034 0.001234 0.001048 0.000923 0.009239
70002507 0.002123 0.002284 0.025207 0.032121 0.006399 0.001274 0.001071 0.000938 0.009682
8  0.002578 0.002196 0.002375 0.025441 0.032590 0.006779 0.001314 0.001094 0.000954 0.010141
9 0.002651 0.002271 0.002469 0.026228 0.033619 0.007175 0.001355 0.001118 0.000969 0.010617
10 0.002726 0.002348 0.002566 0.027034 0.034673 0.007588 0.001397 0.001142 0.000985 0.011112
11 0.000691 0.000701 0.000870 0.068416 0.070678 0.003594 0.001440 0.001166 0.001001 0.007201
12 0.000644 0.000659 0.000823 0.021313 0.023440 0.003451 0.000399 0.001190 0.001017 0.006058
13 0.000596 0.000614 0.000773 0.020202 0.022185 0.003287 0.000372 0.000233 0.001033 0.004925
14 0.000544 0.000566 0.000718 0.018884 0.020713 0.003101 0.000343 0.000215 0.000156 0.003815
15 0.000490 0.000515 0.000658 0.016454 0.018118 0.002890 0.000312 0.000196 0.000143 0.003542
16 0.000433 0.000460 0.000594 0.015414 0.016902 0.002655 0.000280 0.000176 0.000130 0.003242
17 0.000373 0.000402 0.000525 0.014433 0.015733 0.002394 0.000247 0.000156 0.000116 0.002913
18 0.000311 0.000340 0.000450 0.100067 0.101167 0.002105 0.000212 0.000135 0.011562 0.014013
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Table 5.4: Joint distributions at pre-arrival epoch for MX / Qmﬁd\ 1/18 queue with SV, E4 STD, deterministic VTD, A = 1.0 and g; = 0.1 (1 <i < 10)

[2]-

no Py P, P, Py P, Py ol ol o, o, g

0 0.005927 0.005209 0.004601 0.005167 0.005598 0.026501 0.016558 0.016558
1 0.009624 0.004832 0.004292 0.004846 0.010967 0.034560 0.015768 0.002755 0.018522
2 0.014607 0.004443 0.003973 0.004512 0.016146 0.043681 0.014925 0.002561 0.002209 0.019694
3 0.020667 0.004044 0.003642 0.004164 0.021114 0.053630 0.014027 0.002361 0.002033 0.001894 0.020314
4 0.018277 0.003632 0.003300 0.003801 0.028606 0.057617 0.013071 0.002154 0.001854 0.001734 0.018813
5 0.015887 0.003209 0.002946 0.003424 0.030367 0.055833 0.012056 0.001940 0.001671 0.001572 0.017239
6 0.013496 0.002774 0.002579 0.003032 0.031235 0.053116 0.010978 0.001720 0.001484 0.001407 0.015588
7 0.011106 0.002326 0.002200 0.002624 0.031114 0.049369 0.009835 0.001492 0.001292 0.001239 0.013859
8 0.008715 0.001865 0.001807 0.002200 0.030438 0.045026 0.008624 0.001257 0.001097 0.001069 0.012047
9 0.006325 0.001392 0.001402 0.001759 0.029351 0.040229 0.007342 0.001015 0.000897 0.000896 0.010150
10 0.003935 0.000905 0.000982 0.001300 0.027853 0.034975 0.005987 0.000766 0.000693 0.000720 0.008165
11 0.002137 0.000781 0.000857 0.001145 0.036207 0.041127 0.005345 0.000509 0.000485 0.000541 0.006879
12 0.000768 0.000666 0.000739 0.000998 0.032399 0.035571 0.004728 0.000437 0.000272 0.000359 0.005797
13 0.000000 0.000560 0.000630 0.000860 0.028790 0.030840 0.004141 0.000371 0.000230 0.000175 0.004917
14  0.000000 0.000463 0.000528 0.000732 0.025417 0.027139 0.003587 0.000310 0.000192 0.000147 0.004235
15 0.000000 0.000375 0.000436 0.000614 0.022477 0.023903 0.003071 0.000254 0.000157 0.000121 0.003603
16 0.000000 0.000298 0.000354 0.000508 0.019724 0.020883 0.002596 0.000204 0.000126 0.000098 0.003024
17 0.000000 0.000231 0.000282 0.000414 0.017145 0.018073 0.002169 0.000160 0.000098 0.000077 0.002503
18 0.000000 0.000789 0.001102 0.001808 0.091286 0.094986 0.010083 0.000494 0.000258 0.000197 0.011032
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Table 5.6: Joint distributions at arbitrary epoch for M / G+ /1/18 queue with MV, E4 STD, deterministic VTD, A = 1.0and g; = 0.1 (1 <i < 10)

