
Chapter 2

Analysis of infinite buffer M/Mb/1 queue

with system size based balking

2.1 Introduction

Numerous studies on queueing model with impatience phenomena of the customers have been

found in literature, where server serves single customer at a time. A comprehensive review

till 2010 on the study of queuing models with impatient customer is discussed by Wang et al.

(2010). For recent development in queueing models with impatient customers, the readers

are suggested to go through the papers, Laxmi and Jyothsna (2014), Singh et al. (2014a),

Laxmi and Jyothsna (2015), Goswami (2015), Saffer and Yue (2015), Guha et al. (2016) and

the references therein. In the mentioned papers the impatient behavior of the customers has

been studied for M/G/1 or GI/M/1 queues with finite or infinite buffer and with or without

vacation.

The bulk service queueing system is an important phenomenon in our day to day life

and hence gained huge importance amongst researchers. The bulk service queues have wide

range of applications in telecommunication network, computer communication network (see,

The content of this chapter is accepted for publication in International Journal of Mathematics in Opera-
tional Research. Inder Science
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Banerjee et al. (2015, 2014)), group testing (see, Bar-Lev et al. (2007), Claeys et al. (2010))

etc. Literature survey on bulk service queues reveals the fact that the system size based balking

phenomena of the joining customers has not been explored much with the bulk service queues

in literature (Jain and Pandey (2009), Wang et al. (2014), Islam et al. (2014)).

In this chapter, we consider a single server queueing system where customers, who join the

system, are served in batches of fixed batch size ‘b’, i.e., server remains idle till queue length

reaches to ‘b’, and as soon as the queue length attains the limit ‘b’ server initiates service. If

queue length is greater than the threshold value ‘b’ then server initiates server with a batch

of first ‘b’ customers and rest will wait for next round of service. The customers are arriving

to the system according to the Poisson process. An arriving customer on arrival will decide

whether to join the system or not, upon looking at the system length. That is an arriving

customer will join the system with probability βn or balk with probability 1−βn where n is

the number of customers present in the system ahead of him. The capacity of the system is

considered to be infinite.

The queueing model considered in this chapter has potential application in practical sys-

tem, viz., production line systems, machine operating or repairing systems, inventory systems

etc. For example, let us consider a machine repairing facility system where each machine

requires service from efficient and high skilled repairman (server). In such situations the shop

keeper may decide to provide the services in groups/batches due to the high wages of the effi-

cient server and will not be ready to provide services unless otherwise a minimum number of

service request is accumulated to the service desk. As a result the order fulfillment time (the

time between the service orders is placed and the service is actually received) or the waiting

time of a customer may increase. Due to the increasing order fulfillment time the customers

will become impatient and decide not to join this system and will go to the competitor and

will never come back (i.e., the customers will balk). Hence, this may results in a loss to the

shopkeeper. Therefore to optimize the cost effectiveness of such system (e.g. profit of the

shopkeeper), the study of this chapter will be beneficial to the system analyst.

The rest of the chapter is organized as follows. In section 2.2, the model description

and steady state analysis, using probability generating function method, is described for three
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different cases. The key performance measures are presented in section 2.3. The numerical

results are discussed in section 2.4 and the chapter ends with concluding remarks in section

2.5.

2.2 Model description

We consider an infinite buffer single server bulk service queue where customers are served

in batches of fixed size ‘b’, i.e., server remains idle if queue length is less than the threshold

limit ‘b’, and as soon as, the queue length attains the limit ‘b’ server initiates service with a

batch of size ‘b’ and if queue length is greater than the threshold limit ‘b’ then server serves

first ‘b’ customers and rest will wait for next round of service. The service time distribution

is considered to be exponentially distributed with mean 1
µ

. The customers are arriving to the

system according to the Poisson process with arrival rate λ . On arrival a customer either

decide to join the system with probability ‘βn’, 0 < βn ≤ 1, or balk with probability (1−βn)

where ‘n’ (n ≥ 0), is the number of customers present in the system ahead of him. Therefore,

on arrival if a customer finds that the server is idle and queue length is b−1, then he certainly

join the system, i.e., βb−1 = 1.

2.2.1 Steady State Analysis

In this section, we obtain the steady state probabilities of the system size at an arbitrary epoch.

