Chapter 4

Analysis of M /G\"") /1/N queue with
queue length dependent single and

multiple vacation

4.1 Introduction

In vacation queueing models server periodically becomes unavailable from the service center
for a random period of time, termed as vacation period of the server. In such systems, server’s
dormancy period can be used in an optimized manner so that the system become more ap-
plicable to a variety of real world stochastic systems. There are several vacation rules are
available in the literature (Doshi (1986), Takagi (1988, 1991), Tian and Zhang (2006) and
the references therein), viz., single vacation, multiple vacation, Bernoulli vacation, working
vacation etc. In most of the research on vacation queues, it has been considered that the
server will go for a vacation of random length which is independent of the queue length at the
vacation initiation epoch. The vacation queueing models in which the vacation period is mod-
ulated depending upon the queue length at vacation initiation epoch is termed as queue length
dependent vacation queue (Shin and Pearce (1998), Banik (2013a) and references therein).
Finite/infinite buffer M /G /1 queue with vacation (single and/or multiple) has been studied by

Courtois (1980), Lee (1984), Frey and Takahashi (1997), etc. Bulk service queues with single
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vacation have been studied by Lee et al. (1992), Gupta and Sikdar (2004a); Sikdar and Gupta
(2005a), etc. For recent development on vacation queues one may refer to Banik (2013a),
Panda et al. (2016), Sikdar and Samanta (2016) and the references therein. However, in none
of the above literature, batch size dependent bulk service queue with queue length dependent

single and multiple vacation have been considered.

In this chapter we have studied M/ Glab) /1/N queue with single vacation (SV) and mul-
tiple vacation (MV) in an unified way. The service time of the batches vary according to the
batch size under service. The vacation rule must be fixed at the beginning of the analysis
and is not allowed to change at intermediate stage. We have also considered the vacation
time of random length which changes dynamically depending on the number of customers
remaining in the queue at vacation initiation epoch. That is, when the server finishes serving
a batch and finds less than ‘a’ customers in the queue, say ‘6’ (0 < k < a— 1), then the server
leaves for a vacation of random length which is considered to be dependent on the number
of customers remaining in the queue (i.e., k) at vacation initiation epoch, and is referred as
k" — type of vacation taken by the server. On returning from a vacation if the server finds ‘a’
or more customers waiting in the queue it resumes service with maximum of ‘b’ customers,
otherwise, it will remain dormant or leave for another vacation depending on the vacation
rule under consideration, i.e., single vacation or multiple vacation respectively. The model
is analyzed using the embedded Markov chain technique, and the joint distribution of queue
content and serving batch size, and queue content and vacation type taken by the server at
service and vacation completion epoch, respectively, are obtained. The inclusion of batch size
dependent service in GBS rule along with queue length dependent vacation makes the transi-
tion probability matrix of associated Markov chain more complex and challenging to handle.
As a result one can see in Section 4.2.1 that the state space of the embedded Markov chain
become large and needs a rigorous analysis in constructing the corresponding transition prob-
ability matrix (TPM) for obtaining required joint probabilities at service/vacation completion
epoch. Next using the supplementary variable technique we obtain a relation between ser-
vice/vacation completion epoch and arbitrary epoch joint distributions of queue content and

serving batch size, and queue content and vacation type.
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A real life example of the queueing model under consideration can be found in business
and industrial application. For example consider the management of a bus depot. To be more
specific let us consider a bus service center with a single bus, run by a single driver, operates
on a particular route. The bus will start from the terminal only when a certain number (lower
threshold) of passengers are available, and in a particular trip a maximum number (upper
threshold) of passengers are accommodated. Whenever there are fewer number of passengers
(Iess than the required number of passengers to start the bus) are present, the bus driver takes
vacation of random duration (with constant mean length). During his vacation it may so
happen that enough number of passengers arrive or bus is full and ready to depart. However, it
could not depart due to the absence of the bus driver as he has left for vacation. This results in
a loss of revenue to the bus owner. Now in order to minimize the loss, the bus owner imposes
a penalty on the bus driver for his late arrival from vacation. The imposition of penalty on
the bus driver may results in reduced earning. To minimize the loss earning of the driver
as well loss in revenue of the owner, instead of taking a vacation of constant mean length
by the driver, he may decide to take a vacation of variable mean length depending on the
queue length at vacation initiation epoch (i.e., shorter vacation when queue is long and longer
vacation when queue is small). This may eventually lead to revenue loss of the bus owner and

penalty imposed on the bus driver to be minimal.

The outline of the rest of this chapter is as follows: mathematical description along with
the use of embedded Markov chain technique, to obtain the joint distributions at service and
vacation completion epoch, is explained in Section 4.2 and Section 4.2.1, respectively. Next
in Section 4.2.2, a relation between the joint distributions of service and vacation completion
epoch and arbitrary epoch is established with the help of supplementary variable technique.
Section 4.3 is assigned for the various performance measures. Numerical results and their
discussion for several service/vacation time distributions are presented in Section 4.4. Some

conclusions of this chapter are drawn in Section 4.5.
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4.2 Model description

We consider a finite buffer single server bulk service vacation queue. The customers arrive to
the system according to the Poisson process with rate A. The bulk service rule is considered to
be ‘general bulk service rule’ (GBS rule) with the minimum threshold limit ‘a’ and maximum
threshold limit ‘b’. For more detail on GBS rule readers are referred to the book by Chaudhry
and Templeton (1972), which provides detail study on bulk service queue.

We have studied the queueing model under consideration with two type of vacation rules,
viz., single vacation (SV) and multiple vacation (MV), in a unified way by defining an indica-

tor variable d; as follows.

1, forSVrule,
6s =

0, forMVrule

It should be noted here that,

1. the vacation rule must be decided by the server at the beginning of the system operation.
Once the queueing system is started working (operating) with a pre-specified vacation

rule, it is not allowed to change the vacation rule.

2. one can obtain the results for M/ Gleb) /1/N queue with SV by substituting §; = 1 and

that of MV by substituting d; = 0.

We have also considered the model with queue length dependent vacation. Let us define the

model with SV and MV separately as follows:
(a) Let us first suppose that the single vacation rule is considered.

In this case, if at the end of the service of a batch server finds that the queue
length (k) is greater than a, i.e., k > a, then it continues service in batches of
size r (a < r < b) customers with service time of random length S, otherwise, it
leaves for a vacation of random duration V¥, which is dependent on the queue
length k (0 <k < a— 1) remaining in the system at vacation initiation epoch. At

the end of the vacation, if it finds that the queue length is still less than a, i.e.,
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0 <k <a—1, then server remains dormant till the queue length attains a and then

resumes its service.
(b) Let us now suppose that the multiple vacation rule is considered.

In this case, server continue service in bathes of size r (a < r < b) customers with
service time of random length S,, if queue length k 1s found to be greater that a,
i.e., k > a, at the end of a service period. Otherwise, it leaves for a vacation of
random length VI which is dependent on the queue length k (0 <k <a—1) at
vacation initiation epoch. Now after returning from the vacation, if it finds that
the queue length  is still less than a, i.e., (0 < k < a— 1), then the server leaves
for another vacation of random length VI and the process of taking consecutive
vacations continue till it finds that the queue length is greater than or equal to a at

the end of vacation.

