Chapter 5

Numerical Solutions of
Generalized Fractional

Integro-Differential Equations

5.1 Introduction

Fractional integro-differential equations (FIDEs) appears in the multidisciplinary
area see [78, 177, 178, 179]. FIDEs are very difficult to solve analytically and to find
the exact solution of this type of equations are very rare. A great deal of interest
has been emphasized by several researchers to solve the FIDEs numerically. Some
analytical methods like fractional differential transform method [200], variational
iteration method [201], Adomian decomposition method [202, 203], and homotopy
analysis method [204] have been used to solve FIDEs. Also, FIDEs have been solved
numerically by many researchers. Galerkin method, and wavelet Galerkin method

based numerical methods are studied by the authors respectively in [184] and [205]
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for FIDEs. In [180], authors studied the FIDEs using the collocation method. Fur-
ther methods in [68, 189, 190, 191, 193, 206, 207, 208] and operational matrix method
[196] are discussed by the authors for solving FIDEs in recent years. More recently
in 2017, Kumar et al. [153] studied three numerical scheme for FIDEs. In this
chapter, we defined a new GFIDEs with the help of generalized fractional deriva-
tives given in [83]. GFIDEs are more attractive over the other FIDEs for three good
properties. First, the weight w(t) and scale function z(¢) appeared in the new gen-
eralized fractional derivatives. By selecting different weight and scale functions, we
get Riemann-Liouville, Caputo, Erdelyi-Kober, Hadamard, Grunwald-Letnikov and
Riesz derivatives. Thus, GFIDEs proposed in this paper is more global to FIDEs.
Second, weight function appears in kernel of fractional derivatives play greater di-
mension of flexibility in modelling. Third, scale functions z(t) shifted the domain
[0,1] to [2(0), z(1)] or [2(1), 2(0)] accordingly, it is monotonic increasing or decreas-
ing respectively. As earlier discussion many of author studied the approximation of
fractional derivative and using this solve fractional model see [148, 153, 209, 210].
This motivates me for the approximation of generalized fractional derivative defined
in term of scale and weight function recently given by Agrawal. In [148], authors
studied differential equations of fractional order using the quadratic polynomials.
Kumar et al. [209, 210] presented approximation of fractional integrals and frac-
tional derivatives with application in solving Abel’s integral equation. In [172],
Pandey et al. also studied the Abel’s integral equation using collocation method.
Further, Agrawal [150] studied fractional variational problem via finite element ap-
proximation. Later, in [152], Pandey and Agrawal studied the generalized fractional
variational problems. Due to this motivation, in this chapter, first of all we present
two approximations of GFD namely linear and quadratic approximation. Further,
using this we discuss two numerical schemes for solving the GFIDEs. These schemes

mainly based on discretization technique in which firstly, we divide the interval into
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subintervals and we approximate the unknown function on each subinterval using

the linear and quadratic interpolating polynomials.

5.2 Statement of the Problem and Approximation

of Fractional Derivatives

In this section, first we define the GFIDEs in term of Caputo-type GFD defined by
Agrawal [83] recently and then we presented the linear and quadratic approximation

of GFD. Now, we consider the GFIDEs defined as,

DYu(t) = f(t) + /OtK(t,s)u(s)ds, 0<t, s<1, 0<a<l, (5.1)

with the subsequent additional condition u(0) = d, where D%u(t) denotes Caputo
type GFD of u(t), of order av and f(t), K (t, s) are known functions. For the numerical
scheme firstly, we present linear and quadratic approximation for the left side of Eq.

(5.1).

5.2.1 Linear Approximation of Generalized Fractional Deriva-

tive

To find the linear approximation of GFD, first we divide the domain into n sub-
domains [t;,t;41], and using the piecewise linear interpolating polynomial for the
approximation of unknown function into each subdomain with equal length h = 1/n
such that node point are ¢, = kh,k = 0,1,2,...,n. And denote the u(ty) =

g, w(ty) = wg, 2(tg) = 2. Assuming z(t) is strictly monotonic increasing on [0, 1]
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and w(t) > 0, then s = z7!(v) by taking v = z(s). Then the type 2 GFD of u(t) at

node point £, can be discretized as

ds, (5.2)

where DSu(t), 0 < a < 1 denote the Caputo-type GFD of function ().

