
Chapter 3

Analysis of infinite buffer M/M(a,b)/1

queue with system size based balking

3.1 Introduction

Bulk service queues with impatient customers did not get much attention in literature. Few re-

searchers (Tadj et al. (1998), Wang et al. (2014), Islam et al. (2014), etc.) studied the impatient

phenomenon in bulk service queue. Tadj et al. (1998) considered the ‘system size based’ balk-

ing with a certain threshold policy in a bulk arrival bulk service queue under ‘fixed batch size’

service rule, and obtained the queue length distribution in steady state. Recently, the impatient

behavior of the passengers in public transport is mathematically modeled as a bulk arrival bulk

service queuing system by Wang et al. (2014). Further they analyzed the mathematical model

with GBS rule for service, and obtained the mean and variance for the queue length. On public

transportation problem, the situations in which passengers abandon the system after a certain

amount of waiting time in a bulk arrival bulk service queuing model is analyzed by Islam et al.

(2014) and studied the impact of headway variations and passenger waiting behavior on pub-

lic transit performance. The recent literature on bulk service queueing models with impatient

The content of this chapter is accepted for publication in International Journal of Operational Research.
Inder Science



46 M/M(a,b)/1 queue with system size based balking

customers are focused only on obtaining queue length distribution. However, in recent studies

on batch service queues authors already have established the fact that congestion in bulk ser-

vice queues can be controlled by applying batch size dependent service policy in which joint

distribution of the queue content and server content plays an important role (Banerjee et al.

(2011), Banerjee and Gupta (2012), Banerjee et al. (2013), Banerjee et al. (2014), Maity and

Gupta (2015), Banerjee et al. (2015), Yu and Alfa (2015), Pradhan and Gupta (2017a,b)).

In this chapter we have considered an infinite buffer bulk service Poisson queue with sys-

tem size based balking. The general bulk service rule is considered for service rendered by a

single server. Using probability generating function method we obtained the joint distribution

of the queue content and the server content, in steady state, for two special cases involving

two particular form of balking probabilities. A practical application of the model under con-

sideration is as follows. Let us suppose that a manufacturer is providing service in terms of

production, for the orders (customers) of a certain kind of commodity with FCFS discipline,

in which the production does not start until some specified number of orders, say a, are ac-

cumulated during an idle period of the server. Once the number of the orders reaches to a,

the production starts. At each busy period the server serves min(b, queue length ≥ a) number

of orders at a time and at the end of the production (or a busy period) the server checks for

the number of orders waiting in the queue, if it is found to be less than a then the server will

remain idle, otherwise, start production. Now during idle period of the server a joining order

may get impatient and balk from the system with certain probability, depending on the number

of orders that are already present ahead of him, because the server is not ready for the produc-

tion. The orders may also balk during the busy period of the server with certain probability by

looking into the queue length (number of orders ahead of him) and expecting some delay, at

the joining time to the system. In the above described situation our model may be useful for

the mathematical investigation of the system performance.

The outline of the chapter is as follows. In Section 3.2, we briefly described the model

and obtained the steady state joint probabilities of queue content and server content in terms

of the steady state probability of the queue content. Then in Section 3.2.1, we obtained the

probabilities of queue content by considering special cases for two particular forms of the
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balking probability using the probability generating method which finally leads to the joint

distribution of queue content and server content in completely known terms. Section 3.3 is

assigned to present various important performance measures. Several numerical examples

are presented in Section 3.4. Some conclusions are drawn in Section 3.5 followed by the

references.

3.2 Model description and steady state analysis

In this chapter, an infinite buffer single server bulk service queue is considered where cus-

tomers are arriving to the system following the Poisson process with rate λ , and are served

in batches according to the general bulk service (GBS (a,b)) rule. In GBS rule, customers

are served in batches of minimum size ‘a’ with a maximum threshold limit ‘b’. That is, if

server finds less than ‘a’ customers in the queue it will be idle until the queue length reaches

to ‘a’ and immediately resumes its service of a batch of size ‘a’. However, if the server finds

that the queue length is greater than ‘a’, the server immediately renders service to a batch

of size min{queuelength, b}. The service time distribution is considered to be exponentially

distributed with mean 1
µ

. On arrival a customer first observes the state of the system, i.e., how

many customers are waiting in the queue and whether server is idle or busy. When a customer

finds that the server is idle and n (0 ≤ n ≤ a−1) customers are waiting in queue, then either he

decides to join the system with probability ‘β
′
n’ or balk with probability (1−β

′
n). It is obvious

that the balking probability of an arriving customer is always zero when he finds queue size

is a− 1 and the server is idle, i.e., β
′
a−1 = 1 and 0 < β

′
n ≤ 1 (0 ≤ n ≤ a− 1). Further, if an

arrival finds that the server is busy and the queue size is n (n ≥ 0) then he/she decides to join

the system with probability ‘βn’ or balk with probability (1−βn), 0 < βn ≤ 1.

The stochastic process related to the queueing model under consideration are described here

below

• N(t)≡ the number of customers present in the queue, at time t,
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• ξ (t)≡ state of the server, i.e., whether idle or busy, at time t, hence,

ξ (t) =


0, if server is idle,

r , if server isbusyinservingr customers(a ≤ r ≤ b).

Clearly, {N(t),ξ (t)} constitute a two dimensional continuous time Markov chain with state

space

Ω = {(n,0) : 0 ≤ n ≤ a−1}∪{(n,r) : 0 ≤ n ≤ N, a ≤ r ≤ b}.

Let us further define the following joint state possibilities, at time t, as follows :

• Pn,0(t)≡ prob.{N(t) = n, ξ (t) = 0}, 0 ≤ n ≤ a−1,

• Pn,r(t)≡ prob.{N(t) = n, ξ (t) = r}, n ≥ 0, a ≤ r ≤ b,

i.e., Pn,0(t) represents the probability that, at time t, there are n (0 ≤ n ≤ a−1) customers are

present in the queue and server is idle; Pn,r(t) represents the probability that, at time t, there

are n customers are present in the queue and server is busy in serving r (a ≤ r ≤ b) customers.