By system size here we mean the total number of customers present in the queue and the

number with the server. To this end, let us define the following notations for use in sequel.

• N(t)≡ number of customers present in the queue, at time t.

• ξ (t)≡ state of the server, i.e., whether busy or idle, at time t, i.e.,

ξ (t) =


0, if server is idle,

1, if server isbusyinserving‘b’customers.
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Clearly, {N(t),ξ (t)} constitute a two dimensional continuous time Markov chain with state

space Ω = {(n,0) : 0 ≤ n ≤ b−1}∪{(n,1) : n ≥ 0}. Let us further define the following state

possibilities, at time t, as

• Pn,0(t)≡ prob.{N(t) = n, ξ (t) = 0}; 0 ≤ n ≤ b−1,

• Pn,1(t)≡ prob.{N(t) = n, ξ (t) = 1}; n ≥ 0,

It should be noted here that Pn,0(t) represents the probability that, at time t, there are n

(0 ≤ n ≤ b−1) customers are present in the queue and server is idle, i.e., probability that

the system size n (0 ≤ n ≤ b−1) and Pn,1(t) represents the probability that, at time t, there

are n (n ≥ 0) customers are in the queue and server is busy in serving b customers, i.e., prob-

ability that the system size is n+b (n ≥ 0).

Now relating the state of the system at time t and t + dt the Kolmogorov equations of the

model under consideration is given by

d
dt

P0,0(t) = −λβ0P0,0(t)+µP0,1(t), (2.1)

d
dt

Pn,0(t) = −λβnPn,0(t)+µPn,1(t)+λβn−1Pn−1,0(t) , 1 ≤ n ≤ b−1, (2.2)

d
dt

P0,1(t) = −(λβb +µ)P0,1(t)+µPb,1(t)+λβb−1Pb−1,0(t) , (2.3)

d
dt

Pn−b,1(t) = −(λβn +µ)Pn−b,1(t)+µPn,1(t)+λβn−1Pn−b−1,1(t) , n > b. (2.4)

In steady-state, as t → ∞, we define

lim
t→∞

Pn,0 (t) = Pn,0, 0 ≤ n ≤ b−1,

lim
t→∞

Pn,1 (t) = Pn,1, n ≥ 0.

Therefore, the steady state governing equations of the queuing model under consideration are

obtained as

0 = −λβ0P0,0 +µP0,1, (2.5)

0 = −λβnPn,0 +µPn,1 +λβn−1Pn−1,0 , 1 ≤ n ≤ b−1, (2.6)

0 = −(λβb +µ)P0,1 +µPb,1 +λβb−1Pb−1,0 , (2.7)
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0 = −(λβn +µ)Pn−b,1 +µPn,1 +λβn−1Pn−b−1,1 , n > b. (2.8)

Now the steady state probabilities, i.e., Pn,0 and Pn,1, will be obtained by solving the equations

(2.5) - (2.8) using probability generating function (pgf) method. Towards this end, we define

the pgf as follows:

G(z) =
b−1

∑
n=0

Pn,0zn +
∞

∑
n=0

Pn,1zn+b , | z |≤ 1 . (2.9)

Now multiplying equations (2.5) - (2.8) by appropriate power of z and summing over n, after

algebraic manipulations, we obtain

0 = λ (z−1)

(
b−1

∑
n=0

βnPn,0zn +
∞

∑
n=0

βn+bPn,1zn+b

)
+µ(z−b −1)

∞

∑
n=0

Pn,1zn+b . (2.10)

Now our main objective is to extract the unknown coefficients Pn,0 and Pn,1 from equation

(2.10). However, right hand side (RHS) of equation (2.10) involves another unknown coef-

ficients βn in its first part, whereas, second part is independent of βn. Without knowing the

exact expression for βn it is not possible to have an analytical expression for Pn,0 and Pn,1.

Therefore, in the following sections we consider some special cases for βn to obtain Pn,0 and

Pn,1 analytically.