e s o 1 dw () u (W),
_ —F(lk—a) Z/ S e d="'(v).  (5.3)

j=0 v i

On the each interval [z;, z;+1], we approximate the unknown function with the help

of linear interpolation polynomial (p.(v))’

k—1 -
w(te)]” ! {wj+1uj+1 - wju]} / o 1 —dv (5.4)
(-0 = Zjy1 — % ;o la(ty) — vl

:[w(tk ] — Wit1tj+1 — Wity (21— ) — (21, — 2j41) ] (5.5)
I'(2-a) =0 Zj+1 — Zj e Lo '

-1 k-1 —« —«
[w(t)] ! (zk — 2;) 07 — (23, — 2j41) 7
Tro 2 Wy 1Ujg1
J J

B {(Zk — )17 — (= — sz)(l—“)} wjuj) (5.6)

Zj+L T &)
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( k
Zlg_IZOwO j = 07
L w(t)] I k .
Alk,j) = m <Zj—g;j—1 B Zji]j—lzj') wy lsjsk-1 (5:8)
\ (2K — 2j) " “wy, j=k,

and

5.2.2 Quadratic Approximation of Generalized Fractional

Derivative

Again, to find the quadratic approximation, first we divide the domain into n subin-
tervals [t;_1,t;] and using the piecewise liner interpolating polynomial for the ap-
proximation of unknown function into [tg,#;] and for the other subintervals [¢;_1, ;]
(i.e.j > 2). We use the piecewise quadratic interpolation polynomial for the ap-
proximation of unknown function in the subinterval [t;_4,¢;] with equal step length
h = 1/n such that node points are t, = kh,k = 0,1,2,...,n and denote u(t;) =
g, w(ty) = wy, z(tx) = zx. Assuming z(¢) is strictly monotonic increasing [0, 1] and
w(t) > 0, then s = 27! (v) by taking v = 2(s). Then the type 2 GFD of u(t) at node

point ¢, can be discretized as

[D%u(t)]y, = T(l—a) ), [tn) — 26"
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P1—a) ). [2(t) —v] dz—(v)
[w(ty)] ™ = [ 1 dw ((z7 ') u (271 (v))] ,
i 'l —a) ]ZQ/J | [2(t) = v]e dz—1(v) dz""(v).  (5.10)

On the first interval [z, 21|, approximate the unknown function with the help of
linear interpolation polynomial (p}(v)) and for the next subintervals (k > 2) , the
quadratic interpolation function (p2(v))’ for the three points (z;_g, u;—2), (2j—1, ;1)

and (z;,u;) is applied such that,

w11 — Wolg

(Pu(v)) = ——, (5.11)

21 — 20

(P2 (v)) = (( (v—zi1)(v—z) W ats 5 — (v —zj-2)(v = 2)) w1y

(zj-1 — 2j—2)(25 — 2j-1)

Il =) [ Gl ) B /
G ]> . (5.12)

N (20 — 251 — 2) (2v—22—2)
v _ Wi oli_ o — Wi 1U;—
(pu( )) (Zj—l — Zj—z)(zj _ Zj_Q) J—2%j—-2 (Zj_l — 2]‘-2)(2']‘ — Zj—l) j—1%j—-1
QW — 2 o — 2
u=zazza) (5.13)

(zj — 2j-2)(zj — 2j-1)

Again consider first term of Eq. (5.10)

[w(ty)] " [* 1 dlw (27" (v)u(z7'(v)] ,
(1 a) / 2(ts) — v]° d=—1(v) dz"(v)
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[Iflé; _)]a) (w1U1 - wouo> [(Zk . Z(])Uia) . (Zk o Zl)(lfa)}

21 — 20

_ [wlo]™ sz —20)07 — (2 m“-aq .
CT(2-0w) 1 — 20 1U1
()]~ [z = 20)17) = (2 = )=
T2-a) [ 21— 2 } Wolp. (5.14)

And second term of Eq. (5.10)

[w(te)] ™ G~ [ dfw (=" () u (=71 (0)] ,
T Z/Zl T _U] d="(v)

I'(l-a) =/ dz=1(v)
k
= Z G?Uj_Q — bj':uj—l + C?uj'. (515)
=2
Where
k (I [w(te)] ™[22 — 251 — 25) 4 2
a; = S — ‘1, (5.16
T s —aTi-a) | (-a LT Eoab) 019
- )] [ (220 — 20 — 25) 2 |
W wj1 [w(ty =2 " E) e kL (517
(P T by s | R Gy p A c s L R
K w; [w(te)] ™' [z — 2j—2 — 2j-1) 4 2
C, g . . 3 518
Ll P [T § (R (R R A ca L] R
P = (2 — i) — (2 — 2) 7, (5.19)
qf = (2 = 2-1) 7 = (2 — )7, (5.20)

