CHAPTER 1 INTRODUCTION

CHAPTER 2 LITERATURE REVIEW

CHAPTER 3 EXPERIMENTAL PROCEDURE

OPTIMIZATION OF THE SYNTHESIS PROCESS IN SrAl₄Fe₈O₁₉ HEXAFERRITE SYNTHESIS

STUDY THE EFFECT OF Co⁺²
SUBSTITUTION FOR Fe⁺³ ON
ELECTRO-MAGNETIC
PROPERTIES OF THE
OPTIMIZED SrAl₄Fe₈O₁₉
HEXAFERRITE

ANALYZE THE EFFECT OF Cr⁺³
AND Sn⁺⁴ SUBSTITUTION FOR
Fe⁺³ ON ELECTRO-MAGNETIC
PROPERTIES OF THE
OPTIMIZED SrAl₄Fe₈O₁₉
HEXAFERRITE

STUDY THE INFLUENCE OF Y⁺³ SUBSTITUTION FOR Fe⁺³ ON ELECTRO-MAGNETIC PROPERTIES OF THE OPTIMIZED SrAl₄Fe₈O₁₉ HEXAFERRITE

STUDY THE EFFECT OF La⁺³
AND Sm⁺³ SUBSTITUTION FOR
Fe⁺³ ON ELECTRO-MAGNETIC
PROPERTIES OF THE
OPTIMIZED SrAl₄Fe₈O₁₉
HEXAFERRITE

CHAPTER 9 CONCLUSIONS AND FUTURE SCOPE