n mux,# W:“m musq@ Nﬁq _Bws@ wo_ Qw@_ QW@N @www QWQ& .Bmxmzm
0 0.026507 0.022316 0.025454 0.028006 0.102284 0.111993 0.111993 0.214277
1 0.000731 0.000736 0.000965 0.029819 0.032251 0.005854 0.033748 0.039602 0.071853
2 0.000748 0.000756 0.000995 0.032046 0.034545 0.006083 0.001001 0.039118 0.046202 0.080747
3 0.000765 0.000777 0.001027 0.034373 0.036941 0.006319 0.001022 0.000805 0.045468 0.053615 0.090556
4 0.000782 0.000798 0.001059 0.055867 0.058506 0.006563 0.001043 0.000817 0.000716 0.009138 0.067645
5 0.000800 0.000820 0.001093 0.028144 0.030856 0.006814 0.001065 0.000828 0.000724 0.009430 0.040286
6 0.000818 0.000842 0.001127 0.026868 0.029654 0.007072 0.001087 0.000840 0.000731 0.009730 0.039384
7 0.000836 0.000865 0.001162 0.024906 0.027769 0.007338 0.001109 0.000852 0.000739 0.010038 0.037807
8 0.000855 0.000888 0.001198 0.024189 0.027130 0.007613 0.001132 0.000864 0.000747 0.010355 0.037485
9 0.000874 0.000912 0.001235 0.024237 0.027258 0.007895 0.001155 0.000876 0.000755 0.010681 0.037939
10 0.000893 0.000936 0.001274 0.024260 0.027363 0.008186 0.001178 0.000888 0.000763 0.011015 0.038378
11 0.000182 0.000225 0.000348 0.082884 0.083640 0.002631 0.001202 0.000900 0.000771 0.005505 0.089145
12 0.000169 0.000211 0.000327 0.014562 0.015269 0.002482 0.000225 0.000913 0.000779 0.004399 0.019668
13 0.000156 0.000195 0.000305 0.013728 0.014384 0.002320 0.000208 0.000120 0.000788 0.003435 0.017819
14 0.000142 0.000179 0.000281 0.012773 0.013374 0.002145 0.000190 0.000110 0.000080 0.002525 0.015899
15 0.000127 0.000161 0.000255 0.010881 0.011425 0.001957 0.000171 0.000100 0.000073 0.002301 0.013726
16 0.000111 0.000143 0.000228 0.010112 0.010594 0.001755 0.000152 0.000089 0.000066 0.002062 0.012657
17 0.000095 0.000123 0.000199 0.009378 0.009795 0.001540 0.000132 0.000078 0.000059 0.001808 0.011604
18  0.000303 0.000444 0.000797 0.054486 0.056030 0.006215 0.000419 0.000254 0.000207 0.007095 0.063125
Total 0.035894 0.032327 0.039330 0.541519 0.649069 0.202775 0.046238 0.048452 0.053466 0.350931
(P (On) 1000000

L =10.247680, W = 2.105104, L, = 5.915862, W, = 1.215251, Pgr = 0.063125, Pg4 = 0.114906, Pg;, = 0.157832,

L; = 6.673894, { = 0.864959, ;" = 3.458383.
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Figure 5.1: Effect of N on Pg;ocx- Figure 5.2: Effect of N on Ppqy.

in Figure 5.5- Figure 5.7 and Set III are used in Figure 5.8. Figure 5.1- Figure 5.4 illustrate
the effect of buffer size N on blocking probabilities (Pgr, Ppa, PBL)s Pousys Ovac> Ly and W. It
is noticed that the values of blocking probabilities, Oy, L, and W for SV is lower for SV
than the corresponding values for MV. However, the values of Py, is higher for SV than the
corresponding values for MV, irrespective of the values of N. These behavior are according
to our intuitive expectations, because of the increase in chance of server’s availability to the
system for SV model in comparison to MV model. Further, it is observed from Figure 5.1-
Figure 5.4 that enlarging the buffer size reduces the blocking probabilities and Q,,., however,
increases Py, Ly and W. It is also observed that for large N (i.e., N > 110) these performance
measures become insensitive, which implies the fact that for larger values of N our finite
buffer model behaves like an infinite buffer queueing system. Figure 5.1- Figure 5.4 reveal an

interesting observation that for N > 60 the rate of change of various measures is much lower.