Relating the state of the system at time t and t +dt the Kolmogrov equations of the model

under consideration is given by

d
dt

P0,0(t) = −λβ
′
0P0,0(t)+µ

b

∑
r=a

P0,r(t), (3.1)

d
dt

Pn,0(t) = −λβ
′
nPn,0(t)+λβ

′
n−1Pn−1,0(t)+µ

b

∑
r=a

Pn,r(t), 1 ≤ n ≤ a−2, (3.2)

d
dt

Pa−1,0(t) = −λPa−1,0(t)+λβ
′
a−2Pa−2,0(t)+µ

b

∑
r=a

Pa−1,r(t), (3.3)

d
dt

P0,a(t) = −(λβ0 +µ)P0,a(t)+λPa−1,0(t)+µ

b

∑
r=a

Pa,r(t), (3.4)

d
dt

P0,n(t) = −(λβ0 +µ)P0,n(t)+µ

b

∑
r=a

Pn,r(t), a+1 ≤ n ≤ b, (3.5)

d
dt

Pn,r(t) = −(λβn +µ)Pn,r(t)+λβn−1Pn−1,r(t),a ≤ r ≤ b−1,n ≥ 1, (3.6)

d
dt

Pn,b(t) = −(λβn +µ)Pn,b(t)+λβn−1Pn−1,b(t)+µ

b

∑
r=a

Pn+b,r(t),n ≥ 1. (3.7)

Now in steady state, as t → ∞, we define the steady state joint probabilities as
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lim
t→∞

Pn,0 (t) = Pn,0, 0 ≤ n ≤ a−1,

lim
t→∞

Pn,r (t) = Pn,r, n ≥ 0, a ≤ r ≤ b.

The steady state equations of the model is obtained from (3.1)-(3.7) as follows.

0 = −λβ
′
0P0,0 +µ

b

∑
r=a

P0,r, (3.8)

0 = −λβ
′
nPn,0 +λβ

′
n−1Pn−1,0 +µ

b

∑
r=a

Pn,r, 1 ≤ n ≤ a−1, (3.9)

0 = −(λβ0 +µ)P0,a +λβ
′
a−1Pa−1,0 +µ

b

∑
r=a

Pa,r, (3.10)

0 = −(λβ0 +µ)P0,n +µ

b

∑
r=a

Pn,r, a+1 ≤ n ≤ b, (3.11)

0 = −(λβn +µ)Pn,r +λβn−1Pn−1,r , a ≤ r ≤ b−1, n ≥ 1, (3.12)

0 = −(λβn +µ)Pn,b +λβn−1Pn−1,b +µ

b

∑
r=a

Pn+b,r , n ≥ 1. (3.13)

For use in sequel, let us now denote the arbitrary epoch queue length distribution when server

is busy, by Pn (n ≥ 0), which is given by

Pn =
b

∑
r=a

Pn,r,n ≥ 0. (3.14)

Equations (3.8)-(3.13) yield recursive relation to obtain Pn,0 and Pn,r in terms of Pn which is

demonstrated in Theorem 3.1, here below.

Theorem 3.1. The joint distributions Pn,0 (0 ≤ n ≤ a−1) and Pn,r (n ≥ 0, a ≤ r ≤ b) can be

obtained in terms of Pn(n ≥ 0) as follows

Pn,0 =
µ

λβ
′
n

n

∑
k=0

Pk , 0 ≤ n ≤ a−1, (3.15)

Pn,a = λ
n
µδn,0

a

∑
k=0

Pk, n ≥ 0, (3.16)

Pn.r = λ
n
µδn,0Pr, n ≥ 0, a+1 ≤ r ≤ b−1, (3.17)

Pn,b =
n

∑
k=0

λ
n−k

µδn,kPb+k, n ≥ 0, (3.18)
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where, δn,k =



1
(λβ0+µ) n = 0, k ≥ 0,

n−1

∏
i=k

βi

n

∏
i=k

(λβi+µ)

n ≥ 1, k ≥ 0.

Proof: Using (3.14) in (3.8)-(3.13) we obtain desired results (3.15)-(3.18), recursively.

It is clearly evident from (3.15) to (3.18) that Pn,0 (0 ≤ n ≤ a−1) and Pn,r (n ≥ 0, a ≤ r ≤ b)

can be written in terms of Pn(n ≥ 0). Hence, to obtain Pn,0 and Pn,r we first need to obtain Pn

explicitly. Here we employed probability generating function (pgf) method to derive Pn. To-

wards this end, let us define the partial pgf as

G(z) =
∞

∑
n=0

Pnzn , | z |≤ 1. (3.19)

Multiplying equations (3.10)-(3.13) by zn, (n = 0, for equation (3.10)-(3.11); and n ≥ 1 for

equation (3.12)-(3.13)) using (3.14), and summing over the range of n, after little algebraic

manipulations, we obtain,

0 = λ (z−1)
∞

∑
n=0

βnPnzn+b +µ

∞

∑
n=b

Pnzn −µ

∞

∑
n=0

Pnzn+b +µ

b−1

∑
n=0

Pnzb. (3.20)

To carry out the further analysis we need to know the probabilities βn (n ≥ 0) completely.

Therefore, we consider the following cases.

3.2.1 Special cases

In this section, we consider the following two special cases for computational purpose.

