
Chapter 4

Comparative Study of Three

Numerical Schemes for Fractional

Integro-Differential Equations

4.1 Introduction

Fractional calculus is a branch of mathematics that deals with generalization of

the well-known operations of differentiations and integrations to arbitrary orders.

Many papers on fractional calculus have been published during the second half of

the 20th century. Recent developments of fractional calculus involve the real world

applications in science and engineering such as viscoelasticity [137, 138, 176], bio-

engineering [139], biology [136] and more can be found in [2, 5, 78]. Two main

differences between fractional calculus and classical calculus are, 1) fractional inte-

grals and derivatives are nonlocal, and 2) in the limit results obtained from frac-

tional calculus coincide with those obtained from classical calculus. This makes
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fractional calculus to be richer than classical calculus. Many real world problems

are being modelled using fractional derivative and integral terms and such equa-

tions are known as the fractional integro-differential equations. Fractional integro-

differential equations arise in the areas of signal processing [78], mechanics [177],

econometrics [178], fluid dynamics [5], nuclear reactor dynamics, acoustic waves [1]

and electromagnetics [179] etc. There have been much developments on the analyt-

ical and numerical methods for solving the fractional integro-differential equations

in recent years. Some of them are described as follows: In [180], Saadatmandi and

Dehghan applied the Legendre collocation method for solving the fractional integro-

differential equations. Rawashdeh [181] presented the spline collocation scheme for

solving fractional integro-differential equations. In [182, 183], the application of

the collocation method has been extended for solving linear and nonlinear fractional

integro-differential equations. Galerkin method, and wavelet Galerkin method based

numerical methods are studied by the authors respectively in [184] and [185] for

fractional integro-differential equations. In [186, 187], authors presented the second

kind Chebyshev wavelet based approximation and cosine and sine wavelet method

respectively for fractional integro-differential equations. Some other methods such

as least squares method [188], Tau approximation methods [189, 190], Chebyshev

pseudo spectral method [68], hybrid collocation method [191], Sinc-Legendre col-

location method [192], Legendre spectral element method [193], meshless method

[194], and operational matrix method [195] are discussed by the authors for solving

fractional integro-differential equations and fractional differential equations in recent

years. More recently in 2015, Tohidi and co-authors [196] presented the Euler func-

tion based operational matrix approach for solving the fractional integro-differential

equations.

In this chapter, we present three numerical schemes such as Linear, Quadratic and
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Quadratic-linear for the fractional integro-differential equations defined in terms

of the Caputo derivatives and also discuss the comparative performances of these

schemes. These schemes are based on the discretization of the domain into subdo-

mains and then the unknown function is approximated between subdomain using lin-

ear and quadratic interpolating polynomials. These approximations schemes are also

useful when the analytical integrations of the expression containing the fractional

derivative and integral terms are rare or difficult to compute and thus the numerical

schemes become important. The significant contributions in development of these

schemes for fractional derivatives are discussed in [197], where the idea of discretized

fractional calculus with linear multistep method is presented. Kumar and Agrawal

[148] presented the numerical scheme for the fractional differential equations defined

in terms of the Caputo derivatives using the quadratic approximations. In 2006,

Odibat [149] discussed the algorithms named modified Trapezoidal rules for the ap-

proximations of the fractional integral and the Caputo fractional derivatives and also

discussed the error estimates. Further, Agrawal [150] discussed the finite element

approximation for the fractional variational problem. Later, Pandey and Agrawal

[152] presented a comparative study of linear, quadratic and quadratic-linear approx-

imations to the fractional variational problems defined in terms of the generalized

derivatives. In [198], the authors presented the higher order approximations to the

Caputo derivatives and then applied to solve the advection-diffusion equations. In

2015, Dehghan et al. [199] discussed the high order difference schemes together with

Galerkin spectral technique for numerical solution of multi-term time fractional par-

tial differential equations. These recent works motivated the authors to present and

discuss the comparative study of Linear, Quadratic and Quadratic-linear schemes

for fractional integro-differential equations. Here these schemes are discussed and

compared only for linear fractional integro-differential equations. However, similar

approach may also be applied for nonlinear case in future. The Quadratic-linear
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scheme is proposed as combination of the Linear scheme and Quadratic scheme for

fractional integro-differential equations. These schemes and their comparative study

are analyzed on the illustrative test examples. Further, error estimates of the pre-

sented schemes are established. Numerical convergence order of all three schemes

are calculated and presented through tables.

4.2 Statement of Problem

Now, we consider the general fractional integro-differential equation defined as,

Dαϕ(x) = f(x) +

∫ x

0

K(x, τ)ϕ(τ) dτ, 0 ≤ x, τ ≤ 1, 0 < α < 1, (4.1)

with the following supplementary condition ϕ(0) = δ, where Dαϕ(x) indicates the

α-th order Caputo derivatives of ϕ(x), and f(x), K(x, τ) are known functions. The

numerical schemes for this problem are presented in the upcoming section.

4.3 Numerical Schemes

In this section, three approximation schemes namely Linear, Quadratic and Quadratic-

Linear schemes are presented and discussed for the fractional integro-differential

equation defined by Eq. (4.1). These schemes are denoted as S1, S2 and S3 respec-

tively and are described as follows:
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4.3.1 The Linear Scheme (S1)

In the Linear scheme, the domain is divided into n subintervals [xj, xj+1] and then

the unknown function is approximated as the linear interpolation function into each

subintervals with the uniform step size h = 1
n
, such that the node points are xk =

kh, k = 0, 1, 2, . . . , n. We denote the values of functions ϕ(x), f(x) at the node xk

by ϕk = ϕ(xk) and fk = f(xk). The fractional integro-differential equation defined

by Eq.(4.1) takes the form for 0 < α < 1,

1

Γ(1− α)

∫ xk

0

(xk − τ)−αϕ′(τ) dτ = f(xk) +

∫ xk

0

K(xk, τ)ϕ(τ) dτ. (4.2)