2.2.1.1 Special cases

Case 1:

In this case, we consider βn = p̃, for n ≥ 0 , n ̸= b−1 (where p̃ is a constant probability with

0 < p̃ ≤ 1) and βb−1 = 1. Under this consideration, using (2.9), one can obtain G(z) from

(2.10) as follows:

G(z) =

λ (1− p̃)(1− z)z2b−1Pb−1,0 −µ(zb −1)
b−1

∑
n=0

Pn,0zn

λ p̃zb+1 − (µ +λ p̃)zb +µ
, | z |≤ 1. (2.11)

Now our main objective is to obtain the closed form expression for the steady state probabili-

ties Pn,0 (0 ≤ n ≤ b−1) and Pn,1 (n ≥ 0), from (2.11). However, this is not straight forward as

RHS of (2.11) contains b unknown terms Pn,0 (0≤ n≤ b−1). To resolve this, let us denote the
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numerator of G(z) by f (z) and denominator by g(z) as follows which will be used in sequel.

f (z) = λ (1− p̃)(1− z)z2b−1Pb−1,0 −µ(zb −1)
b−1

∑
n=0

Pn,0zn, (2.12)

g(z) = λ p̃zb+1 − (µ +λ p̃)zb +µ. (2.13)

Case 2:

In this case, we consider βn = p̃1 for0 ≤ n ≤ b− 2; βb−1 = 1 and βn = p̃, for n ≥ b (where

p̃1 and p̃ are constant probabilities with 0 < p̃1, p̃ ≤ 1). Under this consideration, using (2.9),

from (2.10) we obtain

G(z) =

λ (1− z)zb

[
(p̃1 − p̃)

b−2

∑
n=0

Pn,0zn +(1− p̃)Pb−1,0zb−1

]
−µ(zb −1)

b−1

∑
n=0

Pn,0zn

λ p̃zb+1 − (µ +λ p̃)zb +µ
, | z |≤ 1, (2.14)

which again contain b unknown terms Pn,0 (0 ≤ n ≤ b− 1). Now by denoting the numerator

of G(z) by f (z) and denominator by g(z), we have

f (z) = λ (1− z)zb

[
(p̃1 − p̃)

b−2

∑
n=0

Pn,0zn +(1− p̃)Pb−1,0zb−1

]

−µ(zb −1)
b−1

∑
n=0

Pn,0zn, (2.15)

g(z) = λ p̃zb+1 − (µ +λ p̃)zb +µ. (2.16)

One may note here that the denominator of G(z) is exactly same as that of Case 1, however,

the numerator is of different form. But for both the cases numerator of G(z) is a polynomial

of degree 2b and denominator is of degree (b+1).

Case 3:

In this case, we consider βn = p̃n for 0 ≤ n ≤ b− 2, βb−1 = 1 and βn = p̃ for n ≥ b (where

p̃n, and p̃ are constant probabilities with 0 < p̃n, p̃ ≤ 1). Under this consideration, using (2.9),
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from (2.10) we obtain G(z), with b unknown terms Pn,0 (0 ≤ n ≤ b−1), as follows

G(z) =

λ (1− z)zb

[
b−2

∑
n=0

(p̃n − p̃)Pn,0zn +(1− p̃)Pb−1,0zb−1

]
−µ(zb −1)

b−1

∑
n=0

Pn,0zn

λ p̃zb+1 − (µ +λ p̃)zb +µ
, | z |≤ 1, (2.17)

where the numerator f (z) and denominator g(z) of G(z) is given by

f (z) = λ (1− z)zb

[
b−2

∑
n=0

(p̃n − p̃)Pn,0zn +(1− p̃)Pb−1,0zb−1

]

−µ(zb −1)
b−1

∑
n=0

Pn,0zn, (2.18)

g(z) = λ p̃zb+1 − (µ +λ p̃)zb +µ. (2.19)

Again in Case 3 also one can observe that g(z) is a polynomial of degree (b+1) as obtained

in Case 1 and Case 2, and f (z) is a polynomial of degree 2b, however, of different form.

Remark : Using the results given in Neuts (1967) one can conclude here that the states of the

Markov chain of the considered model will be positive recurrent if and only if λ p̃
bµ

< 1, which

ensures the existence of steady state solution, i.e., Pn,0 (0 ≤ n ≤ b−1) and Pn,1 (n ≥ 0).