Note:- 1t should be noted here that, whenever server leaves for a vacation of random length
VI, leaving k (0 < k < a— 1) in the system, it will be termed as k-th type of vacation taken
by the server or simply k-th type of vacation, throughout the chapter.

The service time distribution (S,(-)) is generally distributed and dependent on serving
batch size r (a < r < b) with probability density function (pdf) s,(.), Laplace-Stieltjes trans-
formation (LST) s*(-) and mean service time §;. The vacation time distribution (VI(.)) is
also generally distributed and depends on queue length k, (0 <k < a— 1) at vacation initia-
tion epoch with pdf vi¥(.), LST vi¥*(.) and mean vacation time 7. The finite buffer size is

considered to be N (> b).

4.2.1 Probability distribution at service/vacation completion epoch

In this section, we obtain (i) the joint distribution of queue content and serving batch size
at service completion-epoch, and (ii) the joint distribution of the queue content and the type
of the vacation taken by the server at vacation termination epoch by using the embedded
Markov chain technique. Towards this end, the embedded points are considered as the service

completion epoch and the vacation completion epoch, respectively. The steady state joint
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probabilities are defined as follows:

* p,, be the probability that n customers are in the queue at the service completion epoch

of a batch of customers of size r ,0 <n<N,a<r<b,

. q(,[lkH be the probability that 4 k customers are present in the queue at k"-type vacation

termination epoch of the server, 0 <k <a—1,0<n <N —k,
b
e pi | = Z p,‘;, be the probability that n customers are in the queue at service comple-

r=a

tion epoch of a batch, 0 <n <N,

min(n,a—1)
o qf (z Z q,[,lk]j,; be the probability that n customers are in the queue at vacation
k=0
termination epoch of the server, 0 <n < N.

[K]+

The unknown quantities p,t, and g, ' can be obtained by solving the system of equations

127 =11, where

« O=(7,7) = (a7, g 1 1 Yy )shen T= (7, o my ) and 7= (%, %, -, % ) are

row vectors each of dimension (N + 1),

e each (0 < n < N) is arow vector of dimension (b —a+ 1) and is given by

+ _(pt ot +
ﬂn - (pn,aapn7a_|_17"'7pn7b)7

e each }/j is a row vector of dimension (n+ 1) for 0 < n < a— 2, and of dimension a for

a—1<n <N andis given by

(CII[’IO}—F?q;[q]l—i]_a"Wan}—F) 0§n§a—2,

(@ gyt al)) a—1<n<N,

ydn=1>49n—a+1

* 7 is the one-step transition probability matrix (TPM) of dimension
((N—i— (b—a+1)+ @ +a(N—a+ l)), and is given by

® 0
A Y
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The block matrices ®, ®, A and ¥, as appeared in &, are of dimension (N+1)(b—a+1) x
N+ 1)B-a+1), W+ b-a+ 1) x (4D +aV—a+1)), (452 +aV—a+1)) x
(N+1)(b—a+1)and (@ +a(N—a+ 1)) X <@ +a(N—a+ 1)), respectively. Be-
low we describe these block matrices in detail.

The block matrix & contains the transition probabilities among the service completion

epochs and is given by

0 1 ... N=-b—-1 N—-b ... N—1 N

0 0 0 0 0 0 0

1 0 0 0 0 0 0

a—1 0 0 0 0 0 0

(1) (1) (1) (1) (1) (1)

®— a D, D, o DyZpy DyZ, ... Dy, Dy
b D(()b—a—l—l) ng—a—b—l) - D](\lly_—gjll) D](\[[?_—[;l-i—]) o D](\[[?:la-i-]) l—)](é)—a—i-l)
b—a+1 b—a+1 b—a+1 b—a+1 ~(b—a+1
b+1 o peth . plath pleth o plrath bt
N 0 o ... o pyeth . plbert pbreth

where each 0 and Dgi) are matrices of dimension (b —a+ 1) and are given by

DV =l ori™ M 1<i<b—a+1,0<j<N-1,
Dy =l oy Ve ory T I<i<b-a,

~(b—a+1 —(b .
D =el L ok?, b<j<N.

In the above expression

» each e; is a column vector of dimension (b —a -+ 1) with 1 at i"*-position and 0 elsewhere.

* each K](.r) is a column vector of dimension (b —a+ 1) consisting of & j(r), where & j(r)

represents the probability of j arrivals during service period of a batch of size r and is

given by,
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oAt J
ié](r):/ﬂd&(t);jz(),agrgb,
J:
0

° K-(r)

18 a column vector of dimension (b—a+1) consisting of (1 — Z{:o éi(r)) .

The block matrix @ contains the transition probabilities from the service completion epoch to

the vacation completion epoch and is given by

0 1 a—2 a—1 N—1 N

1 1 1 1 1 1

o () .ok alooql o)

2 2) 2 2 e

1o ¢ o oc® P, e,
®=a-1f0 o ... o c¥ .. c¥, c¥. .,

a 0 0 0 0 0 0

N \o o .. 0 0 .. 0 0

The i — jth element of ©, i.e., ©; ; are matrices of dimensions as described below:

matrix ofdimension (i+1) X (b—a+1), 0<i<a—2,0<j<N,

®i.,jE
matrix of dimensiona x (b—a+1), a—1<i<N,0<j<N,
and each Cj(.k), as appeared in block matrix @, is given by
P =el w0l 1<k<a,0<j<N-1,
cW=clool Vel 0o 1<k<a—1,N—a+2<j<N, j+k=N+1,

= 5 (a—1
CZ(\flla+1 = e£® JE/a—a )

In the above expression

e each ¢; is a column vectors with 1 in the ith-position and O elsewhere, and its dimension

o

is chosen in such a way that dimension of each i is well defined.

* each ﬁj(k) is a column vector of dimension (b —a+ 1) consisting of a)(.k), where a)J(.k)
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represents the probability of j arrivals during the k' — type vacation period and is given
by

/e Y by, j30.0<k<a-l.
0

. 9 ](k) is a column vector of dimension (b —a+ 1) consisting of <1 _ le:o wl_(k))'

The block matrix A contains the transition probabilities from the vacation termination epoch

to the service completion epoch is given by

0 1 N—b—1  N—b N-1 N
o ( &8)" &8 5B, , 8B\, 5B, 8B
1| &8 &BY 5B\, . 8B\, 5B\, 8B\
a—1 | 8B 58 5B\, , 8B\, 5B\, 8B
1 1 1 1 1 5(1
o s B s B, By, By
b—a+1 b—a+1 b—a+1 b—a+1 b—a+1 n(b—a+1
b | Bty et gt plbmatl) o glbratl) - plbrat])
b—a+1 b—a+1 b—a+1 b—a+1 5(b—a+1
b+1 o Byt gl glaty o glmarl) plbmatl)
N 0 0 o 0 B(()b—a—i—l) B}(jb 1a—O—l) B;gb a+1)