The left side of Eq. (4.2) can be approximated using the initial condition Dαϕ(x0) =

0,

1

Γ(1− α)

∫ xk

0

(xk − τ)−αϕ′(τ) dτ =
1

Γ(1− α)

k−1∑
j=0

∫ xj+1

xj

(xk − τ)−αϕ′(τ) dτ

=
1

Γ(1− α)

k−1∑
0

∫ xj+1

xj

(xk − τ)−α
(
ϕj+1 − ϕj

h

)
dτ,

or,

1

Γ(1− α)

∫ xk

0

(xk − τ)−αϕ′(τ) dτ =
k∑
j=0

A(k, j)ϕj, (4.3)

where,

A(k, j) =
h−α

Γ(1− α)


(k − 1)1−α − (k)1−α, j = 0,

(k − j − 1)1−α − 2(k − j)1−α + (k − j + 1)1−α, 1 ≤ j ≤ k,

1, j = k.

(4.4)
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Similarly the integral equation on right side of Eq. (4.2) is approximated as,

∫ xk

0

K(xk, τ)ϕ(τ) dτ =
k−1∑
j=0

∫ xj+1

xj

K(xj, τ)ϕ(τ) dτ (4.5)

The function ϕ(τ) is approximated over the interval [xj, xj+1] using formula ϕ1,j(τ) ≈
(xj+1−τ)

h
ϕj +

(τ−xj)
h

ϕj+1, then

∫ xk

0

K(xk, τ)ϕ(τ) dτ =
k∑
j=0

U(k, j)ϕj, (4.6)

where,

U(k, j) =


S(k, 0), j = 0,

S(k, j) + T (k, j − 1), 1 ≤ j ≤ k,

T (k, k − 1), j = k

(4.7)

S(k, j) = h

∫ 1

0

(1− p)K(kh, hp+ jh) dp (4.8)

T (k, j) = h

∫ 1

0

pK(kh, hp+ jh) dp. (4.9)

Using Eq.(4.3) and Eq. (4.6), Eq. (4.2) is equivalent to the linear system of equa-

tions,
k∑
j=0

ξ(k, j)ϕj = fk, k = 1, 2, . . . , n, (4.10)

where,

ξ(k, j) = A(k, j)− U(k, j).

The approximated solution of the Eq. (4.1) can be obtained by solving the linear

system given by Eq. (4.10). Now we discuss the Quadratic scheme (S2) as follows.
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4.3.2 The Quadratic Scheme (S2)

In this scheme, the unknown function is approximated by linear interpolation func-

tion for j = 0 in the interval [x0, x1] and for j ≥ 2, the unknown function is ap-

proximated as quadratic interpolation function in the interval [xj−1, xj]. We follow

the similar steps as described in the scheme S1 to derive the expression for the

Quadratic scheme for Eq.(4.2). The derivations are obtained in parts and described

below.

Part 1: Approximation of the left side of the Eq. (4.2) containing the Caputo

derivative term: We assume the initial condition Dαϕ(x0) = 0,

1

Γ(1− α)

∫ xk

0

(xk − τ)−αϕ′(τ) dτ =
1

Γ(1− α)

k∑
j=1

∫ xj

xj−1

(xk − τ)−αϕ′(τ) dτ (4.11)

=
1

Γ(1− α)

∫ x1

x0

(xk − τ)−αϕ′(τ) dτ +
1

Γ(1− α)

k∑
j=2

∫ xj

xj−1

(xk − τ)−αϕ′(τ) dτ (4.12)

On the first interval [x0, x1], the linear interpolation is used for approximating

the unknown function as like scheme S1 and for the other subintervals (j ≥ 2),

the quadratic interpolation function (ϕ2,j−1(τ))′ for the three points (xj−2, ϕj−2),

(xj−1, ϕj−1) and (xj, ϕj) is applied such that,

(ϕ2,j−1(τ))′ =

(
(τ − xj−1)(τ − xj)

2h2
ϕj−2 −

(τ − xj−2)(τ − xj)
h2

ϕj−1

+
(τ − xj−2)(τ − xj−1)

2h2
ϕj

)′

(ϕ2,j−1(τ))′ =

(
(2τ − xj−1 − xj)

2h2
ϕj−2 −

(2τ − xj−1 − xj)
h2

ϕj−1 +
(2τ − xj−1 − xj)

2h2
ϕj

)
(4.13)
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Thus from Eq. (4.12) and Eq. (4.13), we have,

≈ 1

Γ(1− α)

∫ x1

x0

(xk − τ)−α
(
ϕ1 − ϕ0

h

)
dτ +

1

Γ(1− α)

k∑
j=2

∫ xj

xj−1

(xk − τ)−α (ϕ2,j−1(τ))′ dτ,

=
1

Γ(1− α)

∫ x1

x0

(xk − τ)−α
(
ϕ1 − ϕ0

h

)
dτ

+
h−α

Γ(2− α)

k∑
j=2

B(k − j)ϕj−2 + C(k − j)ϕj−1 +D(k − j)ϕj,

=
h−αak−1

Γ(2− α)
(ϕ1 − ϕ0) +

h−α

Γ(2− α)

k∑
j=2

B(k − j)ϕj−2 + C(k − j)ϕj−1 +D(k − j)ϕj,

(4.14)

where,

ak−1 = k1−α − (k − 1)1−α,

B(k − j) =
1

2− α

[
(k − j + 1)1−α

(
k − j +

α

2

)
− (k − j)1−α

(
k − j − α

2
+ 1
)]
,

C(k − j) =
2

(2− α)

[
(k − j)1−α(k − j − α + 2)− (k − j + 1)2−α] ,

D(k − j) =
1

2− α

[
(k − j + 1)1−α

(
k − j − α

2
+ 2
)
− (k − j)1−α

(
k − j − 3α

2
+ 3

)]
.

