Appendix A

Lemma A1.
$$\int_0^\infty \hat{P}(n,t)Ddt = \tilde{D}^{n+1}, n \ge 0.$$

Proof. The matrices $\hat{P}(n,t)$ $(n \ge 0, t \ge 0)$ associated with the counting process $\{\hat{N}(t), J(t); t \ge 0\}$ satisfy the following system of difference-differential equations.

$$\hat{P}'(0,t) = \hat{P}(0,t)C,$$
 (A.1)

$$\hat{P}'(n,t) = \hat{P}(n,t)C + \hat{P}(n-1,t)D; n \ge 1,$$
 (A.2)

with $\hat{P}(0,0) = I_m$ and $\hat{P}(n,0) = \mathbf{0}_m (n \ge 1)$.

Let us define a matrix generating function

$$\hat{P}^*(z,t) = \sum_{n=0}^{\infty} \hat{P}(n,t)z^n, \qquad |z| \le 1.$$
(A.3)

It satisfies

$$\frac{d}{dt}\hat{P}^{*}(z,t) = \hat{P}^{*}(z,t)(C+zD),
\hat{P}^{*}(z,0) = I_{m}.$$
(A.4)

Solving the above matrix differential equation we obtain

$$\hat{P}^*(z,t) = e^{(C+zD)}, \quad |z| \le 1, t \ge 0.$$
 (A.5)

206 Appendix A

Taking Laplace transform of (A.3) we have

$$\hat{P}^*(z,\theta) = \int_0^\infty e^{-\theta t} \hat{P}^*(z,t) dt. \tag{A.6}$$

Using (A.5) in (A.6) we have

$$\int_0^\infty e^{-\theta t} \hat{P}^*(z,t) dt = \int_0^\infty e^{-\theta t} e^{(C+zD)t} dt,$$
$$= \int_0^\infty e^{-[\theta I - (C+zD)]t} dt,$$

$$or, \qquad \int_0^\infty e^{-\theta t} \sum_{n=0}^\infty \hat{P}(n,t) z^n dt = \left[\int_0^\infty e^{-[\theta I - (C+zD)]t} [\theta I - (C+zD)]^{-1} dt \right]_0^\infty,$$

or,
$$\sum_{n=0}^{\infty} z^{n} \int_{0}^{\infty} e^{-\theta t} \hat{P}(n,t) dt = [\theta I - (C + zD)]^{-1},$$

$$= \left[(\theta I - C) \left(I - z (\theta I - C)^{-1} D \right)^{-1} \right],$$

$$= \left[\left(I - z (\theta I - C)^{-1} D \right)^{-1} \right]^{-1} (\theta I - C)^{-1},$$
or,
$$\sum_{n=0}^{\infty} z^{n} \int_{0}^{\infty} e^{-\theta t} \hat{P}(n,t) dt = \sum_{n=0}^{\infty} \left((\theta I - C)^{-1} D \right)^{n} z^{n} (\theta I - C)^{-1}.$$
(A.7)

Now equating the coefficients of z^n both sides of (A.6) we get

$$\int_{0}^{\infty} e^{-\theta t} \hat{P}(n,t) dt = -\left((\theta I - C)^{-1} D \right)^{n} (-\theta I + C)^{-1}.$$
 (A.8)

Now setting $\theta = 0$ in (A.8) we get

$$\int_0^\infty \hat{P}(n,t)dt = -\left((-C)^{-1}D\right)^n (C)^{-1}.$$
 (A.9)

Post-multiplying (A.9) by D we get

$$\int_0^\infty \hat{P}(n,t)Ddt = -\left((-C)^{-1}D\right)^n (C)^{-1}D,$$

$$= \left((-C)^{-1}D\right)^{n+1}.$$
(A.10)

Which implies

$$\int_0^\infty \hat{P}(n,t)Ddt = \tilde{D}^{n+1}, \qquad n \ge 0.$$