The i — jth element of A, i.e., A; ; are matrices of dimension as described below:

matrix of dimension (i+1) x (b—a+1), 0<i<a—-2,0<j<N,

AiJ =

matrix of dimensiona x (b—a+1), a—1<i<N,0<j<N,

—

and each B jk), as appeared in A, is given by

BV =l oxl™ M 1<i<b—a+1,0<j<N-1,

B — o g lieD)

+el ok 1<i<b—a,

Bg'b_aﬂ) = eh_qi1 @K, R b<j<N.

where
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« each ¢; is a column vector of dimension (b —a+ 1) with 1 at i"*-position and 0 elsewhere,

(r)

e ecach Kjr

Jj arrivals during the service period of a batch of size r. The dimension of each k

chosen in such a way that the dimension of each B

o

J

(k)
J

is well defined,

is a column vector consisting of & ;r), where & }r) represents the probability of

"

JIS

. . . . .- j (r)
is a column vector of appropriate dimension consisting of <1 —Yi S )

The block matrix W contains the transition probabilities among the vacation termination epochs

and is given by

0
0 [(1-8)al
1 0
Y= g-1 0
a 0
N 0

The i — jth element of ', i.e., '¥; ; are matrices of dimension as described below:

matrix of dimension (i+1) x (i+ 1),

lP,"j =

matrix of dimensiona X a,

Each A, as appeared in P, is given by

k) _ 1 (k=1)
Aj =e ®19j

ik T (k—1)
Aj =e ®19j
AV =l edy)

In above expression

ey @0

(1 - 63)A
(1 - 6Y)A
0
0
0

j

a—2 a—1
(1-8)4, (1-8)A,
(1-8)4%5 (1-8)A%,

0 (1-8,)A%"

0 0

0 0

1<k<a,0<j<N-—1,
(k—1)

N—-1 N
(1=8)ay’,  (1-8)4Y
(1-8)A%), (1-8)A7,
(1-8)AY, (1-8)A% .,

0 0
0 0

0<i,j<a—-2,

a—1<i j<N.

1<k<a—1,N—a+2<j<N,j+k=N+1,

e each ¢; is a column vector with 1 in the i’h—position and O elsewhere, and its dimension

is chosen in such a way that dimension of each A

(k)

J

18 well defined.
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* each ﬁ](k) is a column vector consisting of a)J(.k), where a)J(.k) is the probability of j arrivals

during the k" — type vacation period and is given by

< At J
w}k):/#dv[k}(ﬂ, j>0,0<k<a-—1.
) !

(k)

The dimension of each 19(k) i is well

: is chosen in such a way that the dimension of each A

defined.

. ﬁfk) is a column vector of appropriate dimension consisting of (1 — {:0 (oi(k)> )

Remark : According to Theorem 3.1 given in Abolnikov and Dukhovny (1991) every Markov
chain whose TPM can be represented as a finite positive delta matrix is ergodic. Since the
TPM & of the model considered in this chapter is of finite positive A, ,-type matrix, one
can conclude that the corresponding Markov chain is ergodic which ensures the existence of

steady state distribution.

4.2.2 Probability distribution at arbitrary epoch

In this section, we obtain the joint distribution of queue content and vacation type when server
is in vacation, and the joint distribution of queue content and the serving batch size when server
is busy in serving customers, at arbitrary epoch. Towards this end, we define the following

notations, at time .
* N,(t) = the number of customers present in the queue,
* N(t) = the number of customers in service when server is busy,

* x(t) = the state of the server, defined as,

0, ifserverisindormantstate,
x() = k, ifserverisink™ — typeofvacation, 0 <k <a—1,

r, ifserverisbusyinservingbatchofsizer,a <r < b,

» U(t) = the remaining service time of a batch of customers under service, if any,
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. \7(t) = the remaining vacation time of the server, if any.
Let us define the following state probabilities, at time ¢

* Boo(t) = prob{N,(t) =n, x(t) =0}, 0<n<a-—1,

* Pr(x,t)dx = prob {Ny(t) = n,Ns(t) =r,x <U(t) <x+dx, x(t) =r}, 0<n<N,

a<r<b,x>0,

. QLk}(x,t)deprob.{Nq(t) =n+k, , x<V(t)<x+dx, x(t1) =k}, 0<k<a—1,0<

n<N-—k,x>0.

Now relating the state of the system at time ¢ and ¢ 4 dt we obtain the Kolmogrov equations

of the model under consideration as follows:

SPot) = —8ARs(r)+8,08(0,1),
% 0() = —8APo(t) + 8P, 1 0(1)
+5sz£ﬁ_k(o,z), 1<n<a-1,
k=0
<§_a>po,a(x,;) = APyalnt) 4 SAR 1 +ZQ (0,1)salx
t ox

b

+ZPQ7,(O,t)sa(x),

r=a

<a a>P0r(Xt) = _A'POrxr‘i‘ZQ Ot)sr()

b
+Y Pi(0,0)s(x),a+1<r<b,

k=a
J 4
<8t 8x> P r(x,t) = —AP(x,t)+AP_1,(x,1),a<r<b—1,1<n<N-—1,
0 0 al K]
—— = | Bip(x,t) = —APp(x,1) + AP p(x,1) + ZQ pk(0,1)s(x)
dt  dx ="
b
+ZPn+b’r(O,t)sb(x) ,1<n<N-b,
a—a P t) = —AP t)+ AR 1), N-b+1<n<N-1
E a n,b(-x7 ) - n,b(-xa ) n,Lb(_X, )7 sn= )

<a 8>PNr(XZ‘) = APN,l,r(x,t),agrgb,

b
(22t - _w([)k](x?tH(r;pk,,(o,t) ) ¥l 0 ) ),

“4.1)

(4.2)

(4.3)

4.4)

(4.5)

(4.6)

“.7)

(4.8)
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0<k<a-—l1, (4.9)
J 0
(at - a> Hewn = A0 +A0), (),
1<n<N-1,0<k<min(a—1,N—n—1), (4.10)
d d k k
<8t_ax> o ) = AQY, (n).0<k<a-1. (.10
In steady-state, as t — oo, we define
limP,o(t) = Pro,0<n<a-—1,
t—ro0
tlimPn,r (x,t) = P(x),0<n<N,a<r<b,
—o0
ﬁmdﬁ@ﬁ = 0¥x),0<k<a—1,0<n<N-—k
—oo

The corresponding steady state equations are obtained from (4.1)-(4.11) as follows

0 = —8ARyo+80%0), (4.12)
0 = —8APo+8AP 10+8Y 0M (0), 1<n<a-1, (4.13)
k=0
a a—1 ] b
—=-Poa (x) = —APa(x)+8APi1054(x)+ Y Qi1 (0)sa(x) + Y Pur(0)sa(x),  (4.14)
k=0 r=a
a a—1 . b
— o Rx) = —AR,(x)+ Y oM (0)s,(x) + Y. Ps(0)s,(x), a+1 < r<b, (4.15)
k=0 k=a
—;XP,,’,(X) = —APB,(x)+AP1,(x),a<r<b—-1,1<n<N-1, (4.16)
a a—1 b
~ 5P = AP AP 1) + YO, (0)55(x)+ Y P (O)ss ).
k=0 r=a
1<n<N-b, (4.17)
'li&“” = —APyp(x) + AP 1p(x), N—=b+1<n<N-1, (4.18)
_;xPN’r(x) = APy_i1,(x),a<r<b, (4.19)
oMy — a0 b () (1-81% 0 (o)) K
8xQ0 (x) Q (x) + Z k,r( )+ ( S)ZQk—j( ) |V (),
r=a j=0
0<k<a—1, (4.20)
P)
“5000 = 207 @W+A0,] (),
1<n<N-1,0<k<min(a—1,N—n—1), (4.21)
“90M ) = 20¥ (), 0<k<a—1. (4.22)
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Further, let us define for Re 0 > 0

/eexPnJ(x)dx = P, (0);0<n<N,a<r<b,
O )
| et olwar = o (er0<k<a-1.0<nzN-k
0
/e_exsr(x)dx = 57(0); a<r<b,
0

/meexv[k}(x)dx — v[k]*(g);()gkga—l.
0

The following two results followed immediately from the above definitions and will be used

in sequel.