Eq. (4.14) can be written as,

h−αak−1

Γ(2− α)
(ϕ1 − ϕ0) +

h−α

Γ(2− α)

k∑
j=2

B(k − j)ϕj−2 + C(k − j)ϕj−1 +D(k − j)ϕj

=
h−α

Γ(2− α)

k∑
j=0

sjϕk−j.
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Or,

1

Γ(1− α)

∫ xk

0

(xk − τ)−αϕ′(τ) dτ =
h−α

Γ(2− α)

k∑
j=0

sjϕk−j (4.15)

Here the coefficients sj in Eq. (4.15) for different k can be expressed as,

For k = 1,


s0 = a0

s1 = −a0.

For k = 2,


s0 = D(0)

s1 = C(0) + a1

s2 = B(0)− a1.

For k = 3,



s0 = D(0)

s1 = C(0) +D(1)

s2 = B(0) + C(1) + a2

s3 = B(1)− a2.

And for k ≥ 4, the coefficients have the following relations:

s0 = D(0)

s1 = C(0) +D(1)

sj = B(j − 2) + C(j − 1) +D(j), (2 ≤ j ≤ k − 2)

sk−1 = B(k − 3) + C(k − 2) + ak−1

sk = B(k − 2)− ak−1.
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Part 2: Approximation of the integration term on the right side of Eq.(4.2):

The integration term on the right side of Eq.(4.2) is expressed as,

∫ xk

0

K(xk, τ)ϕ(τ) dτ =
k∑
j=1

∫ xj

xj−1

K(xk, τ)ϕ(τ) dτ, (4.16)

=

∫ x1

x0

K(xk, τ)ϕ(τ) dτ +
k∑
j=2

∫ xj

xj−1

K(xk, τ)ϕ(τ) dτ. (4.17)

In Eq. (4.17), the function ϕ(τ) is approximated over the interval [x0, x1] using the

following formula:

ϕ1,0(τ) ≈ (x1 − τ)

h
ϕ0 +

(τ − x0)

h
ϕ1,

∫ x1

x0

K(xk, τ)ϕ(τ) dτ = akϕ0 + bkϕ1,

where,

ak = h

∫ 1

0

K(kh, ph)(1− p) dp and bk = h

∫ 1

0

K(kh, ph)p dp (4.18)

And for j ≥ 2, the function ϕ(τ) is approximated over the interval [xj−1, xj] for

three points (xj−2, ϕj−2), (xj−1, ϕj−1) and (xj, ϕj), we use the quadratiic interpola-

tion function ϕ(τ) as discussed in the discretization of the Part 1 such that,

ϕ2,j−1(τ) =

(
(τ − xj−1)(τ − xj)

2h2
ϕj−2 −

(τ − xj−2)(τ − xj)
h2

ϕj−1

+
(τ − xj−2)(τ − xj−1)

2h2
ϕj

)
.
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Hence second integral of Eq. (4.17) is expressed as,

k∑
j=2

∫ xj

xj−1

K(xk, τ)ϕ(τ) dτ ≈
k∑
j=2

M(k, j)ϕj−2 +N(k, j)ϕj−1 +O(k, j)ϕj. (4.19)

Now using the transformation
τ−xj−1

h
= p, Eq. (4.17) takes form,

k∑
j=1

∫ xj

xj−1

K(xk, τ)ϕ(τ) dτ = akϕ0 +bkϕ1 +
k∑
j=2

M(k, j)ϕj−2 +N(k, j)ϕj−1 +O(k, j)ϕj

where,

M(k, j) =
h

2

∫ 1

0

K(kh, hp+ jh− h)p(p− 1) dp,

N(k, j) =
h

2

∫ 1

0

K(kh, hp+ jh− h)p(1− p2) dp,

O(k, j) =
h

2

∫ 1

0

K(kh, hp+ jh− h)p(p+ 1) dp,

or, ∫ xk

0

K(xk, τ)ϕ(τ) dτ =
k∑
j=0

vjϕj. (4.20)

The coefficients vj for different k can be calculated as,

For k = 1,


v0 = a1

v1 = b1.
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For k = 2,


v0 = M(2, 2) + a2

v1 = N(2, 2) + b2

v2 = O(2, 2).

For k = 3,



v0 = M(3, 2) + ak

v1 = M(3, 3) +N(3, 2) + b3

v2 = N(3, 3) +O(3, 2)

v3 = O(3, 3).

And for k ≥ 4, the coefficients have the following relations:



v0 = M(k, 2) + ak

v1 = M(k, 3) +N(k, 2) + bk

vj = M(k, j + 2) +N(k, j + 1) +O(k, j), (2 ≤ j ≤ k − 2)

vk−1 = N(k, k) +O(k, k − 1)

vk = O(k, k).

Using Eqs. (4.15) and (4.20), Eq. (4.2) can be expressed as,

Ak(ϕ0, ϕ1, ϕ2, . . . , ϕk)− Ck(ϕ0, ϕ1, ϕ2, . . . , ϕk) = fk, k = 1, 2, . . . , n. (4.21)

where,

Ak(ϕ0, ϕ1, ϕ2, . . . , ϕk) =
h−α

Γ(2− α)

k∑
j=0

sjϕk−j,
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Ck(ϕ0, ϕ1, ϕ2, . . . , ϕk) =
k∑
j=0

vjϕj.

Now, by solving the above system of linear equations given by Eq. (4.21), one ob-

tains the desired approximate solution of the fractional integro-differential equation

defined by Eq. (4.1).

4.3.3 The Quadratic Linear Scheme (S3)

Here, we discuss a hybrid scheme combining quadratic interpolation and linear in-

terpolation approximation together to approximate the desired solution of Eq.(4.2).

The left side of Eq. (4.2) (the term having Caputo derivative) is discretized using

quadratic interpolation. However, the integration term on the right side of Eq.(4.2)

is discretized using the linear interpolation approximation for the unknown function.