Case 1:

Let us consider βn = β forn ≥ 0, (where β is a constant probability with 0 < β ≤ 1). Then,

under this consideration and using (3.19) in (3.20) we obtain

G(z) =

µ

b−1

∑
n=0

Pn
(
zn − zb)

λβ zb+1 − (µ +λβ )zb +µ
, | z |≤ 1. (3.21)

Our objective is to obtain the closed form expression for the steady state probabilities Pn (n ≥
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0), from (3.21). However, this is not straight forward as right hand side (RHS) of (3.21) is

a rational polynomial containing b unknown terms Pn (0 ≤ n ≤ b− 1). To resolve this, we

denote the numerator of G(z) by f1(z) and denominator by g(z), i.e.,

f1(z) = µ

b−1

∑
n=0

Pn

(
zn − zb

)
(3.22)

g(z) = λβ zb+1 − (µ +λβ )zb +µ. (3.23)

Case 2:

In this case, we consider βn = β forn ≥ b (where β is a constant probability with 0 < β ≤ 1).

Then, under this consideration and using (3.19) in (3.20) we obtain

G(z) =

λ (1− z)zb
b−1

∑
n=0

(βn −β )Pnzn +µ

b−1

∑
n=0

Pn(zn − zb)

λβ zb+1 − (µ +λβ )zb +µ
, | z |≤ 1. (3.24)

Again we denote the numerator and the denominator of G(z) by f2(z) and g(z) respectively,

i.e.,

f2(z) = λ (1− z)zb
b−1

∑
n=0

(βn −β )Pnzn +µ

b−1

∑
n=0

Pn(zn − zb), (3.25)

g(z) = λβ zb+1 − (µ +λβ )zb +µ. (3.26)

It should be noted here that for both the cases, as discussed above, g(z) is the same polynomial

of degree (b+1), where as f1(z) is a polynomial of degree b for Case 1 and f2(z) is a poly-

nomial of degree 2b for Case 2. Also it is clearly evident that z = 1 is an obvious zero of the

polynomials f1(z), f2(z) and g(z). Therefore, analysis of Case 1 and Case 2 may be carried

out using similar logic and is elaborated in the following section.

Remark : Using the results given in Neuts (1967) one can conclude here that the states of

the Markov chain of the considered model will be positive recurrent if and only if λβ

bµ
<

1, which ensures the existence of steady state solution, i.e., Pn,0 (0 ≤ n ≤ a−1) and Pn,r

(n ≥ 0, a ≤ r ≤ b).
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3.2.2 Analysis of the characteristic roots for Case 1 and Case 2

Let us consider a closed contour C defined by | z |= 1+ δ , where δ is small positive real

number. By using Rouche’s theorem, we can conclude that g(z) must have b zeros within the

contour C. Now since z = 1 is one zero of g(z), the remaining (b−1) zeros must lie inside the

unit circle | z |= 1, if and only if λβ

bµ
< 1. Therefore, g(z) has only one zero outside the unit

circle | z |= 1 and let us denote it by z0.

Since G(z) is analytic within and on C, fl(z); l = 1,2 must have b common zeros as that of

g(z) within and on C. Therefore,

fl(zi) = 0; {zi : | zi |≤ 1 ,g(zi) = 0 , 1 ≤ i ≤ b} l = 1,2. (3.27)

One may note here that these common zeros may be all distinct or few of them may

be repeated. Therefore depending on the nature of the zeros we now discuss following two

scenario.

Scenario I. When the zeros of g(z) in | z |≤ 1 are all distinct

From (3.27) one can derive (b−1) simultaneous linear equations in b unknowns Pn (0 ≤ n ≤

b−1), which may results in

Pn = ζnP0 , 1 ≤ n ≤ b−1. (3.28)

where ζn’s are known constants.

Scenario II. When few zeros of g(z) in | z |≤ 1 are repeated

Let us assume that g(z) has few multiple roots inside the closed complex unit disk. Those mul-

tiple roots of g(z) are denoted as x1,x2, ...,x f with multiplicity r1,r2, ...,r f , hence, m =
f

∑
i=1

ri.

The other distinct roots are denoted by xm+1,xm+2, ...,xb in | z |≤ 1 with xb = 1. Analyticity

of G(z) in | z |≤ 1 implies that, for l = 1,2,

f (i−1)
l (x j) = 0 , j = 1,2, ..., f , i = 1,2, ...,r j,

fl(xi) = 0 , i = m+1,m+2, ...,b−1,
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where f (i)(x) is the ithderivative of f (z) at z = x. This yields total b−1 linearly independent

simultaneous equations in b unknowns, which results in

Pn = ζ
′
nP0 , 1 ≤ n ≤ b−1, (3.29)

where ζ ′
n’s are known constants.

Therefore, from (3.28) and (3.29) we obtain , Pn (1 ≤ n ≤ b−1) in terms of P0, for Case1 and

Case 2, depending on the nature of the roots of g(z) in | z |≤ 1 as discussed in Scenario I and

II.

Now corresponding to each zero zi (zi : | zi |≤ 1; 1 ≤ i ≤ b) of g(z), each pair of functions

{ f1(z),g(z)} and { f2(z),g(z)} have common factors (z− zi), 1 ≤ i ≤ b. On canceling the

common factors and writing Pn (1 ≤ n ≤ b−1) in terms of P0 we reduce G(z) for Case1 and

Case 2 as follows for further investigation.

Case 1:

As in this case f1(z) is a polynomial of degree b, using Pn = ζnP0 (1 ≤ n ≤ b−1) in (3.21) we

get

G(z) =
η1µP0

(z0 − z)
, | z |≤ 1, (3.30)

where η1 is a constant and is obtained in Lemma 3.1.