P,=P,0) = /()Pnyr(x)dx,

K= ol 0) = /O oY (w)dx,

Multiplying (4.14)-(4.22) by e~%* and integrating with respect to x from 0 to co we find

a—1 b
()L - G)Pga(e) = 5sAPafl,OSZ(e) + ZQLH,]{(O)SZ(G) + ZPa,r(O)SZ(G) _PO,a(0)7 (423)
k=0

a—1 b

A-0)P;,(0) = Y 0¥, (0)5:(6)+ Y Pi(0)s5(0) — Py, (0), a+1<r<b, (4.24)
k=0 k=a

(A—0)P,(8) = AP, ,(8)—P,(0);a<r<b—1,1<n<N-—1, (4.25)

a—1 b
(A—6)P:,(8) = AP:,,(8)+ Y 0K, L(0)s5(6)+ Y Puip,(0)s5(8) — Pup(0),
k=0

1<n<N-b, (4.26)
(A—=0)P,;,(0) = AP, ,(0)—Pp(0), N=b+1<n<N-1, (4.27)
—0Py,(0) = APy_,,(0)—Py,(0),a<r<b, (4.28)

b ko

(2—0)0" ) = <Zpk,,(0)+(1—5s)ZQ,{JL(O)) v (0) — 0M(0),0 <k < a— 14.29)
r=a j=0

2—0)0¥ ) = 20" 0)—0l0), 1<n<N—1,0<k<min(a—1,N—n—1)430)

—00y"(0) = AQY (0)-0y ,(0),0<k<a-1. 4.31)

Now using (4.12)-(4.13) and (4.23)-(4.31), we first derive following results for use in sequel.
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Lemma 4.1. The probabilities (p;f ., P, (0)) and <qu}+, QLH (O)) are connected by following

relations
Pnr = OPr(0),0<n<N,a<r<b, (4.32)
W= 60M0),0<k<a—1,0<n<N-—k, (4.33)

N b a—1 n 1 N a—1 ]
where, 6! =} } Pr(0)+ ) ) 0,0+ ) Y 0,5,(0)
n=0r=a n=0k=0 n=a k=0
Equation (4.32) gives us the relation between queue content and server content joint distribu-

tion at service completion epoch with the joint distribution of queue and server content when
the service is about to complete. Similarly, (4.33) gives us the relation between queue content
and vacation type joint distribution at vacation completion epoch with the joint distribution
of queue content and vacation type when the vacation is about to complete. o~ ! gives us the
mean number of service completion or vacation termination per unit time, i.e., mean departure
rate from busy state or vacation state.

Proof. Using Bayes’ theorem, for 0 <n < N, a <r < b we have

p,‘;r = prob.{n customers are in the queue at the service completion epoch of a

batch of size r}

= prob.{n customers are in the queue just prior to the service completion epoch
of a batch of size r |< N customers are in the queue just prior to the service
completion epoch of a batch of size a < r < b or vacation completion epoch

of k-th type vacation with 0 <k <a—1.}

_ P, -(0)
a—1 n N a—1 >
ZZPnr +Z Zan +Z Zan
n=0r=a n=0 k= n=ak=

With the similar argument one can write, for0 <k <a—1,0<n<N—k

K+ _ 20
dn a—1 n N a—1
ZZPM ) Zan ) ZQ
=0r=a n=0 k= n=ak=

Lemma 4.2. In case of single vacation, the dormant state probabilities P, (, are given by

APo=Y Y 01%0), 0<n<a-1, 434)
i=0k=0
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The left hand side of (4.34) represents the input rate when server is in dormant state and right

hand side represents vacation termination rate.

Proof. Using (4.12) in (4.13), we get our desired result (4.34).

1

Lemma 4.3. The value of 0~ as appeared in Lemma 4.1 is given by,

a—1
N b al o NoaZl 1_55;)10"70
o' =Y YR, 0+Y Yo +Y Yo 0)=—"0 (4.35)
n=0r=a n=0k=0 n=a k=0 8
where g = Z (p g +Zq (85 + (1= 5,)v™) )+Z (ank]ZﬂLpn) $n+ Z (ank12+pn>
=0 n=a \ k=0 n=b+1
Proof. Usmg (4.34) in (4.23) we get
a—1 0 b
(A—6)F5a(6) =& Z ZQ )55(6)+ Y 0y (0)55(6) + Y Par(0)s5(6) — Po.a(0),
=0 k= k=0 r=a
(4.36)
Summing (4.24)-(4.31) and (4.36) we get
N b a=1 n . N a—1 . azl/1_ [n]* ) &
(Z YE0)+Y Y050+ ) ZQL"]kw)) = <6” Y Pur(0)+
n=0r=a n=0k=0 n=ak=0 n=0 r=a
14;@3(9),21 8)v ZQn k 537)
b 1—5s%(0 b
L )<Z +ZOQLklk<o>>
* N b a—1
L 1ma0) ¢ (zp,,,, +2Q”‘lk<o>>,
6 n=b+1 \r=a k=0

Taking limit as & — 0 in above expression and using L’Hopital’s rule, the normalizing condi-
tion

EDIANE 19D 3 D 3 WO @3%)

n=0r=a n=0k= n=ak=

we get

a—1 a—1 b n
1-8,Y. Py = Z(VM):PM() <5sa )9 )ZQ[ )
n=0
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b
)
n=a
N
>

n=b+1

a—1
(2 P (0)+Y Q,L”_k(O)> S (4.39)
k=0

r=a

a—1
<Z P (0) + kgo QL"lk<0>> 5

Now using Lemma 4.1 in (4.39) and after little algebraic manipulation, we obtain the desired

result (4.35).