We use the discretization of both the parts as discussed in schemes S1 and S2. Now,

from Eq. (4.15) and Eq. (4.6), Eq. (4.2) takes the form,

h−α

Γ(2− α)

k∑
j=0

sjϕk−j −
k∑
j=0

U(k, j)ϕj = fk, where k = 1, 2, . . . , n. (4.22)

or,

Ak(ϕ0, ϕ1, ϕ2, . . . , ϕk)−Bk(ϕ0, ϕ1, ϕ2, . . . , ϕk) = fk, k = 1, 2, . . . , n. (4.23)

where,

Ak(ϕ0, ϕ1, ϕ2, . . . , ϕk) =
h−α

Γ(2− α)

k∑
j=0

sjϕk−j, (4.24)
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Bk(ϕ0, ϕ1, ϕ2, . . . , ϕk) =
k∑
j=0

U(k, j)ϕj. (4.25)

By solving the above system given by Eq. (4.23), the approximate solution is cal-

culated.

4.4 Error Estimates of the Approximations

In this section, the error estimates of the schemes S1, S2 and S3 are discussed as

follows.

Theorem 4.4.1 (S1). Let ϕ(τ) ∈ C2[0, xk], α(0 < α < 1) and suppose K(x, τ), 0 ≤

x, τ ≤ 1 is continuous and |K(x, τ)| ≤ M , where M > 0. Let Ek(ϕ, h, α) be the

error of the approximation to Eq.(4.1) using Linear scheme (S1) then,

|Ek(ϕ, h, α)| ≤ 1

Γ(1− α)

[
1

8
+

α

(1− α)(2− α)

]
max

x0≤τ≤xk
|ϕ′′(τ)|h2−α

+
M

8
max

x0≤τ≤xk
|ϕ′′(τ)|xkh2.

Proof. From Eqs. (4.1) and (4.10), we have,

|Ek(ϕ, h, α)| ≤ 1

Γ(1− α)

∣∣∣∣∣
k−1∑
j=0

∫ xj+1

xj

(xk − τ)−α
(
ϕ′(τ)− ϕj+1 − ϕj

h

)
dτ

∣∣∣∣∣
+

∣∣∣∣∣
k−1∑
j=0

∫ xj+1

xj

K(xk, τ)(ϕ(τ)− ϕ1,j(τ)) dτ

∣∣∣∣∣ . (4.26)
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For simplicity, we use notation,

|Ek
1 (ϕ, h, α)| = 1

Γ(1− α)

∣∣∣∣∣
k−1∑
j=0

∫ xj+1

xj

(xk − τ)−α
(
ϕ′(τ)− ϕj+1 − ϕj

h

)
dτ

∣∣∣∣∣ , (4.27)

|Ek
2 (ϕ, h, α)| =

∣∣∣∣∣
k−1∑
j=0

∫ xj+1

xj

K(xk, τ)(ϕ(τ)− ϕ1,j(τ)) dτ

∣∣∣∣∣ . (4.28)

Now, we consider the first part given by Eq. (4.27),

|Ek
1 (ϕ, h, α)| = 1

Γ(1− α)

∣∣∣∣∣
k−1∑
j=0

∫ xj+1

xj

(xk − τ)−α
(
ϕ′(τ)− ϕj+1 − ϕj

h

)
dτ

∣∣∣∣∣
=

1

Γ(1− α)

∣∣∣∣∣
k−1∑
j=0

∫ xj+1

xj

(xk − τ)−α (ϕ(τ)− ϕ1,j(τ))′ dτ

∣∣∣∣∣
=

1

Γ(1− α)

∣∣∣∣∣
k−1∑
j=0

∫ xj+1

xj

(xk − τ)−α d (ϕ(τ)− ϕ1,j(τ))

∣∣∣∣∣
=

1

Γ(1− α)

∣∣∣∣∣
k−1∑
j=0

(ϕ(τ)− ϕ1,j(τ)) (xk − τ)−α|xj+1
τ=xj

+ α
k−1∑
j=0

∫ xj+1

xj

(xk − τ)−α−1 (ϕ(τ)− ϕ1,j(τ)) dτ

∣∣∣∣∣
=

α

Γ(1− α)

∣∣∣∣∣
k−1∑
j=0

∫ xj+1

xj

(xk − τ)−α−1 (ϕ(τ)− ϕ1,j(τ)) dτ

∣∣∣∣∣
≤ α

Γ(1− α)

∣∣∣∣∣
k−2∑
j=0

∫ xj+1

xj

(xk − τ)−α−1 (ϕ(τ)− ϕ1,j(τ)) dτ

∣∣∣∣∣
+

α

Γ(1− α)

∣∣∣∣∣
∫ xk

xk−1

(xk − τ)−α−1 (ϕ(τ)− ϕ1,k−1(τ)) dτ

∣∣∣∣∣
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≤ 1

2
|ϕ′′(η)| α

Γ(1− α)

∣∣∣∣∣
k−2∑
j=0

∫ xj+1

xj

(xk − τ)−α−1(τ − xj)(τ − xj+1) dτ

∣∣∣∣∣
+

α

Γ(1− α)

1

2
|ϕ′′(ξ)|

∣∣∣∣∣
∫ xk

xk−1

(xk − τ)−α(τ − xk−1) dτ

∣∣∣∣∣
≤ 1

8
|ϕ′′(η)| 1

Γ(1− α)
h2−α +

α

Γ(1− α)

1

2
|ϕ′′(ξ)| h2−α

(1− α)(2− α)
, (4.29)

where, η ∈ (x0, xk−1), ξ ∈ (xk−1, xk).