Lemma 3.1. The constant η1 as appeared in (3.30) is given by

η1 =
z0

µ
. (3.31)

Proof: Using Binomial expansion in (3.30) we get

G(z) = η1µP0

∞

∑
n=0

zn

zn+1
0

, | z |≤ 1. (3.32)

then using the result G(0) = P0, from (3.32) after little algebraic manipulation we obtain the

result (3.31).
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Theorem 3.2. The Steady state probabilities Pn (n ≥ 0), for Case 1, are given as follows

Pn =


(z0−1)

z0+d1(z0−1) , n = 0,

(z0−1)
z0+d1(z0−1)

(
1
z0

)n
, n > 0,

(3.33)

Proof: Using the normalization condition
a−1

∑
n=0

Pn,0 +
∞

∑
n=0

b

∑
r=a

Pn,r = 1 in (3.19) we obtain

G(1) = 1−
a−1

∑
n=0

Pn,0 , (3.34)

Substituting z = 1 in (3.32) and with the help of Lemma 3.1 and (3.34) we get

1−
a−1

∑
n=0

Pn,0 =
P0z0

(z0 −1)
. (3.35)

Now using (3.28) in (3.15) in (3.35) and after little algebraic manipulation we get

P0 =
(z0 −1)

z0 +d1 (z0 −1)
, (3.36)

where d1 =
µ

λ

(
a−2

∑
n=0

a−2

∑
k=n

ζ n

β
′
k
+

a−1

∑
n=0

ζ n

)
.

With the help of Lemma 3.1 and (3.36), (3.32) reduces to

G(z) =
(

(z0 −1)
z0 +d1 (z0 −1)

)
∞

∑
n=0

(
z
z0

)n

, | z |≤ 1. (3.37)

Expression (3.37) will generate the steady state queue length distribution when server is busy.

Comparing the coefficients, corresponding to power of zn, of RHS and LHS of the expression

(3.37), we obtain the steady state probabilities in our desired form (3.33)�

Case 2:

As f2(z) is a polynomial of degree 2b for Case 2, using Pn = ζnP0 (1 ≤ n ≤ b−1) in (3.22)

we get

G(z) =
η2P0A(z)
(z0 − z)

, | z |≤ 1, (3.38)

where, η2 is a constant, and is obtained in Lemma 3.2. Since A(z), as appeared in (3.38) is a
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monic polynomial of degree b, it can be rewritten as

A(z) =
b

∏
i=1

(z−αi), | z |≤ 1, (3.39)

where αi’s, are those zeros of f2(z) which are not a zero of g(z). A(z) can be further modified

as follows.

A(z) =
b

∑
r=0

(−1)b−rSb−rzr, (3.40)

where S0 = 1, Sr =
b

∑
i1,i2,i3,..,ik,.,ir=1

i1<i2<i3<...<ik<...<ir

(
r

∏
k=1

αik

)
,1 ≤ r ≤ b, and each αik is obtain from the

relation { f2(αik) = 0 and g(αik) ̸= 0} .

Lemma 3.2. The constant η2 as appeared in (3.38) is given by

η2 =
z0

(−1)bSb
. (3.41)

Proof: Using Binomial expansion in (3.38) we obtain

G(z) = η2P0A(z)
∞

∑
n=0

zn

zn+1
0

, | z |≤ 1. (3.42)

Next using the result G(0) = P0 and A(0) = (−1)bSb from (3.42) after little algebraic manip-

ulations we obtain the desired result (3.41).

Theorem 3.3. The Steady state probabilities Pn (n ≥ 0), for Case 2, are given by

Pn =


(

(z0−1)z0

z0∑
b
r=0yr+d2(z0−1)y0

) n

∑
i=0

xn−iyi, 0 ≤ n ≤ b−1,(
(z0−1)z0

z0∑
b
r=0yr+d2(z0−1)y0

) b

∑
i=0

xn−iyi, n ≥ b,
(3.43)

Proof: Substituting z = 1 in (3.42) and with the help of Lemma 3.2 and (3.34) we get

1−
a−1

∑
n=0

Pn,0 =
P0z0A(1)

(z0 −1)A(0)
, (3.44)
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Now using (3.28) in (3.15) in (3.44) and after little algebraic manipulation we get

P0 =
(z0 −1)A(0)

z0A(1)+d2 (z0 −1)A(0)
, (3.45)

where d2 =
µ

λ

(
a−2

∑
n=0

a−2

∑
k=n

ζ n

β
′
k
+

a−1

∑
n=0

ζ n

)
.

With the help of Lemma 3.2 and (3.45), (3.42) reduces to

G(z) =
(

(z0 −1)z0

z0A(1)+d2 (z0 −1)A(0)

)
A(z)

∞

∑
n=0

zn

zn+1
0

, (3.46)

Using (3.40), (3.46) can be rewritten as follows

G(z) = Γ

[
b−1

∑
n=0

n

∑
i=0

(−1)b−i 1
zn−i+1

0
Sb−izn +

∞

∑
n=0

b

∑
i=0

(−1)b−i 1
zn+b−i+1

0

Sb−izn+b

]
, (3.47)

where, Γ =
(

(z0−1)z0
z0 ∑

b
r=0(−1)b−rSb−r+d2(z0−1)(−1)bSb

)
.

It may rewritten as

G(z) =

(
(z0 −1)z0

z0 ∑
b
r=0 yr +d2 (z0 −1)y0

)[
b−1

∑
n=0

n

∑
i=0

xn−iyizn +
∞

∑
n=0

b

∑
i=0

xn+b−iyizn+b

]
, (3.48)

where, xn =
1

zn+1
0

; n ≥ 0 and yn = (−1)b−nSb−n;0 ≤ n ≤ b.

Expression (3.48) will generate the steady state probabilities. Comparing the coefficients cor-

responding to power of zn of RHS and LHS of the expression (3.48), we get the steady state

probabilities in our desired result form (3.43)�

Hence, Theorem 3.2 and Theorem 3.3, gives us the closed form expression for Pn (n ≥ 0)

in terms of roots of characteristic equations of corresponding pgf as appeared in for Case 1

and Case 2. Once all Pn’s are obtained, the required joint probabilities Pn,0(0 ≤ n ≤ a−1) and

Pn,r(n ≥ 0, a ≤ r ≤ b) can be obtained for Case 1 and Case 2 completely from Theorem 3.1.