Analysis

It should be noted here that for all the three cases as discussed above g(z) is the same poly-

nomial of degree (b+1) where as f (z) is a polynomial of degree 2b and z = 1 is an obvious

zero for both f (z) and g(z). Therefore, analysis can be carried out with similar argument for

all three cases.

Let C be a closed contour defined by | z |= 1+ δ , where δ is small positive real number.

Now assuming g1(z) = −(µ +λ
∼
p)zb and g2(z) =

(
λ

∼
p zb+1 +µ

)
, so that, g1 +g2 = g, one

can obtain

| g1(z) |>| g2(z) | onC ifandonly if ,
λ p̃
bµ

< 1. (2.20)

Henceforth, by using Rouche’s theorem, we conclude that g(z) must have b zeros within the
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contour C. Now since z = 1 is one zero of g(z), the remaining (b−1) zeros must lie within

the unit disk | z |= 1. Therefore, g(z) has only one zero outside the unit disk | z |= 1 and let us

denote it by z0.

Since G(z) is analytic within and on C, f (z) and g(z) must have b common zeros, say zi

(1 ≤ i ≤ b) with zb = 1 within and on C. Hence,

f (zi) = 0; {zi : | zi |≤ 1 ,g(zi) = 0 , 1 ≤ i ≤ b}. (2.21)

Equation (2.21) yields b linear algebraic equations in b unknowns,out of which one will be

zb = 1. Therefore, ultimately we will get (b−1) equations in b unknowns, solving which we

will obtain the values of all Pn,0 (1 ≤ n ≤ b−1), in terms of only one unknown, i.e., P0,0.

It should be noted here that these common zeros (except zb = 1) of f (z) and g(z) may be

all distinct or some of them are repeated. Therefore, depending on the nature of the zeros we

discuss following two cases.

Case A: The common zeros of f (z) and g(z) inside the closed contour C are all distinct

Let us consider that zi ̸= z j for all i ̸= j and 1 ≤ i, j ≤ b− 1 as appeared in (2.21). Then

one can derive (b− 1) equations in b unknowns, Pn,0 (0 ≤ n ≤ b− 1), which will results in

Pn,0 = ζnP0,0 , 1 ≤ n ≤ b−1, where ζn’s are constants.

Case B: Some of the common zeros of f (z) and g(z) inside the closed contour C are

repeated

Let us suppose that some of zi’s as appeared in (2.21), are multiple roots. We denote

the multiple roots by x1,x2, ...,xl with multiplicity r1,r2, ...,rl , so that, m =
l

∑
i=1

ri. and the

remaining distinct roots by xm+1,xm+2, ...,xb with xb = 1. Using the property of analiticity of

G(z) in | z |≤ 1 we obtain

f (i−1)(x j) = 0, j = 1,2, ..., l, i = 1,2, ...,r j,

f (xi) = 0, i = m+1,m+2, ...,b−1,

where f (i)(x) denotes the ith derivative of f (z) at z = x, which results in total (b− 1) system

of linearly independent equations in b unknowns Pn,0 (0 ≤ n ≤ b− 1). Solving we obtain
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Pn,0 = ζnP0,0 , 1 ≤ n ≤ b−1 with ζn’s as constants.

Now corresponding to each zero zi, both f (z) and g(z) have a common factor of the form

(z− zi). On canceling the common factors from f (z) and g(z), and using Case A or Case B,

G(z) can be rewritten as

G(z) =
ηP0,0A(z)
(z0 − z)

, | z |≤ 1, (2.22)

where P0,0 is the only unknown term in G(z), η is a constant and A(z) is a monic polynomial

of degree b, and can be written as

A(z) =
b

∏
i=1

(z−αi), | z |≤ 1, (2.23)

where αi’s, are those zeros of f (z) which are not a zero of g(z). As A(z) is a monic polynomial,

(2.23) can be rewritten as

A(z) =
b

∑
r=0

(−1)b−rSb−rzr, | z |≤ 1, (2.24)

where S0 = 1 and Sr =
b

∑
i1,i2,i3,..,ik,.,ir=1

i1<i2<i3<...<ik<...<ir

(
r

∏
k=1

αik

)
,1 ≤ r ≤ b; and αik is obtained by using

f (αik) = 0 and g(αik) ̸= 0.