Theorem 4.1. The steady state probabilities {Pn,o, P, QLk]} and { 8 p,tr, QLkH} are re-

lated by the following relation

Poo = IZZq"” 0<n<a—1, (4.40)
i= Ok
a—1 i I n
P, = E! SZquH-l-Zq L+ pd— ija],ogngzv—l, (4.41)
i=0 k= i=0

l'_

n
P, = E-! qu]++pr Zp;rr],ogngN—l,a—i—lgrgb—l, (4.42)

mm(b+nN & n
Py = E Y (qu]++p,>—Zp;b],0§n§N—1, (4.43)
| i=b i=0
b g1, U+ yo i+
Qn - ZCI qu I
i i=0
OgnSN—l,OSkSmin(N—n—l,a—l), (4.44)

where, E = Ag+ 0 Z Z quH
n=0i=

Proof. From equation (4.12), using Lemma 4.1, Lemma 4.2 and equation (4.34), after little

algebraic manipulation we obtain the desired result (4.40).

Next setting 8 = 0 in (4.24)-(4.27), (4.29)-(4.30) and (4.36) and using Lemma 4.1 and 4.2,

after some algebraic manipulations we obtain the desired results (4.41)-(4.44).

Remark. It should be noted here that the probabilities Py (a < r < b) and QK,C]_ (0 <k<
a — 1) cannot be obtained using the normalizing condition given in (4.38). However, one can
obtain them using a slightly different approach which is explained in the following subsec-

tions.
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4.2.2.1 Evaluation of Py, (a <r <b)

In this section we will evaluate Py, (a < r < b) with the help of equation (4.28). We denote
P,;'i(,l) (0) to be the derivative of P;,.(0) with respect to 8 at 6 = 0.

Now differentiating (4.23)-(4.27) with respect to 0 and setting 0 = 0 we get

a—1 b
ARD(0) = Poa—8AP105a— YO (0)50— Y Ps(0)s5, (4.45)
k=0 r=a
1 a—1 . b
AR ©0) = Ry— YO (005~ Y Pu(0)s, a+1<r<b, (4.46)
’ k=0 k=a
ABS(0) = P+ AP) (0)ia<r<b-1,1<n<N-1, (4.47)

a—1 b
)LP:;]) (O) = Pn,b + )LP;Sl)’b(O) - Z QLkJ]rb_k(O)SZ - ZPn+b,r(0)S~b >
k=0 r=a

1 <n<N-—b, (4.48)
ARD©0) = P+ AR (0 N—b+1<n<N-1. (4.49)

With the help of the fact that
P(0)=0""p ,0<n<N,a<r<b, (4.50)
oX)y=0"gf" 0<k<a—1,0<n<N-k 4.51)

which is easily seen from Lemma 4.1, equations (4.45)-(4.49) gives us a recursive method to
calculate P,;(rl) (0),0<n<N-—1,a<r<binknown terms.
Now differentiating (4.28) with respect to 6 and then setting 6 = 0 we get Py, (a <r <b) in

completely known terms as follows

Py,=-AP;" (0):a<r<b, (4.52)

4222 Evaluation of Q% (0<k<a—1)

In order to obtain Q% , (0 <k < a—1), let us denote Q" (0) to be the derivative of Q" (6)

with respect to 0 at 0 = 0. Now differentiating (4.29)-(4.30) with respect to 6 and set 0 =0
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we get

b
2ol M) = Q([)H_(ZP](J(O) ZQM ) ,0<k<a—1, (453)

20 00) = ol + 208" (0).

1<n<N-1,0<k<min(a—1,N—n—1), (4.54)

using (4.50)-(4.51) and Lemma 4.1, equations (4.53)-(4.54) gives us a recursive method to
calculate QLH*(I)(O) (0<n<N-1,0<k<min(a—1,N—n—1)) in known terms.
Now differentiating (4.31) with respect to 0 and then setting 6 = 0 we obtain QK,‘L L(0<k<a—1)

in completely known terms as follows

ol =—20% W (0),0<k<a—1, (4.55)

Henceforth, we have completely obtained the joint distribution of queue and server con-
tent, joint distribution of queue content as well as type of the vacation taken by the server.
Now we may proceed to obtain other significant distribution, which are useful in computing

various performance measures, as follows:
« the distribution of queue content, pi““““ (0 < n < N), is given by

6Pno+ZPnr+ZQ[k o 0<n<a-1,

pzueue r= a k=0
ZP”vr—i_Zank a<n<N.
r=a k=0
¢ the distribution of the system content (including number of customers with the server),

i (0<n<N+b) is given by

6PnO+ZQn k? Ognﬁa—l,

b.n)
B, rr+ZQn ko a<n<N,

sys

Dn

R N+a+1<n<N-+b.
—N

min(
L
b
ZPn—r,h N+1<n<N+a,
b
L
\ r=n
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* the probability that the server is in dormant state (Pdor) busy state (Pbusy) and in vaca-

—1 —1IN—k

tion state (Qyqc) are given by Py, = ZPn 0> Pousy = Z ZP" rand Qyue = Z Z Q

n=0 r=an=
respectively.

« the conditional probability distribution that the server is in k' — type vacation given that

N—k
the server is in vacation is given by {; = Z QLk]/ch 0<k<a-1).

* the conditional probability distribution of the server content given that the server is busy,

is given by pi¢" = ZPn r/Pousy (a < r < D).
n=0

4.3 Performance measure

The performance measures of the present model are evaluated and presented as follows:

. Average queue length when server is in dormancy (Ld"’ )s busy (Lg

1. Average queue length (L, Z npdtene.
N+b
. Average system length (L Z npy”.

. Average number of customers with the server ( Z rpy.

. Average vacation type (average number of customer in the queue at vacation initiation

a—1

epoch) (§) = Z k¢

k=0

. Probability of blocking is given by Pgjycr = ZPN rt+ Z Q

r=a

. Using Little’s law, the average waiting time of a customer in the queue (W) = L,/ A as

well as the system (W) = L/A, where A is the effective arrival rate of the system and is

given by A = A (1 — Paioct)-

b .
“Y) and in vaca-

tion (L}“) are obtained as LI = Z NPy o/ Py LI = Z n.p2" | Pysy and Ly =
n=0 n=0
N mzn n,a— 1

Z Z nQLk]_k/Qvac-
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8. Average queue length when server is busy with r (a < r < b) customers (LoY) =
N
Z nPn,r/Pbusy~
n=0

N
9. Average queue length when server is in k' — type vacation (L;“,f )= Z n.QLk]_ i/ Ovac-
n=k

4.4 Numerical results

In this section, we have presented few numerical results in form of self explanatory tables and
graphs to adjudicate the analytical results obtained in previous section. For this purpose, we
have considered M/ Gﬁ‘“b) /1/N queue with single vacation (SV) and multiple vacation (MV).
Specifically, in Table 4.2 to 4.5 we have considered M/ 7 /1/15 queue with SV (Table 4.2
and 4.3) and MV (Table 4.4 and 4.5), E, service time distribution (STD) and deterministic
vacation time distribution (VTD) with A = 2.1. The service rates of a batch of size r is
considered as u, = u/r (a <r <b), which is represented by IP (inversely proportional) and
the queue length dependent vacation rate is considered as vy = (k+1)v (0 < k < a— 1), which
is represented by DP (directly proportional). The inputs of the service rates and vacation rates

for Table 4.2-4.5 are taken as given in Table 4.1.