Now, we take second part given by Eq. (4.28),

|Ek
2 (ϕ, h, α)| =

∣∣∣∣∣
k−1∑
j=0

∫ xj+1

xj

K(xk, τ)(ϕ(τ)− ϕ1,j(τ)) dτ

∣∣∣∣∣
≤ |ϕ

′′(ξ1)|
2

∣∣∣∣∣
k−1∑
j=0

∫ xj+1

xj

K(xk, τ)(τ − xj)(τ − xj+1) dτ

∣∣∣∣∣
≤ M

8
max

x0≤τ≤xk
|ϕ′′(τ)|xkh2, (4.30)

where, ξ1 ∈ (x0, xk). From Eq. (4.29)-(4.30) and Eq. (4.26),

|Ek(ϕ, h, α)| ≤ 1

Γ(1− α)

[
1

8
+

α

(1− α)(2− α)

]
max

x0≤τ≤xk
|ϕ′′(τ)|h2−α

+
M

8
max

x0≤τ≤xk
|ϕ′′(τ)|xkh2.

This completes the proof.

Theorem 4.4.2 (S2). Let ϕ(τ) ∈ C3[0, xk], α(0 < α < 1) and suppose K(x, τ),

0 ≤ x, τ ≤ 1 is continuous and |K(x, τ)| ≤M , where M > 0. Let Gk(ϕ, h, α) be the
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error of the approximation to Eq. (4.1) using Quadratic scheme (S2) then,

(i) For, k = 1, |G1(ϕ, h, α)| ≤ α

2Γ(3− α)
max

x0≤τ≤x1
|ϕ′′(τ)|h2−α

+
M

2
max

x0≤τ≤x1
|ϕ′′(τ)|x1h

2 and

(ii) For, k ≥ 2, |Gk(ϕ, h, α)| ≤ 1

Γ(1− α)

(
α

12
max

x0≤τ≤xk
|ϕ′′(τ)|(xk − x1)−α−1h3

+

[
1

12
+

α

3(1− α)(2− α)

(
1

2
+

1

3− α

)]

× max
x0≤τ≤xk

|ϕ′′′(τ)|h3−α
)

+
M

2
max

x0≤τ≤x1
|ϕ′′(τ)|x1h

2 +
M

12
max

x0≤τ≤x1
|ϕ′′′(τ)|(xk − x1)h3.

Proof. Part (i): From Eqs. (4.1) and (4.21), we have the error of the approximation

for k = 1,

|G1(ϕ, h, α)| ≤ 1

Γ(1− α)

∣∣∣∣∫ x1

x0

(x1 − τ)−α
(
ϕ′(τ)− ϕ1 − ϕ0

h

)
dτ

∣∣∣∣
+

∣∣∣∣∫ x1

x0

K(x1, τ) (ϕ(τ)− ϕ1,j(τ)) dτ

∣∣∣∣ . (4.31)

For simplicity, we introduce the notations for each right side part of Eq. (4.31) as,

|G1
1(ϕ, h, α)| = 1

Γ(1− α)

∣∣∣∣∫ x1

x0

(x1 − τ)−α
(
ϕ′(τ)− ϕ1 − ϕ0

h

)
dτ

∣∣∣∣ , (4.32)

|G1
2(ϕ, h, α)| =

∣∣∣∣∫ x1

x0

K(x1, τ) (ϕ(τ)− ϕ1,j(τ)) dτ

∣∣∣∣ . (4.33)
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Now we consider the first part given by Eq. (4.32),

|G1
1(ϕ, h, α)| = 1

Γ(1− α)

∣∣∣∣∫ x1

x0

(x1 − τ)−α
(
ϕ′(τ)− ϕ1 − ϕ0

h

)
dτ

∣∣∣∣
≤ α

2Γ(3− α)
max

x0≤τ≤x1
|ϕ′′(τ)|h2−α, (4.34)

|G1
2(ϕ, h, α)| =

∣∣∣∣∫ x1

x0

K(x1, τ) (ϕ(τ)− ϕ1,j(τ)) dτ

∣∣∣∣
≤ M

2
max

x0≤τ≤x1
|ϕ′′(τ)|x1h

2. (4.35)

From Eqs. (4.34)-(4.35) and Eq. (4.31),

|G1(ϕ, h, α)| ≤ α

2Γ(3− α)
max

x0≤τ≤x1
|ϕ′′(τ)|h2−α +

M

2
max

x0≤τ≤x1
|ϕ′′(τ)|x1h

2.

This completes the proof for Part (i). The proof of Part (ii) is given below.

Part (ii): From Eqs. (4.1) and (4.21), we have, for k ≥ 2

|Gk(ϕ, h, α)| ≤ 1

Γ(1− α)

(∣∣∣∣∫ x1

x0

(xk − τ)−α(ϕ(τ)− ϕ1,0(τ))′ dτ

∣∣∣∣
+

∣∣∣∣∣
k∑
j=2

∫ xj

xj−1

(xk − τ)−α(ϕ(τ)− ϕ2,j−1(τ))′ dτ

∣∣∣∣∣
)

+

(∣∣∣∣∫ x1

x0

K(xk, τ)(ϕ(τ)− ϕ1,0(τ)) dτ

∣∣∣∣
+

∣∣∣∣∣
k∑
j=2

∫ xj

xj−1

K(xk, τ)(ϕ(τ)− ϕ2,j−1(τ)) dτ

∣∣∣∣∣
)
. (4.36)
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We denote Eq. (4.36) as,

|Gk(ϕ, h, α)| ≤ |Gk
1(ϕ, h, α)|+ |Gk

2(ϕ, h, α)| (4.37)

where,

|Gk
1(ϕ, h, α)| = 1

Γ(1− α)

(∣∣∣∣∫ x1

x0

(xk − τ)−α(ϕ(τ)− ϕ1,0(τ))′ dτ

∣∣∣∣
+

∣∣∣∣∣
k∑
j=2

∫ xj

xj−1

(ϕ(τ)− ϕ2,j−1(τ))′

(xk − τ)α
dτ

∣∣∣∣∣
)