Finally we get approximation of first term of Eq. (5.1) as

k

= Ll T et ] S b+

21 — R0 21 — R0

j=2
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k

= PrU1 — qrUg + Z(CL;?UJ'_Q — b?u]'_l 4+ C?Uj), (521)
j=2

where,
[w(t)] ' [ plw ]

_ 5.22
Pr '2—a) 21— 2] (5.22)

G = [quétk_)]a; _ZI: ’f_woz() (5.23)

5.3 Error Estimate of Approximation of General-

ized Fractional Derivatives

In this section, we presents error estimate of approximation of GFD discussed in
previous Section 5.2. For this, we present error estimate of linear and quadratic
approximation of GFD. Let E¥ and E('f2 are the error estimate of liner and quadratic

approximation of GFD respectively.

5.3.1 Error Estimate of the Linear Approximation

To analyze error of approximation for GFD, we use notation for simplicity, let g(s) =
w(s)u(s) and s = 27 (v) by taking v = z(s). Hence g(v) = w(z"'(v))u(z"1(v)),
w(ty) = wg and z(t;) = 2. According to Newton interpolation method, we interpo-
late g(v) on [2;, 2j41] by py(v) respectively such that,

9"(&))

g(v) = py(v) = o (0= 2)v = zn), & € [z, 241 (5.24)
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Where, p;(v) is piecewise linear interpolation polynomial using the node (z;,g;),

(2j+1, gj+1)-
Let E¥ be the truncation error given by

k-1

1 k-1

B [wy] - Zj+1 g//(gj) 1 N s 'y
e 0= )0 - )l

2 [z — o)

J=0

using integration by part we get,

- /Zm g"( [(v = z) (v — zj41)] d[zi, — v]*

1 — a
- 1 — ) / v—zj)(sz —v)]dlzy — o™
- % ]Z:; /:H g”é!gj) [(v = 2)(zj11 — )] d[z — 0]

+ O‘[w—’“]l) /:1 T8 (0~ 21) et — )] e — 0]

Il -« 2!
k—2 Zi
g amaxtogggtk ‘g//(gj)| maXOSjSk(Zj"rl - Z])Q Z/ j+1 [Zk _ U]—a_ld'l]
< 8w, L(1 — ) =0 /%
J=0"%
n am;}zz;g(iti|i fy | / U — 2 1)(2k — 'U)][Zk - y] a— 1dU7
since
k—2

(5.25)

(5.26)

(5.27)

(5.28)

(5.29)

(5.30)
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and

[ 0= e ol = s [ s

1 2
= — 2p—1)" 5.32
A= )@ —a) o~ %) (5:32)
Thus, from Eq. (5.30) and (5.31)-(5.32), we get
-1 -1
k< [wk] a[wk] " U \2—a
LS [8F(1 o)ty | W2, 1) g (2 = )70 (539)
Denoting [t;«,t;«4+1] as the interval satisfying maxo<;j<i(zj41 — 2;) = [2j+41 — 2j+],
then the error of approximation has the form
-1 -1
Ek < [U)k] Oé[wk] " Lh 2—a 5.34
L= [8r(1 —o) P ar@ ooy | o, 1)) (5:34)

when z(t) satisfying the Lipschitz condition on [tj-,¢;++1] and L is the Lipschitz

constant.

5.3.2 Error Estimate of the Quadratic Approximation

To analyze error of approximation for generalized time fractional derivative, we
use notation for simplicity, let g(s) = w(s)u(s) and s = z7(v) by taking v = 2(s).
Hence g(v) = w(z7 (v))u(z71(v)) , w(ty) = wy and z(t},) = 2. According to Newton
interpolation method, we interpolate g(v) on [z, 21] and [2;_1, 2;] by p,(v) and pZ(v)

respectively such that

o) = Pj(e) = L 0 — )0~ 21), felnal  (53)
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o) =20 = Tz o2 - z), Gl (539

Where, p;(v) and pg(v) are piecewise linear and quadratic interpolation polynomials

using the node (2o, go), (21, 1) and (zj_2, gj—2), (2j-1,9j-1), (2}, g;) respectively.