Figure 5.5- Figure 5.6 illustrate the effect of minimum threshold limit a on L;, W and
blocking probabilities (Ppr, Ppa,Ppr) by considering fixed service capacity (i.e., b —a = 4).
Similar observation as seen in Figure 5.1- Figure 5.4 is observed in Figure 5.5- Figure 5.6.
The values of L,, W and blocking probabilities (Ppr, Ppa, Pp) corresponding to SV are lesser
in compare to values correspond to MV. It is observed from Figure 5.5 that for a < 10 the
values of L, and W decreases rapidly, however, for a > 10 these values increases rapidly for
both the considered model, i.e., SV and MV. The analogous behavior is noted for blocking

probabilities (Pgr, Pga, Ppr); when a < 14 in the virtue of MV and a < 22 in the virtue of SV.
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measures.
20
1 —a— L (SV 4
184 " Esv; 01 —~—P,_(3V)
16 —— L, (MV) ™)
4] ] V\; MV Pen (5V)
] —~—
g ] MV) " —a— P_(MV)
% 1 = —— P, (MV)
g 12 4 % 0.014 —A— P, MV)
1 Qo
n o
é 10 1 ;
S s 2
ol ] =
e g 1E-3
4
2 T T T T T
5 10 15 20 25 30 1E-4 T T T T T
a — o 5 10 15 20 25 30

Figure 5.5: Effect of a on Performance Figure 5.6: Effect of a on Pgjoct.

measures.
4000
2500
2400
2300 —a— SV (Case 1)
2200 —e— SV (Case 2)
2100 3500 —A— MV (Case 1)
2000 —v— MV (Case 2)
1900 ° T
1800
1700 3
e @
2000
= 1530
1950
1520 —a— SV I
—e— 1900
1510 My
1850
1500
1800
1490 T T T T T T T
T T T T T T 20 40 60 80 100 120 140
5 10 15 20 25 30 35 N — =

Figure 5.8: Effect of N on T'SC for Case 1

Fi .7 Eff f TSC.
igure 5.7 ectofaon7SC and Case 2.



136 MX/ Gﬁ“”’) /1/N queue with queue length dependent vacation

In the following section we carry out a numerical investigation to optimize the values of
a, b and N which may eventually minimize the total system cost. A comparative study of
the TSC for queue length dependent vacation with queue length independent vacation is also
presented. The purpose of such comparison is to see whether queue length dependent vacation

is leaving any effect on the total system cost or not.

5.4.1 Optimal control problem

In this section, we develop the expression for total system cost (TSC) per unit time, which is a
function of the decision variables a, b and N. Our goal is to find optimal values of the control
parameters a, b and N which may minimize TSC function. Towards this end, we define the

following state dependent costs incurred at various stages as follows.

* Cj(n) be the unit time cost for holding n customers in the queue. Thus in long run the

queue

N
holding cost is given by Z Crn(n)pn

n=1

* C, be the unit time service cost of a batch of size r. Thus in long run the total service
b N

cost is given by ZCr ZP,”.

r=a n=0

* Cy be the unit time cost when server is in k—th type of vacation (cost occurs in terms of

a—1 N—k
penalty). Thus in long run the total penalty incurred is given by Z Cr Z QLk].
k=0 n=0

* In case of SV, C,; be the fixed operating cost per unit time while system is dormant. Thus

the associated long run operating cost when server is dormant is C;Py,,.

* (; be the fixed cost for each lost order while there is no space to take more order, i.e.,
queue capacity is full. Thus in long run the lost cost is C;A*Pg4, where A* is the mean

arrival rate of customers given by A* = A 3.

* C4(N) is per unit time cost for holding the buffer size N (this cost penalizes when the

system capacity is expanded in excess).



5.4 Numerical results 137

Therefore, in long run, the total system cost defined as

N b N a—1 N—k
TSC(a,b,N) = Y. Ch(n)pd““+ Y .G, Y Puyr+ Y. ¥ QW + 8,CuPoor + C1A* Poa + Co(N).
n=1 r=a n=0 k=0 n=0

(5.67)
Hence, for each selection of any two fixed parameter among a, b and N, the optimal value
of remaining parameter can be determined by satisfying certain inequality, e.g., for optimal

value of N (denote by N*) we must have a relation of the following form

TSC(a,b,N* —1) > TSC(a,b,N*) < TSC(a,b,N* +1).