(4.38)

|Gk
2(ϕ, h, α)| =

∣∣∣∣∫ x1

x0

K(xk, τ)(ϕ(τ)− ϕ1,0(τ)) dτ

∣∣∣∣
+

∣∣∣∣∣
k∑
j=2

∫ xj

xj−1

K(xk, τ)(ϕ(τ)− ϕ2,j−1(τ)) dτ

∣∣∣∣∣ (4.39)

Now we consider Eq. (4.38),

|Gk
1(ϕ, h, α)| = 1

Γ(1− α)

(∣∣∣∣∫ x1

x0

(xk − τ)−α(ϕ(τ)− ϕ1,0(τ))′ dτ

∣∣∣∣
+

∣∣∣∣∣
k∑
j=2

∫ xj

xj−1

(ϕ(τ)− ϕ2,j−1(τ))′

(xk − τ)α
dτ

∣∣∣∣∣
)
,

≤ α

Γ(1− α)

[∣∣∣∣∫ x1

x0

(ϕ(τ)− ϕ1,0(τ))(xk − τ)−α−1 dτ

∣∣∣∣
+

∣∣∣∣∣
k∑
j=2

∫ xj

xj−1

(ϕ(τ)− ϕ2,j−1(τ))(xk − τ)−α−1 dτ

∣∣∣∣∣
]
. (4.40)

Since,

∣∣∣∣∫ x1

x0

(ϕ(τ)− ϕ1,0(τ))(xk − τ)−α−1 dτ

∣∣∣∣
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=

∣∣∣∣∫ x1

x0

ϕ′′(η1)

2
(τ − x0)(τ − x1)(xk − τ)−α−1 dτ

∣∣∣∣
=

∣∣∣∣ϕ′′(η1)

2

∫ x1

x0

(τ − x0)(τ − x1)(xk − τ)−α−1 dτ

∣∣∣∣
≤ 1

12
|ϕ′′(η1)|(xk − x1)−α−1h3. (4.41)

where η1 ∈ (x0, x1), We also know that

∣∣∣∣∣
k−1∑
j=2

∫ xj

xj−1

(ϕ(τ)− ϕ2,j−1(τ))(xk − τ)−α−1 dτ

∣∣∣∣∣
=

∣∣∣∣∣
k−1∑
j=2

∫ xj

xj−1

ϕ′′′(ϑj)

6
(τ − xj−2)(τ − xj−1)(τ − xj)(xk − τ)−α−1 dτ

∣∣∣∣∣
=

1

6

∣∣∣∣∣ϕ′′′(ηj)
k−1∑
j=2

∫ xj

xj−1

(τ − xj−2)(τ − xj−1)(τ − xj)(xk − τ)−α−1 dτ

∣∣∣∣∣
≤ 1

6
|ϕ′′′(η)|

k−1∑
j=2

∫ xj

xj−1

(τ − xj−2)(τ − xj−1)(τ − xj)(xk − τ)−α−1 dτ

≤ 1

12
|ϕ′′′(η)|h3

∫ xk−1

x1

(xk − τ)−α−1 dτ

≤ 1

12
|ϕ′′′(η)|h3−α, (4.42)

where ηj ∈ (xj−2, xj), 2 ≤ j ≤ k − 1, η ∈ (x0, xk−1) and

∫ xk

xk−1

(ϕ(τ)− ϕ2,k−1(τ))(xk − τ)−α−1 dτ
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=

∫ xk

xk−1

ϕ′′′(ϑk)

6
(τ − xk−2)(τ − xk−1)(τ − xk)(xk − τ)−α−1 dτ

= −ϕ
′′′(ηk)

6

∫ xk

xk−1

(τ − xk−2)(τ − xk−1)(xk − τ)−α dτ

= −1

3

1

(2− α)(1− α)

(
1

2
+

1

3− α

)
ϕ′′′(ηk)h

3−α. (4.43)

From Eqs. (4.39)-(4.43) and (4.37) we get,

|Gk
1(ϕ, h, α)| ≤

(
α

12
max

x0≤τ≤x1
| ϕ′′(τ)|(xk − x1)−α−1h3

+

[
1

12
+

α

3(1− α)(2− α)

(
1

2
+

1

3− α

)]

× max
x0≤τ≤xk

1

Γ(1− α)
|ϕ′′′(τ)|h3−α

)
. (4.44)

Now consider Eq. (4.39),

|Gk
2(ϕ, h, α)| =

∣∣∣∣∫ x1

x0

K(xk, τ)(ϕ(τ)− ϕ1,0(τ)) dτ

∣∣∣∣
+

∣∣∣∣∣
k∑
j=2

∫ xj

xj−1

K(xk, τ)(ϕ(τ)− ϕ2,j−1(τ)) dτ

∣∣∣∣∣
=
M

2
max

x0≤τ≤x1
|ϕ′′(τ)|x1h

2

+
1

6
max

x0≤τ≤xk
|ϕ′′′(τ)|

∣∣∣∣∣
k∑
j=2

∫ xj

xj−1

K(xk, τ)(τ − xj−2)(τ − xj−1)(τ − xj) dτ

∣∣∣∣∣
≤ M

2
max

x0≤τ≤x1
|ϕ′′(τ)|x1h

2 +
M

12
max

x0≤τ≤xk
|ϕ′′′(τ)|(xk − x1)h3. (4.45)
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From Eqs. (4.44),(4.45) and (4.37),

|Gk(ϕ, h, α)| ≤ 1

Γ(1− α)

(
α

12
max

x0≤τ≤xk
|ϕ′′(τ)|(xk − x1)−α−1h3

+

[
1

12
+

α

3(1− α)(2− α)

(
1

2
+

1

3− α

)]
max

x0≤τ≤xk
|ϕ′′′(τ)|h3−α

)

+
M

2
max

x0≤τ≤x1
|ϕ′′(τ)|x1h

2 +
M

12
max

x0≤τ≤x1
|ϕ′′′(τ)|(xk − x1)h3.