Let Eg be the truncation error of quadratic approximation then

k_[wk]_l o 1 v—lv’v
Eh= ey | ) - r

+ ‘r[(zf_k]__a) ; / ﬁb(v) —py(v)]'dv. (5:37)

Consider first term of Eq. (5.37)

ol )
S 2l(1—a) /O (Zk_v)a[( o)(v—21)]'d (5.38)

Using integration by part we get

% /01 9" (&) (2 —v) ™ (v — %) (v — 21)dv
[UJ ]71 P 21
a m to<§1<tk x 9" (€)1(=zk — 21) /ZO (v —20)(21 — v)dv

o Tomax< <, |¢7(6)| (2 — 21) " (21 — 20)°
= 120,0(1 — a) '

(5.39)

Consider second term Eq. (5.37)

1—a Z/ r— o [g(v) = p2(v)]'dv

71—
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Since g(v) — pg(v) = gmg(fz) (v —2zj—2)(v — zj—1)(v — 2;) and applying integration by
part we get
-1 _k zj M
% ; /Zj_l : ?E!§2) (v = zj—2) (v — 2j-1) (v — 2)[2(t) — 0] 'dv
afw] ! = [T " (&)
s> [ - - s - 2l — o e
=2 V21 "
-1 2k "
" % / . :)5152) (v = 2-2) (v = 25-1) (v = ) [2(tx) — 0] ldv (5.40)

Consider the first part of Eq. (5.40)

1k1

/ /// Z];Q)('U - ijl)(v — Zj)[z(tk) _ U]fafldv

1—a

a[wk]_l k—1 ///
S F<1—_06>S0 Z] 272] 1’Z] Z/ (tk) - ’U]_Oé—ldv (541)
=2
alw -1 max . " Zk—1 o
- chul mteses PO o, s [T ) — oo (42

Where,

1
P22, 2j-1, %) = 5 1(%i-2, 21, 25)Pa(2i-2, 2315 %) P3(25-2, 251, 2), - (5:43)

01(2j-2,2-1, 23) = (-1 + 2 = 22j-2) — (222, 221, %), (5.44)
pa(2j-2, 21, 2) = (25 + zj2 — 22j-1) — 0(25-2, 21, %)), (5.45)
p(2j-2,2j-1,2) = (2 + 251 = 225) = 0(25-2, 21, %)), (5.46)

0(2j-2,2-1,%) = \/Zj—2(2j—2 — zj-1) + 2i-1(zjo1 — ) + 22 — zj—2). (547



Chapter 5. Numerical Solutions of Generalized Fractional... 105

Again since,

/Zk_l[z(tk) — o] o = é[(zk —2p-1) " = (ze —21) ) < (e — 2em1) T (5.48)

z1
Hence, from Eq. (5.42) and Eq. (5.48), we have first term of Eq. (5.40) is less than

or equal to

ofwy] "t maxy,<¢, <, 19" (62)]
6I'(1 — «)

p(zj-2, 2j-1, %) (2K — 26-1) "% (5.49)

Consider the second term of Eq. (5.40)

(v — 2p_2)(V — 2p_1) (v — 22)[2(t) — v] v

a[wk]_l) / :’“1 9" (&2)

(1l -« 31

—1 2k
- —%/ g"6(v = ) (v = ) 2 (t) — 0] "do (5.50)
_ afw] " maxy <, <4, 9" (82)] (o — )

6I'(1 — «)

(2k—1 — 2k—2) 2(z, — 21-1)
[(1—04)(2—a) (1—04)(2_&)(3_&)] (5.51)

afwy] "t maxy, <<, [97(&)] (21 — 26-1)" 70 {(Zkl — zk2) | (= 2
(1 —«) (1—-a)2—a) 2 (3 —a)

(5.52)

From Egs. (5.39), (5.49) and (5.52) we have
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—amaxg,<g <y, 9" (§)| (26 — 21) 7 (=21 — 20)°

Ef <
@ = 12w, (1 — @)

Lo [wi] ™! maxy,<¢, <¢, 19" (&2)]

P(zj-2, 2j-1,2) (2K — 2p-1) "

6I'(1 — «)
afwg] maxy <<, 19" ()] (e — 26-1)" 7 [ (o1 — 2r2) | (2 — 21)
(1 — «) (1—a)(2—a) 2 (3—a)
(5.53)

Lemma 5.3.1. If scale function z(t) is satisfying the Lipschitz condition with con-
stant L, that is |z; — zj_1| < Lh then we have following relation

(i) 0(25-2, %1, 2) < V/3Lh.