For better understanding, here below we are providing a step wise algorithm for calculating

Pn,r(n ≥ 0, a ≤ r ≤ b).
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Step-wise Algorithm

Step 1. Input data :

Lower threshold limit (a), upper threshold limit (b), arrival-rate (λ ), service rate (µ), joining

probabilities (βn, 0 < βn ≤ 1).

Step 2. Calculate the roots of eq. (3.23) of Case 1 (or eq. (3.26) for Case 2) and identify the

root that is strictly greater than one.

Step 3. Using eq. (3.28) or (3.29), depending on the nature of the roots, calculate Pn

(1 ≤ n ≤ b−1).

Step 4. Calculate η1 from Lemma 3.1 for Case 1 (η2 from Lemma 3.2 for Case 2).

Step 5. Calculate Pn (n ≥ 0) completely using the results of Theorem 3.2 for Case 1 (from

Theorem 3.3 for Case 2).

Step 6. Finally calculate Pn,r (n ≥ 0,a ≤ r ≤ b) using the result from Theorem 3.1 for both

the Cases.

As the joint distribution of queue and server content are known, we can now obtain other

significant distributions

• The probability that the server is idle (i.e.,Pidle) and busy
(
i.e.,Pbusy

)
are given by

Pidle =
a−1

∑
n=0

Pn,0 and Pbusy =
b

∑
r=a

N

∑
n=0

Pn,r, respectively.

• The distribution of queue content is given by

pqueue
n =


Pn,0 +∑

b
r=a Pn,r, 0 ≤ n ≤ a−1,

b

∑
r=a

Pn,r, n ≥ a.

• The conditional probability distribution of the server content given that the server is

busy is given by

pser
r =

N

∑
n=0

Pn,r/Pbusy (a ≤ r ≤ b).

• The distribution of the system content (including number of customers with the server)
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is given by

psys
n =



Pn,0, 0 ≤ n ≤ a−1,
min(b,n)

∑
r=a

Pn−r,r, a ≤ n ≤ b,

b

∑
r=a

Pn−r,r, n ≥ b+1.

3.3 Performance measures

The performance measures of the model presented in this chapter is given here below

• Average number of customers in the queue, Lq =
∞

∑
n=0

npqueue
n .

• Average number of customers in the system, L =
∞

∑
n=0

npsys
n .

• Average number of customers with the server given that the server is busy, Ls =
b

∑
r=a

rpser
r .

• Average number of customers in the queue when server is idle, Lidle =
a−1

∑
n=0

nPn,0/Pidle

and when server is busy, Lbusy
q =

∞

∑
n=0

nPn/Pbusy.

• Average number of customers in the queue when server is busy with r (a ≤ r ≤ b)

customers Lbusy
r =

∞

∑
n=0

nPn,r/Pbusy.

• Using Little’s law the average waiting time of a customer in the queue is given by

Wq = Lq/λ̄ and in the system is given by W = L/λ̄ , where λ̄ is the effective arrival

rate of the system and is given by λ̄ =
a−1

∑
n=0

λβ
′
nPn,0 +

∞

∑
n=0

b

∑
r=a

λβnPn,r.

The effective arrival rate, i.e., λ̄ , for Case 1 and Case 2 will take the following forms.

• For Case 1 : λ̄ =
a−2

∑
n=0

λ

(
β

′
n −β

)
Pn,0 +λ (1−β )Pa−1,0 +λβ .

• For Case 2 : λ̄ =
a−2

∑
n=0

λ (β
′
n −β )Pn,0 +λ (1−β )Pa−1,0 +

b−1

∑
n=0

λ (βn −β )Pn +λβ .

• Balking Rate : The instantaneous balking rate of the states of the queueing model is

important feature of the model and is given by the product of arrival rate with its balking
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probability. For more detail in this topic readers are refered to Ancker and Gafarian

(1963a,b). The average balking rate is given by

BR =
a−2

∑
n=0

λ (1−β
′
n)Pn,0 +

∞

∑
n=0

b

∑
r=a

λ (1−βn)Pn,r.

More precisely,

. for Case 1, BR =
a−2

∑
n=0

λ (β −β
′
n)Pn,0 +λ (1−β )(1−Pa−1,0),

. and for Case 2, BR=
a−2

∑
n=0

λ (β −β
′
n)Pn,0+λ (1−β )(1−Pa−1,0)+

b−1

∑
n=0

λ (β −βn)Pn.

3.3.1 Closed form expressions of Lq:

In this section we obtained the closed form expression for expected queue length Lq.

As Lq =
∞

∑
n=0

npqueue
n =

a−1

∑
n=0

nPn,0 +G′(1), after obtaining the expression for G′(1) by differenti-

ating (3.32) and (3.42), for Case 1 and Case 2 respectively, the final expression for Lq is given

as follows

For Case 1 : Lq =
a−1

∑
n=0

nPn,0 +
P0z0

(z0 −1)2 ,

For Case 2 : Lq =
a−1

∑
n=0

nPn,0 +
P0z0

(z0 −1)2 y0

[
b

∑
r=0

yr +(z0 −1)
b

∑
r=0

ryr

]
.

3.4 Numerical results

This section illustrates several numerical results in the form of the tables and graphs and dis-

cuss the effect of key parameters on the performance indices. Table 3.1 presents the steady

state joint probability distribution of the queue content and server content of M/M(5,10)/1

queue for Case 1. The joint distribution of the queue content and server content of M/M(17,25)/1

queue for Case 2 is presented in Table 3.2. The input parameters for both the tables are in-

dicated at top of the tables while the key performance measures are presented at the bottom

of the respective tables. Table 3.3 presents the several performance measures of M/M(a,b)/1

queue with balking for Case 2 and for different values of a, by considering fixed service ca-

pacity at 5 (i.e., b− a = 5). The values of a varies from 5 to 20, and as a result the values

of b varies from 10 to 25. The other input parameters are indicated at the top of the table.