This completes the proof.

Theorem 4.4.3 (S3). Let ϕ(τ) ∈ C3[0, xk], α(0 < α < 1) and suppose K(x, τ),

0 ≤ x, τ ≤ 1 is continuous and |K(x, τ)| ≤M , where M > 0. Let F k(ϕ, h, α) be the

error of the approximation to Eq. (4.1) using Quadratic-linear scheme (S3) then,

(i) For, k = 1, |F 1(ϕ, h, α)| ≤ α

2Γ(3− α)
max

x0≤τ≤x1
|ϕ′′(τ)|h2−α

+
M

2
max

x0≤τ≤x1
|ϕ′′(τ)|x1h

2.

(ii) For, k ≥ 2, |F k(ϕ, h, α)| ≤
(
α

12
max

x0≤τ≤xk
|ϕ′′(τ)|(xk − x1)−α−1h3

+

[
1

12
+

α

3(1− α)(2− α)

(
1

2
+

1

3− α

)]

× max
x0≤τ≤xk

|ϕ′′′(τ)|h3−α
)

+
M

2
max

x0≤τ≤xk
|ϕ′′(τ)|xkh2.

Proof (i) From Eqs. (4.1) and (4.22), we have,

|F 1(ϕ, h, α)| ≤ 1

Γ(1− α)

∣∣∣∣∫ x1

x0

(x1 − τ)−α
(
ϕ′(τ)− ϕ1 − ϕ0

h

)
dτ

∣∣∣∣
+

∣∣∣∣∫ x1

x0

K(x1, τ) (ϕ(τ)− ϕ1,0(τ)) dτ

∣∣∣∣ . (4.46)
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For simplicity, we use notation,

|F 1
1 (ϕ, h, α)| = 1

Γ(1− α)

∣∣∣∣∫ x1

x0

(x1 − τ)−α
(
ϕ′(τ)− ϕ1 − ϕ0

h

)
dτ

∣∣∣∣ , (4.47)

|F 1
2 (ϕ, h, α)| =

∣∣∣∣∫ x1

x0

K(x1, τ) (ϕ(τ)− ϕ1,0(τ)) dτ

∣∣∣∣ , (4.48)

such that,

|F 1(ϕ, h, α)| ≤ |F 1
1 (ϕ, h, α)|+ |F 1

2 (ϕ, h, α)|. (4.49)

Proof of this theorem could be obtained using Theorems 4.4.1 and 4.4.2.

Now we consider Eq. (4.47),

|F 1
1 (ϕ, h, α)| = 1

Γ(1− α)

∣∣∣∣∫ x1

x0

(x1 − τ)−α
(
ϕ′(τ)− ϕ1 − ϕ0

h

)
dτ

∣∣∣∣
≤ α

2Γ(3− α)
max

x0≤τ≤x1
|ϕ′′(τ)|h2−α. (4.50)

|F 1
2 (ϕ, h, α)| =

∣∣∣∣∫ x1

x0

K(x1, τ) (ϕ(τ)− ϕ1,0(τ)) dτ

∣∣∣∣
≤ M

2
max

x0≤τ≤x1
|ϕ′′(τ)|x1h

2. (4.51)

From Eqs. (4.49)-(4.51),

|F 1(ϕ, h, α)| = α

2Γ(3− α)
max

x0≤τ≤x1
|ϕ′′(τ)|h2−α +

M

2
max

x0≤τ≤x1
|ϕ′′(τ)|x1h

2.

(ii) From Eqs. (4.1) and (4.22), we have, for k ≥ 2
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|F k(ϕ, h, α)| ≤ 1

Γ(1− α)

(∣∣∣∣∫ x1

x0

(xk − τ)−α(ϕ(τ)− ϕ1,0(τ))′ dτ

∣∣∣∣
+

∣∣∣∣∣
k∑
j=2

∫ xj

xj−1

(xk − τ)−α(ϕ(τ)− ϕ2,j−1(τ))′ dτ

∣∣∣∣∣
)

+

∣∣∣∣∣
k−1∑
j=0

∫ xj+1

xj

K(xk, τ)(ϕ(τ)− ϕ1,j(τ)) dτ

∣∣∣∣∣ (4.52)

Eq. (4.52) can be written directly using Eqs. (4.30) and (4.38),

|F k(ϕ, h, α)| ≤
(
α

12
max

x0≤τ≤xk
|ϕ′′(τ)|(xk − x1)−α−1h3

+

[
1

12
+

α

3(1− α)(2− α)

(
1

2
+

1

3− α

)]
× max

x0≤τ≤xk
|ϕ′′′(τ)|h3−α

)

+
M

2
max

x0≤τ≤x1
|ϕ′′(τ)|xkh2.

This completes the proof.

4.5 Numerical Results

Here, we take the examples from the literature and investigate the performance of the

presented schemes from Section 4.3. The examples are solved in [188]. The numerical

solution obtained using the discussed schemes S1, S2 and S3 are presented through

the tables. Further, the convergence order of the presented schemes is calculated

varying the step size h. For calculating the convergence order (CO) in each case,

the maximum absolute error (MAE) is calculated using the formula,

E(x) = ϕexact(x)− ϕNumerical(x),



Chapter 4. Comparative Study of Three Numerical Schemes... 83

MAE(h) := max{|E(x)|, x ∈ {x0, x1, . . . , xk}},

and then the convergence order(CO) is obtained using the formula

CO=lg[MAE(h)/MAE(h/2)]/lg(2).

Example 4.5.1. Consider the following linear fractional integro-differential equa-

tion [188],

D1/2ϕ(x) =
(8/3)x3/2 − 2x1/2

√
π

− 3x5 − 4x4

12
+

∫ x

0

xτϕ(τ) dτ, 0 ≤ x, τ ≤ 1

subject to ϕ(0) = 0, having exact solution ϕ(x) = x2 − x.