Lemma 2.1. The constant η as appeared in (2.22) is given by

η =
z0

(−1)bSb
. (2.25)

Proof: Using Binomial expansion, (2.22) can be rewritten as

G(z) = ηP0,0A(z)
∞

∑
n=0

zn

zn+1
0

, | z |≤ 1. (2.26)

Using the result G(0) = P0,0 in (2.26) and assuming that P0,0 > 0 after little algebraic manip-

ulation we obtain the desired result (2.25) by using (2.24).

Theorem 2.1. The Steady state probabilities Pn,0 (0 ≤ n ≤ b−1) and Pn,1 (n ≥ 0) are given
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as follows

Pn,0 =

(
z0 −1

γ

) n

∑
i=0

xn−iyi , 0 ≤ n ≤ b−1, (2.27)

Pn,1 =

(
z0 −1

γ

) b

∑
i=0

xn+b−iyi , n ≥ 0, (2.28)

where xn =
1

zn+1
0

; n ≥ 0, yn = (−1)b−nSb−n;0 ≤ n ≤ b and γ =
b

∑
n=0

yn.

Proof: Using the result G(1) = 1 and Lemma 2.1 in expression (2.26), we obtain

P0,0 =

(
(−1)bSb

γ

)(
z0 −1

z0

)
. (2.29)

Now using Lemma 2.1 and (2.29), in equation (2.26) after little algebraic manipulation we

obtain

G(z) =
(

z0 −1
γ

)[b−1

∑
n=0

n

∑
i=0

xn−iyizn +
∞

∑
n=0

b

∑
i=0

xn+b−iyizn+b

]
. (2.30)

Expression (2.30) will generate the all the steady state probabilities. Comparing the coeffi-

cients of the corresponding powers of zn of RHS and LHS of the expression (2.30), we get the

steady state probabilities in our desired form (2.27) and (2.28).

2.3 Performance measures

In this section, we present some important performance measures of the model under consider-

ation. The expected system length and queue length are given by L=
b−1

∑
n=0

nPn,0+
∞

∑
n=0

(n+b)Pn,1

and Lq =
b−1

∑
n=0

nPn,0 +
∞

∑
n=0

nPn,1, respectively. Now using Little’s law the expected waiting time

of a customer in the system as well as in the queue are obtained as W = L
Λ

and Wq =
Lq
Λ

, re-

spectively. Here, Λ is the effective arrival rate of the system and is given by Λ =
b−1

∑
n=0

λβnPn,0+

∞

∑
n=0

λβn+bPn,1 (see, Ancker and Gafarian (1963a,b)). Therefore,

• for Case 1, Λ = λ (1− p̃)Pb−1,0 +λ p̃;
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• for Case 2, Λ = λ (p̃1 − p̃)
b−2

∑
n=0

Pn,0 +λ (1− p̃)Pb−1,0 +λ p̃;

• for Case 3, Λ = λ

b−2

∑
n=0

(p̃n − p̃)Pn,0 +λ (1− p̃)Pb−1,0 +λ p̃.

Another important performance measure of the model is the average balking rate of the system

which is given as follows.

Balking Rate

The instantaneous balking rate of the system is given by λ (1 − βn), when an arriving

customer, upon his arrival, finds n (n ≥ 0) customers in the system ahead of him. Hence,

the average balking rate (BR) of the system is given by BR =
b−1

∑
n=0

λ (1− βn)Pn,0 +
∞

∑
n=0

λ (1−

βn+b)Pn,1 (see, Ancker and Gafarian (1963a,b)). Therefore,

• for Case 1, BR = λ (1− p̃)(1−Pb−1,0),

• for Case 2, BR = λ (p̃− p̃1)
b−2

∑
n=0

Pn,0 +λ (1− p̃)(1−Pb−1,0),

• for Case 3, BR = λ

b−2

∑
n=0

(p̃− p̃n)Pn,0 +λ (1− p̃)(1−Pb−1,0).