(i1) p1(zj-2,2j-1,2) < (3 = V3)Lh.
(i11) pa(zj-2, 2j-1, %) < —(V3)Lh.
() @3(2j-2,7j-1,2) < (=3 = V3)Lh.
(

)
v) p(2j-2,2-1, %) < (%) Lh* < 3 L°1.

It is clear from above Lemma 5.3.1 and Eq. (5.53) that error estimate Eg is the
order of convergence h3~%, if the scale function satisfying the Lipschitz condition

with constant L.

—ormaxy o<y, |9" ()| (b — £) "7 L2 (h)°

Ef| <
1Bol < 12w, T(1 — @)

a[wk]_l MmaXy,<¢; <ty ‘gm(§2)’ 1 3— 3—
* (1 —a) Rl

afwg] T maxy,<g < 9" (&) 1 {1 1

30(1 — ) (I—a)(2—a) 5*(3—04)}”% o
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5.4 Numerical Schemes

In this section, we present two numerical schemes namely linear and quadratic for
the GFIDEs. Since, the GFIDEs has mainly two term one is fractional term and
second one is integral term which are present on the left and right side of Eq.(5.1)
respectively. We get linear system after approximation of left side GFD term and
right side integral term of Eq.(5.1) and after solving it, we get the numerical solu-
tion of GFIDEs. The linear and quadratic schemes are symbolized as P1 and P2

respectively. Now, we are presenting numerical schemes as follows:

5.4.1 The Linear Scheme (P1)

For studying the linear scheme firstly, we divide the domain into n subdomains
[t;,t;+1] and then the linear interpolation polynomial is used for the approximation
of unknown function into each subdomain with the uniform step size h = 1/n such
that the node points are ty = kh,k =0,1,...,n. The function u(t), f(¢) denoted as
up = u(ty), and fr = f(tx) at the node point tx. The GFIDEs defined by Eq. (5.1)

takes the form for 0 < o < 1 at the node point t; ,
ty
[DSu(t)]s, = f(tx) +/ K(tg, s)u(s)ds, 0 <t, s <1. (5.54)
0

The left side of Eq.(5.54) can be approximated using linear approximation and we
get from Eq. (5.7), [D%u(t)]:, = Z?:o A(k, j)u; , where A(k, j) defined in Eq. (5.8).
Now we approximate integral part of Eq. (5.54) at node point ¢ like Linear Scheme

(S1) (see [153]). Hence we get,

k

/O Kty syu(s)ds = 3 Bk, fuj, (5.55)

J=0
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where

S(k,0), j=
B(k,j) =19 Sk, j)+T(k,j—1), 1<j<k (5.56)
Tk, — 1) i—k
S(k,j) = h / (1= K (kb + jh)dp. (5.57)
Tk j) = h / DK (b hp + ) (5.58)

Using Eq. (5.54) and Eq. (5.55), Eq. (5.7) reduces to linear system |,

> &k yuy=fr,  k=12,...,n, (5.59)

where

Clearly, by solving linear system given by Eq.(5.59) we get the approximate solution
of Eq.(5.54).

5.4.2 The Quadratic Scheme (P2)

For the quadratic scheme, first we divide the interval into n subintervals [t;_;,t;] and
we approximate the unknown function using the linear interpolating polynomial on
subinterval [to, t;] and for the other subintervals [t;_1,;](i.e. j > 2), we use piecewise

quadratic interpolation polynomial for the approximation of unknown function with
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equal lenth h = 1/n such that the node points are t;, = kh,k =0,1,2,...,n. Again
the left side of Eq. (5.54) can be approximated using quadratic approximation and

we get from Eq. (5.21)

k

[DSu(t)]y, = prur — qruo + Z(a?uj_g — bfuj_l + c?uj), (5.60)
=2

where coefficients are defined in Eq.(5.16-5.20). Now we approximate integral part

of Eq. (5.54) at node point ¢, like Quadratic Scheme (S2) (see [153]). Hence we get,
t k
/ K(ty, s)u(s)ds = Z SU;. (5.61)
0