Table 4.1: Service and vacation rates for Table 4.2-4.5

Service rate Vacation rate
batch size (r) IP queue length (k) DP
4 1.073864 0 0.729167
5 0.859091 1 1.458333
6 0.715909 2 2.1875
7 0.613636 3 2.916667

Table 4.2 and Table 4.3 present the service/vacation completion-epoch joint probabilities
and arbitrary epoch joint probabilities, respectively, for SV, where as, Table 4.4 and Table
4.5 present the same results for MV. These results are presented here to show the numerical

compatibility of our analytical results. The important performance measures of the queueing
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model under consideration are also presented at the bottom of the Table 4.3 and Table 4.5.
Column 2 to 5 of Table 4.2 (Table 4.4) present the joint distribution of queue length and
serving batch size at service completion epoch and column 7 to 10 present the joint distribution
of queue length and vacation type at vacation completion epoch. The 6th column and last
column (i.e., the 11th column) of Table 4.2 (Table 4.4) display the marginal distribution of
the number of customers in the queue at service compilation epoch and vacation termination
epoch, respectively. Column 3 to 6 of Table 4.3 and column 2 to 5 of Table 4.5 present the
joint distribution of queue length and serving batch size at arbitrary epoch, and column 8 to
11 of Table 4.3 and column 7 to 10 of Table 4.5 present the joint distribution of queue length
and type of the vacation at arbitrary epoch. The last but one row of column 2 to 5 of Table 4.3
(Table 4.5) display the distribution of the number of customer with the server, column 7 to 10
display the distribution of the queue length at vacation initiation epoch. The last column, i.e.,
the 13th column of Table 4.3 (12th column of Table 4.5) display the queue length distribution
at arbitrary epoch irrespective of the state of the server. The 7th column and 12th column of
Table 4.3 (6th column and 11th column of Table 4.5) display the queue length distribution at

arbitrary epoch during server’s busy and vacation period, respectively.

After tabular representation we present few numerical results in the form of graphs. In
Figures 4.1-4.4, the behavior of the performance measures of the queuing model under con-
sideration for SV as well as MV is examined. For this purpose the input parameters are
considered as a =4, b =7 and A = 3.0. The service rates (U, a < r < b) and vacation rates
(Vk, 0 <k <a—1) are chosen here in such a way that the mean service time of a batch of
size r, and mean vacation time of k-th type of vacation will remain same, irrespective of the
different service time distribution (STD), e.g., exponential (EXS), deterministic (DTS), Erlang
(ERY)), and different vacation time distribution (VTD), e.g., exponential (EXV), determinis-
tic (DTV), Erlang (ERV). The batch size dependent service rates are considered as i, = u/r
(a <r<b), i.e., inversely proportional (IP), and the queue length dependent vacation rates
are considered as vy = (k+1)v (0 <k <a—1), i.e., directly proportional (DP). Hence the

other input parameters, as considered for Figures 4.1-4.4, are given in Table 4.6.
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Table 4.3: Joint distributions at arbitrary epoch for M/ G*7 /1/15 queue with SV, E; STD, deterministic VTD and A = 2.1.

n TFO W:h NU:U Nﬁ@ WFQ Ew:&\ @wo_ @w@_ @W@N @www QWQ& memxm
0 0.002955 0.130520 0.019886 0.009894 0.005190 0.165491 0.049685 0.049685 0.218131
1 0.024183 0.086196 0.014332 0.007580 0.007043 0.115150 0.041175 0.040960 0.082135 0.221469
2 0.070578 0.053327 0.009749 0.005516 0.007190 0.075782 0.028920 0.022647 0.025507 0.077074 0.223434
3 0.124608 0.031660 0.006389 0.003880 0.006525 0.048454 0.017156 0.009461 0.010314 0.014642 0.051573 0.224634
4 0.018271 0.004079 0.002664 0.005542 0.030555 0.008685 0.003132 0.003021 0.004644 0.019482 0.050037
5 0.010327 0.002554 0.001796 0.004509 0.019186 0.003806 0.000853 0.000687 0.001045 0.006391 0.025577
6 0.005746 0.001575 0.001194 0.003557 0.012072 0.001464 0.000197 0.000127 0.000181 0.001969 0.014042
7 0.003157 0.000960 0.000785 0.002742 0.007645 0.000501 0.000039 0.000020 0.000025 0.000585 0.008230
8 0.001717 0.000580 0.000511 0.002281 0.005089 0.000154 0.000007 0.000003 0.000003 0.000166 0.005255
9 0.000926 0.000347 0.000331 0.001642 0.003246 0.000043 0.000001 0.000000 0.000000 0.000045 0.003290
10 0.000496 0.000207 0.000212 0.001164 0.002079 0.000011 0.000000 0.000000 0.000000 0.000011 0.002090
11 0.000264 0.000122 0.000136 0.000815 0.001337 0.000003 0.000000 0.000000 0.000000 0.000003 0.001340
12 0.000140 0.000072 0.000086 0.000565 0.000863 0.000001 0.000000 0.000000 0.000000 0.000001 0.000864
13 0.000074 0.000042 0.000055 0.000389 0.000559 0.000000 0.000000 0.000000 0.000000 0.000000 0.000560
14 0.000039 0.000025 0.000034 0.000266 0.000363 0.000000 0.000000 0.000000 0.000000 0.000000 0.000363
15 0.000042 0.000034 0.000058 0.000548 0.000682 0.000000 0.000000 0.000000 0.000000 0.000000 0.000682
Total 0.222324 0.342902 0.060954 0.034731 0.049969 0.488555 0.151604 0.077297 0.039680 0.020541 0.289121 1.000000
AW&QL Awg,@v AQEQV

L=4.186942, W =1.995143, L, = 1.952399, W, = 0.930349, Ppj,cx = 0.000682,
Ly =4.573782, { = 0.754975, hm% =2.425118, hw:@ = 1.831020, L, = 1.793999
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Table 4.5: Joint distributions at arbitrary epoch for M/ G*7 /1/15 queue with MV, E, STD, deterministic VTD and A = 2.1.

n mux,# W:“m mu:q@ mu:h _Bw:@ wo_ Qw@_ QW@N waw QWQ& .Bmxm:m
0 0.094165 0.041328 0.015524 0.006497 0.157514 0.046912 0.046912 0.204426
1 0.062187 0.029785 0.011893 0.008509 0.112374 0.038876 0.056999 0.095875 0.208249
2 0.038473 0.020261 0.008655 0.008565 0.075954 0.027306 0.031514 0.075715 0.134535 0.210489
3 0.022841 0.013278 0.006087 0.007735 0.049941 0.016198 0.013165 0.030616 0.101964 0.161943 0.211884
4 0.013181 0.008476 0.004179 0.006564 0.032402 0.008200 0.004358 0.008968 0.032340 0.053866 0.086268
5 0.007451 0.005308 0.002818 0.005346 0.020922 0.003594 0.001187 0.002041 0.007275 0.014097 0.035019
6 0.004145 0.003274 0.001873 0.004226 0.013519 0.001383 0.000274 0.000378 0.001260 0.003294 0.016813
7 0.002278 0.001996 0.001232 0.003266 0.008771 0.000473 0.000055 0.000059 0.000177 0.000763 0.009534
8 0.001239 0.001205 0.000802 0.002734 0.005980 0.000145 0.000010 0.000008 0.000021 0.000184 0.006164
9 0.000668 0.000722 0.000519 0.001969 0.003878 0.000041 0.000002 0.000001 0.000002 0.000045 0.003923
10 0.000358 0.000430 0.000333 0.001397 0.002518 0.000010 0.000000 0.000000 0.000000 0.000011 0.002529
11 0.000191 0.000254 0.000213 0.000979 0.001637 0.000002 0.000000 0.000000 0.000000 0.000002 0.001639
12 0.000101 0.000150 0.000135 0.000679 0.001065 0.000001 0.000000 0.000000 0.000000 0.000001 0.001066
13 0.000053 0.000088 0.000086 0.000467 0.000694 0.000000 0.000000 0.000000 0.000000 0.000000 0.000694
14 0.000028 0.000051 0.000054 0.000319 0.000453 0.000000 0.000000 0.000000 0.000000 0.000000 0.000453
15 0.000031 0.000071 0.000090 0.000660 0.000852 0.000000 0.000000 0.000000 0.000000 0.000000 0.000852