Lemma 2.2. The closed form expressions for L, Lq, W and Wq are given by

L =

[
(z0 −1)−1 + γ

−1
b

∑
r=0

ryr

]
, (2.31)

Lq = L−b+
b(z0 −1)

γ

b−1

∑
r=0

b−r−1

∑
n=0

yr

z0n+1 , (2.32)

W =
1
Λ

[
(z0 −1)−1 + γ

−1
b

∑
r=0

ryr

]
, (2.33)

Wq =
1
Λ

[
L−b+

b(z0 −1)
γ

b−1

∑
r=0

b−r−1

∑
n=0

yr

z0n+1

]
. (2.34)
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Proof: Differentiating (2.26) with respect to (w.r.t.) z and then letting z → 1 and using the

result G′(1) = L, we obtain

L = ηP0,0A(1)
∞

∑
n=0

n
zn+1

0
+ηP0,0A′(1)

∞

∑
n=0

1
zn+1

0
. (2.35)

The RHS of equation (2.35) contains two convergent infinite series
∞

∑
n=0

n
zn+1

0
and

∞

∑
n=0

1
zn+1

0
, as

| z0 |> 1. Hence, using Lemma 2.1 and (2.29) in equation (2.35) we obtain

L =
1

(z0 −1)
+

[
A′(z)
A(z)

]
z=1

. (2.36)

Using expression (2.24) in (2.36) we obtain the desired result (2.31). Now Lq can be rewritten

as

Lq = L−b
∞

∑
n=0

Pn,1, (2.37)

Using Theorem 2.1 in equation (2.37), after algebraic manipulation, we obtain the result

(2.32). Now using Little’s Law, the expected waiting time of a customer in the system (W )

and in the queue (Wq) is easily obtained in the desired form (2.33) and (2.34), respectively.

2.4 Numerical results

In this section, we present some numerical results in the form of table and graphs to illustrate

the effect of different system parameters on key performance measures of the model under

consideration. Table 2.1 presents the steady state probabilities Pn,0 (0 ≤ n ≤ b− 1) and Pn,1

(n ≥ 0) for Case 1, Case 2 and Case 3, as discussed in section 2.2.1.1. (It should be noted here

that the 1st column of Table 2.1 represents the number of customers present in the queue ex-

cluding the customers with the server. The 2nd column of Table 2.1 represents the probability

that the system is in state (n,0), i.e., system size is n, (0 ≤ n ≤ a−1). The 3rd column of Table

2.1 represents the probability that the system is in state (n,1), i.e., the system size is n+ b,

(n ≥ 0). Similar notation are carried out in column 4 to 7 of Table 2.1.) The input parameters

are taken as λ = 13.5, µ = 0.8, b = 15 for all three case, whereas, the joining probabilities



2.4 Numerical results 39

are taken as p̃ = 0.5 for Case 1, p̃1 = 0.7 and p̃ = 0.5 for Case 2, and p̃n = (1− (b−n)0.05)

(0 ≤ n ≤ b− 2) for Case 3. The performance measures for respective cases are presented at

the last row of the table.

Figures 2.1 to 2.4 present the sensitivity of some system parameters on important perfor-

mance measures of the model under consideration. The effect of serving batch size ‘b’ on the

performance measures, L, Lq, W , Wq and BR, for Case 1 are presented in Figure 2.1. In this

figure we consider λ = 9.25, µ = 2.5 and p̃ = 0.5 and it is evident from the figure that as ‘b’

increases, all the performance measures are also increases.

The effect of BR on L, for Case 1, is displayed in Figure 2.2 for fixed values of λ = 11.2,

µ = 0.56 and b = 20. In this figure the values of BR varies by varying the values of p̃ in such

a way that as p̃ decreases BR increases linearly. Therefore, it is clearly evident from Figure

2.2 that, L decreases with the increase in the value of BR, eventually, with the decrease in

the value of p̃. This behavior is on the expected direction as decrease in the value of joining

probability (p̃) will obviously decreases the expected system length. The effect of service

rate (µ) on expected system length (L) for Case 1 (Figure 2.3(a)), Case 2 (Figure 2.3(b)) and

Case 3 (Figure 2.3(c)) are presented in Figure 2.3, for three values of fixed serving batch size,

i.e., b = 10,15,20, and for fixed values of the parameters λ and βn. We have considered

λ = 4.0, p̃ = 0.45 for Figure 2.3(a); λ = 4.0, p̃1 = 0.7, p̃ = 0.45 for Figure 2.3(b) and p̃n

(0 ≤ n ≤ b− 2), p̃ = 0.45 for Figure 2.3(c). Now p̃n for Figure 2.3(c) are chosen in three

different ways depending on the values of b, i.e., when b = 10 then p̃n = (1.1− (b− n)0.1);

when b = 15 then p̃n = (1.0− (b−n)0.05) and when b = 20, then p̃n = (1.05− (b−n)0.05).