J=0

The coefficients v; for different £ can be designed as,

So = 1
For k =1,
S1 = b1
\
(
Sop = Sl<2, 2) -+ a9
For k = 2, 4 s1=55(2,2) + by

(
For k = 3, (
(
(
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And for k£ > 4, the coefficients are calculated as:
(
So — Sl(k’, 2) + Qe
S1 = Sl(k?, 3) + SQ(k7 2) + bk
k-1 = S2(k, k) + Ss(k, k — 1)
. Sk = 53(]{?7 k)
Where,
1
ap = h/ K (kh,ph)(1 — p)dp,
0
1
be = b [ K (hhphypd.
0
h 1
Si(kd) = 5 | Ko+ i R)po ~ V.
0
1
Sulkd) = b [ K(khohp -+ jh— W1~ ),
0
h 1
Sulkd) = 5 [ K(khohp+ b~ bp(o+ V.
0
Using Eq. (5.60) and Eq. (5.61), the Eq. (5.54) can be expressed as
Ag(ug, ug, ug, .. ug) — Crlug, ug, ug, .. ug) = fry,  k=1,2,....n (5.62)
where,

Ap(ug, ur, ug, ..., up) = [Dfuﬁﬂtm
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k

Cr(ug, uy, ug, ..., ug) = Zsjuj.
=0
Clearly, by solving linear system given by Eq.(5.62) we get the approximate solution
of Eq.(5.1).

5.5 Numerical Results

Numerical outcomes for the linear and quadratic schemes will be presented in this
section. We also present numerical outcomes for the linear and quadratic approxi-
mation of generalized fractional Caputo-type derivatives for different scale function
z(t). For this, we consider example from literature and investigate the performance
of the presented scheme. The examples are considered from [153] such that it has
same exact solution. The numerical results obtained using the presented numerical
schemes P1 and P2 are displayed through the tables. For the numerical simulation
we take weight function w(t) = 1. We also calculate the convergence order (CO)
of linear and quadratic approximation of GFD for different scale functions. The
maximum absolute error (MAE) and convergence order (CO) are calculated. In the
Tables 5.1-5.5 and Tables 5.6-5.7 shows the numerical results for linear and quadratic

approximation respectively.
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TABLE 5.1: MAE and CO for 2(t) = t?,a = 0.5, at t = 0.3 for
u(t) = t? — t using linear approximation.

h MAE CO

1/10  3.48007 x1072
1/20  1.17389x1072  1.56782
1/40 4.06577 x1073  1.5297

1/80 1.42373 x107% 1.51385

TABLE 5.2: MAE and CO for 2(t) = t?,a = 0.4, at t = 0.3 for
u(t) = t? — t using linear approximation.

h MAE CO

1/10  2.02214x1072

1/20  6.50385x1073  1.63652
1/40  2.13389x107%  1.60781
1/80  7.04818x107* 1.59816

1/160 2.33267x1072*  1.59527

TABLE 5.3: MAE and CO for z(t) = t3,a = 0.8, at t = 0.6 for
u(t) = t? — t using linear approximation.

h MAE CcO

1/10  3.69401x 102
1/20 1.46143x1072 1.33781
1/40  6.04967x1073  1.27245

1/80 2.56371x107% 1.23862
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TABLE 5.4: MAE and CO for z(t) = t%4, a = 0.6, at t = 0.6 for
u(t) = t? — t using linear approximation.

h MAE 6[0)

1/10 2.67273x 102
1/20 1.06875x1072 1.32239
1/40  4.19023x1073  1.35082

1/80 1.62402x1073 1.36746

TABLE 5.5: MAE and CO for z(t) = t*,a = 0.6, at t = 0.6 for
u(t) = t? — t using linear approximation.

h MAE CO

1/10  1.69605x10~2

1/20  5.60052x1072  1.59855
1/40  1.9611x1073  1.5139
1/80  7.09303x10~* 1.46719

1/160 2.61351x107*  1.44041

TABLE 5.6: MAE and CO for z(t) = t2,a = 0.5, at t = 0.6 for
u(t) =t — t3 using linear approximation.

h MAE CO

1/10  6.84003x 1073

1/20  1.04274x1073  2.71362
1/40  1.70108x107* 2.61586
1/80  2.85787x107° 2.57344

1/160 4.87585x107¢ 2.55121
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TABLE 5.7: MAE and CO for 2(t) = t?,a = 0.2, at t = 0.6 for
u(t) =t — t3 using linear approximation.

h MAE CO

1/10  1.48829x1073

1/20  2.07611x107* 2.8417
1/40  2.99599x107° 2.79278
1/80 4.35344x1075 2.78281

1/160 6.31831x1077 2.78455

Example 5.5.1. Consider the following GFIDEs such as [188],

(™) + ) L)

m

Nl—a+<) Il-—a+2)

3t° — 4t t
— (—) +/ tsu(s)ds, 0<t,s<l1
12 ;

Deu(t) = (£) () [—

m

subject to u(0) = 0, having exact solution u(t) = t* — t with z(t) = t™.