An interesting observation is clearly seen from Table 3.3 is that the values of W and Wq attain
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their minimum value when a = 15. Therefore, the threshold limit (15,20) is minimizing the

waiting time of the customer and hence (15,20) may be considered as optimal value of the

threshold limits for the considered model.

After representing the data in tabular form we move to see the influence of different system

parameters on several performance measures in the form of self explanatory graphs. Towards

this end, we have considered the following four sets of input parameters.

Set I : Case 1 and the input parameters are µ = 0.8, β = 0.75, β
′
i = 1.1−0.1(5− i); 0 ≤ i ≤ 3.

Set II : Case 1 and the input parameters are λ = 5.5, β = 0.65, β
′
i = 1.1−0.1(5− i); 0 ≤ i ≤ 3.

Set III : Case 2 and the input parameters are µ = 0.8, β = 0.75, β
′
i = 1.1−0.1(5− i); 0≤ i≤ 3,

βi = 1.0−0.05(10− i); 0 ≤ i ≤ 9.

Set IV : Case 2 and the input parameters are λ = 5.25, β = 0.75, β
′
i = 1.1− 0.1(5− i); 0 ≤

i ≤ 3, βi = 1.0−0.05(10− i); 0 ≤ i ≤ 9.

Now in Figure (3.1) to Figure (3.3) we have considered M/M(5,10)/1 queuing model for

investigation. The input parameters for Figure (3.1a) and (3.2a) have been considered as pre-

sented in Set I and Set II, respectively, and for Figure (3.1b) and (3.2b) have been considered

as presented in Set III and Set IV, respectively. Figure (3.1) depicts the impact of λ on perfor-

mance measures and Figure (3.2) depicts the impact of µ on the performance measures. From

Figure (3.1a) it is observed, for Case 1, that with the increasing values of the parameter λ , the

values of L, Lq, W , Wq and BR are also increasing, and the same results are verified, for Case 2,

from Figure (3.1b). Figure (3.2a) exhibits that with the increase in the values of the parameter

µ , the values of L, Lq, W , Wq and BR decreases, for Case 1, and the same result is validated

from Figure (3.2b) for Case 2. These behavior of the performance measures with respect to λ

and µ are quite obvious.

Next we concentrate our attention on the behavior of one of the important performance

measures Ls with respect to the input parameters λ and µ in Figure (3.3a) and (3.3b), respec-

tively. The input parameters for Figure (3.3a) and (3.3b) are considered as presented in Set

III and Set IV, respectively. It is clearly observed from Figure (3.3a) that for fixed µ(=0.8), as

λ increases Ls increases and approaches to the maximum threshold limit 10, and exactly the

reverse behavior is observed from Figure (3.3b), i.e., for fixed λ (=5.25) as µ increases Ls de-
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creases gradually and almost tend to 5 (the minimum threshold limit), for large µ (µ > 3.8). It

is to be noted here that for Figure (3.3a) and (3.3b) the values of the parameter ρ = λβ

bµ
varies

from 0.234 to 0.797 and 0.875 to 0.1009, respectively. This behavior of Ls is quite expected.

The balking phenomenon, studied in this chapter, can be characterized by the balking rate

(BR) which is calculated using the formula BR =
a−2

∑
n=0

λ (β −β
′
n)Pn,0 +λ (1−β )(1−Pa−1,0).

To illustrate the effect of BR on important performance measures Lq and Ls we have presented

Figure (3.4a) and (3.4b), respectively, for M/M(8,20)/1 queueing model and Case 1, with input

parameters λ = 19.5, µ = 1.3, β
′
i = 1.1−0.1(8− i); 0 ≤ i ≤ 6. We obtained the values of BR

for Figure (3.4a) and (3.4b) by varying β in such a way that as β increases BR decreases.

From Figure (3.4a) and (3.4b) it is clearly observed that with the increase in BR, Lq and Ls

decreases. Now as β increases the parameter ρ = λβ

bµ
will also increase and hence with the

increase in the value of β , Lq and Ls is also expected to increase. However, as β and BR

are inversely related, the reverse behavior is expected to observe and is clearly evident from

Figure (3.4a) and (3.4b).

In Figure (3.5) we represented the effect of the values of minimum threshold limit of the

serving capacity of the server, i.e., a, for fixed values of the maximum serving capacity of the

server, i.e., b (=15), on BR of the system, for Case 1 and Case 2. The input parameters are

taken as follow

• a varies from 2 to 10.

• λ = 15.0, µ = 1.3, β = 0.7 and hence ρ = λβ

bµ
= 0.538, (for Case 1 and Case 2)

• β
′
i = 1.1−0.1(a− i); 0 ≤ i ≤ a−2 (for Case 1 and Case 2)

• βi = 0.95−0.03(b− i); 0 ≤ i ≤ b−1 (for Case 2)

It is clearly observed from Figure (3.5) that, for fixed b, as a increases BR decreases slowly

initially and then start increasing as a > 5 for Case 1, and a > 6 for Case 2. Hence, one can

conclude here that for the current considered model and for fixed b = 15, the BR of the system

is minimum when a = 5 for Case 1, and a = 6 for Case 2.
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Table 3.1: Joint distribution of queue and server content of M/M(5,10)/1 queue with balking
for Case 1 with parameters λ = 5.25, µ = 0.5, β = 0.75, β

′
i = 1.1− (5− i) ∗ 0.1; 0 ≤ i ≤ 3,

ρ = 0.7875.