Total 0.247390 0.126676 0.054493 0.059913 0.488473 0.143141 0.107563 0.117786 0.143038 0.511527 1.000000

Amus.c\v Qéo

L = 4.490809, W = 2.140303, L, = 2.121516, W, = 1.011107, Pgjoe; = 0.000852,

L, = 4.850407, { = 1.509693, L) = 1.960536, LI = 2.275242,
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Table 4.6: Service and vacation rates for Figure 4.1-4.4.

Service rate Vacation rate
batch size (r) P queue length (k) | DP
4 1.250 0 0.7500
5 1.0000 1 1.5000
6 0.83333 2 2.2500
7 0.714286 3 3.0000
4.0 4 2.4 4
38 23 >
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Figure 4.2: Effect of N on Pgjyck Figure 4.3: Effect of N on Q¢

In Figures 4.1-4.4 we have considered the following three combinations of STD and VTD.
C1-STD : E4 (ERS) and VTD : exponential (EXV) ;
C2 - STD : deterministic (DTS) and VTD : E4 (ERV) ;

C3 - STD : exponential (EXS) and VTD : deterministic (DTV).
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Figure 4.4: Effect of N on Pgys,

The effect of N on some important performance measures, viz., Ly, W, Ppiocks Ovacs Pusy
are studied in Figures 4.1-4.4. It is clearly observed from Figures 4.1a and 4.1b that as N
increases, L, and W both increases initially, however, for large N no significant changes in
the values of L, are observed, i.e., the values are almost constant. Also Figure 4.2 reveals
that as N increases Ppgj, ¢ 1nitially decreases rapidly, however, for large N (i.e., N > 45) the
values of Pgj,ck, for all combinations of STD and VTD and for SV as well as MV, merged to
each other and are almost zero. These observations help us in concluding that for large values
of N, finite buffer model is behaves like an infinite buffer queue, which is quite obvious. It
is also observed from Figure 4.1a that L, and W are less for SV in comparison to MV, for
all considered combinations of STD and VTD, viz., Cl1, C2 and C3. The similar behavior
is also observed for Pgj,q and Q... from Figures 4.2 and 4.3, respectively. Such behavior is
quite obvious, as in SV the availability of the server to the system is more in comparison to
MV. Another observation can be made from Figures 4.1, 4.2 and 4.3 that the combination C2,
among the other considered STD and VTD combinations, gives the lowest value for L,, W,
Pgiock and Qygc.

Figure 4.4 presents the effect of N on Ppyy. It is observed that as N increases Ppyyy initially
increases rapidly but for large N the values of Ppyyy, for all considered combinations (i.e., C1,
C2 and C3) and SV as well as MV, merged together and attains a constant value, which is
quite obvious. As it is already evident from Figure 4.2 that for N < 30, Pgj, decreases
rapidly, hence, it is expected that for N < 30 there will be more customers in the queue to be

served, which will eventually increase Pg,s,. However, for large N no effect on Pgyyy, is seen
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as the system behaves like an infinite buffer queue.

To justify the applicability of our considered model, in Figures 4.5-4.8, we present a com-
parison between queue length dependent vacation with queue length independent vacation, by
considering the batch size dependent service for both the scenario. For this purpose we con-
sider M/ G\o8) /1/N queueing system with SV and MV and STD is taken as EXS, and VTD
as ERS (Ey distribution). The batch size dependent service rates are considered as f, = u/r
(a <r <b) with u = 5.0 and the arrival rate is taken as A = 4.5.

For the comparison purpose we have considered the following two cases:

Case 1. The queue length dependent vacation rates are takenas vy = (5 +1)v (0 <k <a—1)
with v =0.75.

Case 2. The queue length independent vacation rate is considered as vy = vp (0 <k <a—1).

The assumptions for vacation rates, in Case 1 and Case 2, are made in such a way that
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for Case 2 the server always takes a vacation with constant vacation rate Vv irrespective of
the queue length at vacation initiation epoch, and for Case 1 the server starts a vacation with
vacation rate vy, when it finds an empty queue and starts a vacation with higher vacation rate
(i.e., i>Vi_1, k =1,2,...a—1.) depending on queue length. These assumptions ensure us
that due to queue length dependent vacation (Case 1) the server is modulating the mean length
of the vacation in such a way that the server takes a longer vacation when queue is empty
and shorter vacation when queue is non empty. It is observed from Figures 4.5-4.8 that the
behavior of the performance measures considered in the respective figures, i.e., W, Pgiock, Ovac
and Ppyy, 1s almost similar to that of Figures 4.1b, 4.2, 4.3 and 4.4. Figures 4.5, 4.6 and 4.7
reveal that the values of W, Pgj,ox and O, are less for Case 1 in comparison to Case 2, and
Figure 4.8 reveals that the values of Pg,, is more for Case 1 in comparison to Case 2. This
study leads to the fact that the inclusion of queue length dependent vacation helps in reducing

congestion at the batch size dependent bulk service queues.