TABLE 5.8: Numerical solutions obtained using scheme P1
for Example 5.5.1 for z(t) = 2, a = 0.5.

t; Exact solution n =10 n = 20
0.0 0.00 0.00 0.00
0.2 -0.16 -0.138111  -0.150582
0.4 -0.24 -0.220973  -0.232561
0.6 -0.24 -0.222632  -0.233403
0.8 -0.16 -0.142442  -0.153422

1.0 0.00 0.0203025 0.007532
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TABLE 5.9: Numerical solutions obtained using scheme P1
for Example 5.5.1 for z(t) = 3, a = 0.6.

t; Exact solution n =10 n = 20
0.0 0.00 0.00 0.00
0.2 -0.16 -0.120531  -0.140827
0.4 -0.24 -0.205677  -0.225512
0.6 -0.24 -0.211454  -0.228492
0.8 -0.16 -0.134236  -0.149798
1.0 0.00 0.02808  0.0110503

TABLE 5.10: Numerical solutions obtained using scheme P1
for Example 5.5.1 for z(t) = 3, a = 0.5.

t;  Exact solution n =10 n =20
0.0 0.00 0.00 0.00
0.2 -0.16 -0.130655 -0.147345
0.4 -0.24 -0.217511  -0.23155
0.6 -0.24 -0.222635  -0.233723
0.8 -0.16 -0.144898  -0.154617

1.0 0.00 0.0163511  0.00579
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TABLE 5.11: Numerical solutions obtained using scheme P1
for Example 5.5.1 for z(t) = 2, a = 0.4.

t; Exact solution n =10 n = 20
0.0 0.00 0.00 0.00
0.2 -0.16 -0.167992  -0.166132
0.4 -0.24 -0.252355  -0.242535
0.6 -0.24 -0.247608 -0.241731
0.8 -0.16 -0.166332  -0.16152
1.0 0.00 0.006744  0.001666

TABLE 5.12: Numerical solutions obtained using scheme P2
for Example 5.5.1 for z(t) = 2, a = 0.2.

t;  Exact solution n =10 n = 20
0.0 0.00 0.00 0.00
0.2 -0.16 -0.167595 -0.161961
0.4 -0.24 -0.244027 -0.240622
0.6 -0.24 -0.242174  -0.240395
0.8 -0.16 -0.161867 -0.160353

1.0 0.00 0.002078  0.000404
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TABLE 5.13: Numerical solutions obtained using scheme P2
for Example 5.5.1 for z(t) = 3, a = 0.2.

t; Exact solution n =10 n =20
0.0 0.00 0.00 0.00
0.2 -0.16 -0.194829 -0.167586
0.4 -0.24 -0.254488 -0.241494
0.6 -0.24 -0.245509 -0.240813
0.8 -0.16 -0.164602  -0.16073
1.0 0.00 0.005415  0.000913

TABLE 5.14: Numerical solutions obtained using scheme P2
for Example 5.5.1 for z(t) = t%4, o =0.2.

t;  Exact solution n =10 n = 20
0.0 0.00 0.00 0.00
0.2 -0.16 -0.166931 -0.162657
0.4 -0.24 -0.244439 -0.241968
0.6 -0.24 -0.24392  -0.241773
0.8 -0.16 -0.163941 -0.161787
1.0 0.00 0.004389  0.00198

The numerical solutions of Example 5.5.1 are using schemes P1 and P2 are pre-

sented through Tables 5.8-5.14 for different step size and scale function respectively.
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5.6 Conclusions

In this chapter, we studied two approximations namely linear and quadratic of GFD
which is defined using the scale and weight function. Using this approximation we
presented two numerical schemes for GFIDEs. The order of linear and quadratic
approximation is A2~ and h3~“ respectively. For the numerical simulation we con-
sider example and solved it using the numerical schemes P1 and P2 for different
scale functions z(t). It is clear from tables that linear and quadratic approximation

validate the theoretical results.

Kokokokokskook sk ko kok
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