It is clearly observed from Figure 2.3 that, L decreases with the increases in the values of µ ,

for all three cases and all three values of b, and this behavior is also on expected direction as

increase in service rate will obviously decrease the expected system length.

It is also observed from Figure 2.3 that for fixed values of µ (when µ > 0.4 for Case 1;

µ > 0.5 for Case 2 and µ > 0.8 for Case 3), as b increases L also increases and the similar

behavior is also observed in Figure 2.1 with µ = 2.5 for Case 1. However, the reversed

behavior is observed in Figure 2.3 when µ < 0.4 for Case 1; µ < 0.5 for Case 2 and µ < 0.8

for Case 3. In Figure 2.4 we present the effect of ρ , where ρ is a parameter defined as ρ = λ p̃
µb ,



40 M/Mb/1 queue with system size based balking

on average system length (L) and average waiting time of a customer in the system (W ) for

Case 1, and for the fixed values of µ = 4.5, b = 15 and p̃ = 0.7. In this figure, ρ varies from

0.3 to 0.77 by varying the values of λ from 30 to 75 at a constant increment 2. It is clearly

evident from the figure that as ρ increases L increases slowly when ρ < 0.55, however, it is

increasing rapidly when ρ > 0.55. Now increase in ρ by increasing λ will obviously increase

the average system length. From the figure it is also evident that, in comparison to L, the

value of W remain almost constant as λ increases. However, a close view of the Figure 2.4

reveals that with the increase in the value of ρ , (by increasing λ ) W decreases initially, i.e.,

upto ρ = 0.55, and then starts increasing with the increase in the value of ρ . This behavior of

W is observed because Λ is strictly increasing function, which is calculated using the formulae

(= λ (1− p̃)Pb−1,0 +λ p̃.

In Figure 2.4 we have considered the values of λ (ρ) is increasing, in such a way from

30 to 75 (corresponding ρ from 0.311 to 0.77) with a difference of 2. As a result Λ (=

λ (1− p̃)Pb−1,0 +λ p̃ ; for Case 1) is strictly increasing function. Also, L is increasing slowly

with the increase in the value of λ when ρ < 0.55, However it is increasing very rapidly when

ρ > 0.55. As a result W decreases initially when ρ < 0.55 however it starts increasing slowly

when ρ > 0.55, which is shown in the box of the figure.

Table 2.1: Steady state queue length distribution of M/M15/1 queue with balking for Case 1, Case 2
and Case 3

Case 1 Case 2 Case 3

n Pn,0 Pn,1 Pn,0 Pn,1 Pn,0 Pn,1

0 0.0051929990 0.0219089100 0.0041885570 0.0247393000 0.0111536800 0.0235277900

1 0.0099909680 0.0202417900 0.0080583440 0.0228568100 0.0178821000 0.0217374900

2 0.0144239600 0.0187015300 0.0116336800 0.0211175600 0.0221282800 0.0200834100

3 0.0185196100 0.0172784800 0.0149370200 0.0195106600 0.0248600000 0.0185552100

4 0.0223039200 0.0159637000 0.0179890200 0.0180260400 0.0266125200 0.0171432800

5 0.0257998400 0.0147489800 0.0208089700 0.0166543800 0.0277057200 0.0158388000
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6 0.0290300000 0.0136266800 0.0234142400 0.0153871000 0.0283402400 0.0146335800