Here we consider the following two examples :

Example 1. Let us considered the following different cost parameters

1. Unit time cost for holding queue capacity of N, Cs(N) 12N3/5 unit
2. Holding cost per unit time for n customers, Cy(n) 5n+412n3/3 unit
3. Serving cost per unit time of a batch of size r, C, 1500 + 107 unit

4. Penalty cost incurred per unit time when server is in k—th type of vacation, C, ~ 2000 — 50k unit
5. Operating cost per unit time while system is dormant, Cy 1000 unit

6. Cost for each lost customer, C; 8000 unit

Let us suppose that the range of server capacity is fixed at 4. Now we want to find out the
optimal values of the threshold limits, a and b for which TSC is minimized. For this purpose
we have considered the above cost structure and the input parameter as presented in Set //. In
Figure 5.7, we have presented the effect of @ on TSC, which reveals that the optimal value of
a is 24 for MV while it is 31 for SV. Hence, the optimal batch size for MV is (24, 28) and that
for SV (31, 35) and the corresponding min TSC are 1782.439 unit and 1485.736 unit for MV

and SV respectively.

Next we have considered another example to find out the optimal value of N for fixed

values a and b, with the above cost parameters as presented in Example 1.



138 MX/ Gﬁ“”’) /1/N queue with queue length dependent vacation

Example 2. We have considered the costs parameter as presented in Example 1. The input
parameters are taken as given in Set III. For the purpose of comparative study we consider the
following two cases.

Case 1. The queue length dependent vacation rates are takenas vy = (4+1)v (0 <k <a—1).

Case 2. The queue length independent vacation rate are taken as vy = vp (0 <k <a—1).

Remark : For Case 2, i.e., queue length independent vacation, the cost for server’s vacation
(cost occurs in terms of penalty) is considered to be Cy per unit time, thus in long run the total
penalty incurred due to vacation is given by CocimikQ,[lk], and required modification in TSC
is also done. o

The assumptions for the vacation rates for Case 1 and Case 2 are made in such a way
that for Case 2 the server always takes a vacation with constant rate Vg, irrespective of the
queue length at vacation initiation epoch, and for Case 1 the server will start a vacation with
rate Vo, when it finds an empty queue and start a vacation with higher rate (i.e., vi>v;_1,
k=1,2,...a—1) depending on queue length. These assumptions ensure us that due to queue
length dependent vacation (Case 1) the server is modulating the length of the vacation periods
in such a way that the server is taking a longer vacation for empty queue and shorter vacation
as queue length increases. In Figure 5.8 we have presented the effect of N on TSC for Case
1 and Case 2. Figure 5.8 reveals the fact (in terms of TSC) that queue length dependent
vacation is much effective over queue length independent vacation as it minimizes TSC for
Case 1. It is also observed from Figure 5.8 that for SV the optimal value of N is 70 and 71
under Case 1 and Case 2, respectively and the corresponding TSC are 1804.161 units and
1839.74 units respectively. For MV model it is 71 for Case 1 and 72 for Case 2 and the

corresponding TSC are 1936.125 units and 1963.572 units respectively. Further it is noticed

that (7SC)q, < (TSC),,y, which is as of our intuitive expectation.

5.5 Concluding remarks

In this chapter, we perform analysis of a finite buffer bulk arrival bulk service vacation queue-
ing system with queue length dependent vacation (single vacation and multiple vacation). The

service time, which depends on the size of the batches under service, is considered to be gener-
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ally distributed and the vacation time, which depends on the queue length at vacation initiation
epoch, is also considered to be generally distributed. We present a procedure to obtain steady
state joint distribution of number of customers in the queue and number of customers with the
server, joint distribution of number of customers in the queue and vacation type taken by the
server, at various epochs, e.g., pre-arrival, arbitrary and service/vacation completion epochs.
Several illustrative numerical results are presented to show the impact of the various parame-
ters on system performance measures. We have considered an example of an optimal control
problem which yields the fact that total system cost is minimal when queue length dependent
vacation is considered along with batch size dependent service in bulk arrival bulk service
queue with vacation. The analysis presented in this chapter can be extended to analyze more
complex queuing models involving correlated arrival processes, i.e, batch Markovian arrival

process (BMAP).