Table 4.7: Performance measures corresponding to different values of A for M/ G£1°"6) /1/20
with SV, STD ~ Exponential and VT D ~ E4 for Case 1 and Case 2

Case 1 Case 2

A 4.0 6.0 8.0 10.0 4.0 6.0 8.0 10.0

L 16.88119 23.18483 26.92517 29.14286 17.94512 24.23872 27.62527 29.54322

w 4.769535 5.424648 5.881799 6.176653 5.149569 5.845646 6.24375 6.471861

L, 8.142614 | 11.48849 13.68984 15.07414 8.807857 | 12.23136 | 14.27321 15.5013

W, | 2300577 | 2.688008 2.990544 3.194873 2527521 | 2949835 | 3.225971 | 3.395781

L 12.34479 13.6832 14.45627 14.9089 13.11024 | 14.47905 | 15.08889 15.3804
Pior | 0.1495326 | 0.04647087 | 0.01634014 | 0.006625155 | 0.08720 | 0.019198 | 0.0051995 | 0.001730
Pgusy | 07078757 | 0.8547959 | 09155419 | 0.9436456 | 0.6969561 | 0.8292912 | 0.8848935 | 0.9129743
Qv | 0.1425917 | 0.09873322 | 0.06811792 | 0.0497292 | 0.2158422 | 0.1515099 | 0.1099069 | 0.08529525
Proce | 0.1151554 | 02876701 | 04277863 | 05281772 | 0.1288048 | 0.308924 | 0.4469415 | 0.5435128

Tables 4.7 and 4.8 present various performance measures corresponding to different values
of A for both Case 1 and Case 2 and SV and MV, respectively. It is observed from Tables
4.7 and 4.8 that L, W, L,, W, and L, increases whereas Q.. decreases with increase in A.
This behavior is quite obvious as increase in arrival rate will increase queue (system) length,
waiting time etc., which eventually decreases the chance that the server takes vacation. Also it
is observed from the tables that L, W, L,;, W, and L are less for Case 1 in comparison to Case

2 where as Pg,sy is more for Case 1 in comparison to Case 2, which leads to the conclusion
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Table 4.8: Performance measures corresponding to different values of A for M/ G£10’16) /1/20
with MV, STD ~ Exponential and VT D ~ E4 for Case 1 and Case 2

Case 1 Case 2

A 40 6.0 8.0 10.0 40 6.0 8.0 10.0

L 17.59321 | 23.63894 | 27.18162 2929411 | 19.20386 | 24.73066 | 27.79963 | 29.60854

w 5016344 | 5585923 | 5.980266 6.23793 561462 | 6.049122 | 6332886 | 6.513986

L, 8535636 | 11.72838 | 13.81454 15.14080 | 9591031 | 1256753 | 14.4048 15.55613

W, | 2433762 | 2771437 | 3.039356 3224123 | 2.804124 | 3.074019 | 3281481 | 3.422405

L 1291291 | 14.07243 | 14.70455 1506904 | 14.05248 | 14.87551 | 1525702 | 15.45791
Pgusy | 07014355 | 0.8463755 | 0.9090438 | 0.9392253 | 0.6840662 | 0.8176612 | 0.8779449 | 0.9090758
Qe | 02985645 | 0.1536245 | 0.09095623 | 0.06077474 | 03159338 | 0.1823388 | 0.1220551 | 0.09092418
Pgiock 0.1232057 0.2946871 0.4318476 0.5303874 0.1449173 0.3186157 0.4512844 0.5454621

that queue length dependent vacation helps in reducing congestion.
To further justify our model we present here a numerical cost optimization problem. For
this purpose we consider the bus depot example as presented in Section 4.1.
For constructing the cost model we define :
C;, = Holding cost per customer per unit time in the queue.
Cr = Idleness cost of the server per unit time.
C, =Operating (serving) cost per customer per unit time.
C, = Rejection cost per unit time.
Thus in long run the average holding cost, idleness cost, operating cost, and rejection cost are
given by CpLy, C1(8sPg0r + Qvac), CoLs and AC\Ppjock, respectively.

Therefore, in long run, the total system cost is given by

TSC= Cth + CI(5sPdor + Qvac) + CoLs + )vCrPBlock-

Now the penalty cost of the server (driver), which is incurred to the server when enough
number of passengers (to start a bus) are waiting at the bus stop while driver is on vacation. If
C)p be the penalty cost per unit time, then in long run the penalty cost to the server (driver) is

given by

N a—1

PCS = Z Z CPQLk}—k'

n=a k=0

To demonstrate the example numerically (Figures 4.9-4.14) we consider the cost parame-
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ters as Cj= 0.5 unit, C; = 3 unit, C, = 5.5 unit, C, = 2.5 unit C}, = 100 unit.

The other system parameters are considered as follows :

* vacation rates (taken by the driver) are considered same as discussed above in Case 1

and Case 2.

* batch size dependent service rates are considered as y, = i /r (a < r < b) with u =5.0.

* service and vacation time distributions are taken as exponential and Ej4 distributions,

respectively.
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4.4 Numerical results 101

12 1
1004

—a— MV (Case 1)
—e— MV (Case 2

10

—a— MV (Case 1)
—e— MV (Case 2)

C

o 80

T

70

60 T T T T T T T T 2 T T T T T T T

Figure 4.13: Effect of A on T'SC for MV Figure 4.14: Effect of A on PCS for MV

Figures 4.9 - 4.10 present the effect of increase in N on TSC and PCS by keeping A, a and
b fixed at A = 4.5, a = 6 and b = 8, respectively, and varying N from 10 to 60. Figures 4.11
- 4.14, present the effect of increase in A on 7'SC and PCS by keeping a, b and N fixed at
a=10,b =16 and N = 20, respectively, and varying A from 1.0 to 10.0.

It is observed from Figures 4.9 - 4.14 that T7SC and PCS both are less for Case 1 in com-
parison to Case 2. Hence, one can conclude that while driver is taking shorter vacation by
observing increased queue length at vacation initiation epoch, then 7SC and PCS are less in
comparison to the situation when driver takes vacation of constant duration, for both SV and
MV. It is also evident from Figure 4.9 that as N increases 7'SC increases and this behavior
is because of the increase in Ppysy, L (as L is proportional to W) and decrease in Py, and
Oyqc With increase in N, as demonstrated in Figures 4.5-4.8. Figure 4.10 demonstrates that the
increase in N, decreases PCS and this is due to decrease in Q,,. with increase in N as already
displayed in Figure 4.7. Figures 4.11 and 4.13 present that as A increases, T'SC increases, for
SV and MV, this is because it is evident from Tables 4.7 and 4.8 that L, Ly, Ppjock increases
with increase in A, only Q... (and Py,, for SV) decreases with increase in A. It is expected
that as A increases the probability that during server’s vacation queue length is greater than or
equal to a will initially increase, however, after certain time this probability will start decreas-
ing, as chances that the server is in vacation decreases with increase in A (which is clearly
evident from Tables 4.7-4.8 for SV and MV). Because of this it is observed from Figures 4.12

and 4.14 that, as A increases PCS increases initially and then started decreasing for SV and
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MYV, and for Case 1 and 2, respectively.

4.5 Concluding remarks

In this chapter, we have studied a finite capacity bulk service queue with two types of vaca-
tion rules, viz., single vacation and multiple vacation. The service time, which depends on
the size of the batches under service, is considered to be generally distributed. The vacation
time, which depends on the queue length at vacation initiation epoch, is also considered to be
generally distributed. We have analytically studied the model and obtained the steady state
joint probabilities at various epochs. Several illustrative numerical studies are also presented
here to show the impact of the various combinations of service time and vacation time dis-
tributions on selected system performance measures. We have also established the fact that
the implementation of queue length dependent vacation in batch size dependent bulk service
queue further reduces the congestion, which is measured in terms of mean waiting time, and
blocking probability, etc. The analysis presented in this chapter can be extended to analyze
more complex queuing models involving bulk arrival following compound Poison process,
correlated arrival and/or service processes, etc. In the next chapter we have studied bulk ar-
rival bulk service queue with batch size dependent service and queue length dependent single

and multiple vacation.