7 0.0320141900 0.0125897900 0.0258212800 0.0142162500 0.0286495700 0.0135200600

8 0.0347713400 0.0116317900 0.0280450800 0.0131344900 0.0287236500 0.0124912800

9 0.0373187500 0.0107466900 0.0301000500 0.0121350500 0.0286259600 0.0115407800

10 0.0396718400 0.0099289450 0.0319983700 0.0112116500 0.0284026100 0.0106626100

11 0.0418463600 0.0091734210 0.0337519600 0.0103585300 0.0280869600 0.0098512580

12 0.0438555800 0.0084753880 0.0353725700 0.0095703140 0.0277038400 0.0091016460

13 0.0457113000 0.0078304700 0.0368693100 0.0088420800 0.0272718200 0.0084090740

14 0.0237133300 0.0072346260 0.0267768300 0.0081692590 0.0254655400 0.0077692020

15 0.0066841210 0.0075476350 0.0071780200

16 0.0061755060 0.0069733130 0.0066318220

17 0.0057055930 0.0064426920 0.0061271870

18 0.0052714370 0.0059524480 0.0056609500

19 0.0048703170 0.0054995080 0.0052301920

20 0.0044997200 0.0050810340 0.0048322100

21 0.0041573230 0.0046944030 0.0044645130

22 0.0038409790 0.0043371910 0.0041247940

23 0.0035487070 0.0040071610 0.0038109260

24 0.0032786760 0.0037022440 0.0035209410

...
...

...
...

41 0.0008538439 0.0009641511 0.0009169356

42 0.0007888723 0.0008907859 0.0008471632

43 0.0007288446 0.0008230033 0.0007826999

44 0.0006733846 0.0007603785 0.0007231419

45 0.0006221447 0.0007025189 0.0006681158

46 0.0005748038 0.0006490621 0.0006172769

47 0.0005310653 0.0005996730 0.0005703064

48 0.0004906549 0.0005540421 0.0005269101

49 0.0004533195 0.0005118833 0.0004868159
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50 0.0004188250 0.0004729326 0.0004497726

...
...

...
...

70 0.0000860196 0.0000971324 0.0000923757

71 0.0000794741 0.0000897413 0.0000853466

72 0.0000734267 0.0000829126 0.0000788523

73 0.0000678394 0.0000766035 0.0000728522

74 0.0000626773 0.0000707745 0.0000673086

75 0.0000579080 0.0000653891 0.0000621869

76 0.0000535016 0.0000604134 0.0000574549

77 0.0000494305 0.0000558164 0.0000530830

78 0.0000456692 0.0000515691 0.0000490437

79 0.0000421941 0.0000476451 0.0000453119

...
...

...
...

90 0.0000176670 0.0000199494 0.0000189724

91 0.0000163226 0.0000184313 0.0000175287

92 0.0000150806 0.0000170289 0.0000161949

93 0.0000139331 0.0000157331 0.0000149626

94 0.0000128729 0.0000145359 0.0000138241

95 0.0000118933 0.0000134298 0.0000127721

96 0.0000109883 0.0000124079 0.0000118003

97 0.0000101522 0.0000114637 0.0000109024

98 0.0000093797 0.0000105914 0.0000100728

99 0.0000086660 0.0000097855 0.0000093063

100 0.0000080065 0.0000090409 0.0000085981

...
...

...
...

L=11.437, Lq=7.11940 L=11.849, Lq=6.9736 L=11.255, Lq=6.6186

W=1.65510, Wq=1.03030 W=1.5185, Wq=0.89374 W=1.5167, Wq=0.89191

BR=6.58990 BR=5.6972 BR=6.0793
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Figure 2.1: Effect of b on Performance
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Figure 2.2: Effect of BR on L
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Figure 2.3: Effect of µ on L
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2.5 Concluding remarks

In this chapter, we studied the bulk service (with fixed batch size) queueing system with sys-

tem size based balking behavior of the arriving customers in M/M/1 queue. We employed

probability generating function method to obtain the steady state probability distribution of

the queue length. The inclusion of balking in M/Mb/1 queueing model make it more com-

plex to analyze. Also, to the best of the author’s knowledge, the study of bulk service queue

with balking is not available in the literature. The study of this chapter may encourage the

researchers to study balking behavior of the customers in bulk service queueing model by

considering more general bulk service rules available in the literature. In the next chapter we

will discuss the analysis of system size based balking in bulk service queue with ‘general bulk

service’ rule. In future, it would be interesting and more complex to study the bulk service

queue with reneging behavior along with balking behavior of the customers.