n Pn,0 Pn,5 Pn,6 Pn,7 Pn,8 Pn,9 Pn,10 pqueue
n

0 0.00652 0.02489 0.00353 0.00338 0.00323 0.00309 0.00295 0.04758
1 0.01093 0.02208 0.00314 0.00300 0.00287 0.00274 0.00544 0.05019
2 0.01403 0.01959 0.00278 0.00266 0.00254 0.00243 0.00753 0.05157
3 0.01627 0.01739 0.00247 0.00236 0.00226 0.00216 0.00926 0.05216
4 0.01791 0.01543 0.00219 0.00209 0.00200 0.00191 0.01068 0.05222
5 0.01369 0.00194 0.00186 0.00178 0.00170 0.01184 0.03280
6 0.01215 0.00172 0.00165 0.00158 0.00151 0.01276 0.03136
7 0.01078 0.00153 0.00146 0.00140 0.00134 0.01347 0.02998
8 0.00956 0.00136 0.00130 0.00124 0.00119 0.01402 0.02866
9 0.00849 0.00120 0.00115 0.00110 0.00105 0.01441 0.02740

10 0.00753 0.00107 0.00102 0.00098 0.00093 0.01467 0.02620
11 0.00668 0.00095 0.00091 0.00087 0.00083 0.01481 0.02505
12 0.00593 0.00084 0.00080 0.00077 0.00074 0.01487 0.02395
13 0.00526 0.00075 0.00071 0.00068 0.00065 0.01484 0.02289
14 0.00467 0.00066 0.00063 0.00061 0.00058 0.01474 0.02189
15 0.00414 0.00059 0.00056 0.00054 0.00051 0.01458 0.02093
...

...
...

...
...

...
...

...
28 0.00088 0.00012 0.00012 0.00011 0.00011 0.01032 0.01167
29 0.00078 0.00011 0.00011 0.00010 0.00010 0.00996 0.01115
30 0.00069 0.00010 0.00009 0.00009 0.00009 0.00961 0.01066
...

...
...

...
...

...
...

...
50 0.00006 0.00001 0.00001 0.00001 0.00001 0.00424 0.00434
51 0.00006 0.00001 0.00001 0.00001 0.00001 0.00406 0.00415
52 0.00005 0.00001 0.00001 0.00001 0.00001 0.00389 0.00397
53 0.00004 0.00001 0.00001 0.00001 0.00001 0.00372 0.00379
54 0.00004 0.00001 0.00001 0.00001 0.00000 0.00357 0.00363
55 0.00003 0.00000 0.00000 0.00000 0.00000 0.00341 0.00347
...

...
...

...
...

...
...

...
98 0.00000 0.00000 0.00000 0.00000 0.00000 0.00050 0.00050
99 0.00000 0.00000 0.00000 0.00000 0.00000 0.00048 0.00048

100 0.00000 0.00000 0.00000 0.00000 0.00000 0.00046 0.00046
...

...
...

...
...

...
...

...
Total 0.06566 0.22086 0.03136 0.02998 0.02866 0.02740 0.59607

0.99999

L = 28.42200,W = 7.16010, Lq = 20.41100,Wq = 5.14210, Ls = 8.4969,
BR = 1.28050, Lidle = 0.08780, Lbusy

q = 20.32400, Lbusy
5 = 1.73930, Lbusy

6 = 0.24695,
Lbusy

7 = 0.23610, Lbusy
8 = 0.22572, Lbusy

9 = 0.21580, Lbusy
10 = 17.660.
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Table 3.2: Joint distribution of queue and server content of M/M(17,25)/1 queue with balking
for Case 2 with parameters λ = 11.5, µ = 0.5, β = 0.75, β

′
i = 1.05−(17− i)∗0.05; 0≤ i≤ 15,

βi = 0.95− (25− i)∗0.03; 0 ≤ i ≤ 24, ρ = 0.69.

n Pn,0 Pn,17 Pn,18 Pn,19 Pn,20 Pn,21 Pn,22 Pn,23 Pn,24 Pn,25 pqueue
n

0 0.017622 0.074091 0.001043 0.000975 0.000914 0.000860 0.000812 0.000768 0.000728 0.000866 0.09868

1 0.024539 0.054184 0.000763 0.000713 0.000669 0.000629 0.000594 0.000562 0.000532 0.001382 0.08457

2 0.027136 0.041065 0.000578 0.000540 0.000507 0.000477 0.000450 0.000426 0.000404 0.001702 0.07328

3 0.027801 0.032017 0.000451 0.000421 0.000395 0.000372 0.000351 0.000332 0.000315 0.001904 0.06436

4 0.027552 0.025544 0.000360 0.000336 0.000315 0.000297 0.000280 0.000265 0.000251 0.002033 0.05723

5 0.026868 0.020774 0.000292 0.000273 0.000256 0.000241 0.000228 0.000215 0.000204 0.002114 0.05147

6 0.025985 0.017170 0.000242 0.000226 0.000212 0.000199 0.000188 0.000178 0.000169 0.002162 0.04673

7 0.025026 0.014388 0.000203 0.000189 0.000178 0.000167 0.000158 0.000149 0.000141 0.002188 0.04279

8 0.024057 0.012201 0.000172 0.000161 0.000151 0.000142 0.000134 0.000126 0.000120 0.002198 0.03946

9 0.023110 0.010455 0.000147 0.000138 0.000129 0.000121 0.000115 0.000108 0.000103 0.002196 0.03662

10 0.022203 0.009042 0.000127 0.000119 0.000112 0.000105 0.000099 0.000094 0.000089 0.002185 0.03417

11 0.021343 0.007883 0.000111 0.000104 0.000097 0.000092 0.000086 0.000082 0.000077 0.002169 0.03204

12 0.020533 0.006923 0.000097 0.000091 0.000085 0.000080 0.000076 0.000072 0.000068 0.002148 0.03017

13 0.019772 0.006120 0.000086 0.000081 0.000076 0.000071 0.000067 0.000063 0.000060 0.002123 0.02852

14 0.019060 0.005442 0.000077 0.000072 0.000067 0.000063 0.000060 0.000056 0.000053 0.002096 0.02705

15 0.018392 0.004866 0.000069 0.000064 0.000060 0.000056 0.000053 0.000050 0.000048 0.002066 0.02572

16 0.017767 0.004372 0.000062 0.000058 0.000054 0.000051 0.000048 0.000045 0.000043 0.002036 0.02453
...

...
...

...
...

...
...

...

48 0.000674 0.000009 0.000009 0.000008 0.000008 0.000007 0.000007 0.000007 0.001683 0.002412

49 0.000637 0.000009 0.000008 0.000008 0.000007 0.000007 0.000007 0.000006 0.001650 0.002340

50 0.000603 0.000008 0.000008 0.000007 0.000007 0.000007 0.000006 0.000006 0.001618 0.002270
...

...
...

...
...

...
...

...

95 0.000048 0.000001 0.000001 0.000001 0.000001 0.000001 0.000000 0.000000 0.000527 0.000579

96 0.000045 0.000001 0.000001 0.000001 0.000001 0.000000 0.000000 0.000000 0.000512 0.000561

97 0.000043 0.000001 0.000001 0.000001 0.000000 0.000000 0.000000 0.000000 0.000498 0.000544

98 0.000040 0.000001 0.000001 0.000000 0.000000 0.000000 0.000000 0.000000 0.000485 0.000528

99 0.000038 0.000001 0.000001 0.000000 0.000000 0.000000 0.000000 0.000000 0.000471 0.000512

100 0.000036 0.000001 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000458 0.000497
...

...
...

...
...

...
...

...

174 0.000001 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000052 0.000052

175 0.000001 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000050 0.000051

176 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000049 0.000049
...

...
...

...
...

...
...

...

≥

382

0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000

Total 0.388765 0.414908 0.005841 0.005460 0.005120 0.004817 0.004545 0.004300 0.004078 0.162152
0.999999

Lbusy
17 = 3.7620, Lbusy

18 = 0.05297, Lbusy
19 = 0.04951, Lbusy

20 = 0.04643,

Lbusy
21 = 0.04368, Lbusy

22 = 0.04121Lbusy
23 = 0.03899, Lbusy

24 = 0.03697, Lbusy
25 = 7.8487,

L = 26.6620,W = 4.5127, Lq = 14.5620,Wq = 2.4646, Ls = 19.3314, .

BR = 5.5917, Lidle = 2.6412, Lbusy
q = 11.9200
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Table
3.3:Perform

ance
m

easures
ofM

/M
(a
,b)/1

queue
w

ith
balking

forC
ase

2
w

ith
param

eters
λ
=

6
.5,

µ
=

0
.5,

β
=

0
.75,

β
′i
=

1.05−
(a−

i)∗
0.05;0

≤
i≤

a−
2,

β
i =

0.95−
(b−

i)∗
0
.03;0

≤
i≤

b−
1

.

ρ
0.975

0.75
0.65

0.542
0.513

0.488
0.464

0.423
0.39

(a,b
)

(5,10)
(8,13)

(10,15)
(13,18)

(14,19)
(15,20)

(16,21)
(18,23)

(20,25)
L

151.362
29.975

22.5322
17.4491

16.3891
15.4934

14.6948
13.1396

10.7533
W

30.9618
6.17364

4.82444
4.12484

4.04764
4.02308

4.04329
4.20861

4.56473
L

q
215.708

20.1164
12.9292

8.60055
7.87977

7.36583
6.99698

6.48935
5.71627

W
q

44.124
4.14316

2.76831
2.03311

1.94608
1.91264

1.92523
2.07854

2.42652
B

R
1.61133

1.64468
1.82956

2.26976
2.45095

2.64887
2.86564

3.37793
4.14426

L
s

8.7901
9.71048

9.34066
8.46022

8.09718
7.70232

7.269
6.2447

4.7112
L

idle
1.342

3.02483
4.09702

5.50054
5.88986

6.22685
6.49851

6.75412
6.09586

L
busy
q

240.824
22.5098

15.6118
10.7099

9.57193
8.56012

7.63728
5.97548

4.47033
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Figure 3.1: Effect of λ on few performance measures for Case 1 and Case 2
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Figure 3.2: Effect of µ on few performance measures for Case 1 and Case 2

2 . 5 3 . 0 3 . 5 4 . 0 4 . 5 5 . 0 5 . 5 6 . 0 6 . 5 7 . 0 7 . 5 8 . 0 8 . 5
5 . 0

5 . 5

6 . 0

6 . 5

7 . 0

7 . 5

8 . 0

8 . 5

L S

λ

(a) Effect of λ on Ls

0 . 6 0 . 9 1 . 2 1 . 5 1 . 8 2 . 1 2 . 4 2 . 7 3 . 0 3 . 3 3 . 6 3 . 9
5 . 0

5 . 5

6 . 0

6 . 5

7 . 0

7 . 5

8 . 0

8 . 5

L S

µ

(b) Effect of µ on Ls

Figure 3.3: Effect of system parameters on Ls for Case 2
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Figure 3.4: Effect of BR on performance measures for Case 1
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Figure 3.5: Effect of a on BR for Case 1 and Case 2

3.5 Concluding remarks

In this chapter, we studied a general bulk service queue with balking property of the arriving

customers. The balking probability of the joining customers are considered to be dependent

on the system states which is measured in terms of the queue length and state of the server,

i.e., busy/idle. We analytically obtained the closed form expression for the joint probability

distribution of the queue length as well as serving batch size, for two special cases, involving

two particular known form of the balking probabilities, using the probability generating func-

tion method. We obtained various useful performance measures. We investigate the impact



3.5 Concluding remarks 67

of the key parameters on the system performance measures through few numerical examples.

The study of the current chapter may be a motivation for the researchers to further investigate

the impact of impatient behavior of the joining customer to bulk queueing models. Further

study of bulk service queue with balking and reneging seems to be more complex and left for

the further study.