The numerical solutions of Example 4.5.1 using schemes S1, S2 and S3 are presented

through Tables 4.1-4.2 for varying the step size h = 1/5 and h = 1/10 respectively.

Further, maximum absolute errors and the convergence orders for Example 4.5.1 are

provided in Tables 4.3-4.5 for the schemes S1, S2 and S3. From the Tables 4.3-4.5,

it is observed that the scheme S3 which is the combination of the Quadratic and

Linear schemes provide comparatively better convergence order than the schemes

S1 and S2.

Table 4.1: Numerical solutions obtained using schemes S1, S2 and S3
for Example 4.5.1 for n = 5.

xj Exact Solution S1 S2 S3

0.0 0.00 0.00 0.00 0.00

0.2 -0.16 -0.146642 -0.146720 -0.146642

0.4 -0.24 -0.217607 -0.228706 -0.228487

0.6 -0.24 -0.209663 -0.231148 -0.230553

0.8 -0.16 -0.120963 -0.152223 -0.150925

1.0 0.00 0.0505046 0.0078693 0.0104518
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Table 4.2: Numerical solutions obtained using schemes S1, S2 and S3
for Example 4.5.1 for n = 10.

xj Exact Solution S1 S2 S3

0.0 0.00 0.00 0.00 0.00

0.2 -0.16 -0.154475 -0.157177 -0.157166

0.4 -0.24 -0.231231 -0.238252 -0.238209

0.6 -0.24 -0.228457 -0.238611 -0.23849

0.8 -0.16 -0.145454 -0.158719 -0.154838

1.0 0.00 0.0184683 0.00132716 0.00190422

Table 4.3: MAE and CO for Example 4.5.1 using scheme S1.

h MAE CO

1/5 5.05046× 10−2 −

1/10 1.84683× 10−2 1.45136

1/20 6.70253× 10−3 1.46227

1/40 2.41481× 10−3 1.4728

1/80 8.65157× 10−4 1.48087



Chapter 4. Comparative Study of Three Numerical Schemes... 85

Table 4.4: MAE and CO for Example 4.5.1 using scheme S2.

h MAE CO

1/5 1.32804× 10−2 −

1/10 3.32983× 10−3 1.9958

1/20 8.33153× 10−4 1.9988

1/40 2.08325× 10−4 1.9998

1/80 5.20829× 10−5 1.9995

Table 4.5: MAE and CO for Example 4.5.1 using scheme S3.

h MAE CO

1/5 1.3358× 10−2 −

1/10 3.33388× 10−3 2.00243

1/20 8.33345× 10−4 2.00022

1/40 2.08334× 10−4 2.00002

1/80 5.20833× 10−5 2.00001

Example 4.5.2. Here, we consider the fractional integro-differential equation [188],

D5/6ϕ(x) = f(x) +

∫ x

0

xeτϕ(τ) dτ, 0 ≤ x, τ ≤ 1,

subject to ϕ(0) = 0, where f(x) = − 3
91

Γ(5/6)x(1/6)(−91+216x2)
π

+5x−xex(5−5x+3x2−

x3). This has exact solution ϕ(x) = x− x3.

The Example 4.5.2 is solved using the numerical schemes S1, S2 and S3 and the

obtained approximate solutions are presented through Tables 4.6-4.7 varying the
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step size h = 1/5 and h = 1/10 respectively. However, Tables 4.8-4.10 present

the maximum absolute errors and convergence orders for each schemes. One can

observe that the scheme S1 achieves convergence order more than 1 and schemes

S2 and S3 obtain the convergence order greater than 2. It is to mention here that

the quadratic scheme S2 in this case achieves better convergence order (Table 4.9)

than the schemes S3 (Table 4.10). This phenomena may be due to the behaviour of

the kernel, k(x, τ) = xeτ in the right side part of the fractional integro-differential

equation.

Table 4.6: Numerical solutions obtained using schemes S1, S2 and S3
for Example 4.5.2 for n = 5.

xj Exact Solution S1 S2 S3

0.0 0.00 0.00 0.00 0.00

0.2 0.192 0.180928 0.180928 0.180928

0.4 0.336 0.297013 0.314326 0.314249

0.6 0.384 0.298545 0.351121 0.350619

0.8 0.288 0.130392 0.241245 0.239352

1.0 0.000 -0.273753 -0.0670569 -0.0726013
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Table 4.7: Numerical solutions obtained using schemes S1, S2 and S3
for Example 4.5.2 for n = 10.

xj Exact Solution S1 S2 S3

0.0 0.00 0.00 0.00 0.00

0.2 0.192 0.187244 0.189354 0.189353

0.4 0.336 0.318846 0.330992 0.330968

0.6 0.384 0.346531 0.376553 0.376414

0.8 0.288 0.219913 0.277566 0.277066

1.0 0.000 -0.115363 -0.0147491 -0.0161695

Table 4.8: MAE and CO for Example 4.5.2 using scheme S1.

h MAE CO

1/5 2.73753× 10−1 −

1/10 1.15363× 10−1 1.24669

1/20 5.05187× 10−2 1.19129

1/40 2.24081× 10−2 1.1728

1/80 9.97983× 10−3 1.16693
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Table 4.9: MAE and CO for Example 4.5.2 using scheme S2.

h MAE CO

1/5 6.70569× 10−2 −

1/10 1.47491× 10−2 2.18476

1/20 3.28518× 10−3 2.16658

1/40 7.33189× 10−4 2.16373

1/80 1.63575× 10−4 2.16423

Table 4.10: MAE and CO for Example 4.5.2 using scheme S3.

h MAE CO

1/5 7.26013× 10−2 −

1/10 1.61695× 10−2 2.16672

1/20 3.65192× 10−3 2.14655

1/40 8.26938× 10−4 2.1428

1/80 1.87313× 10−4 2.14233

Example 4.5.3. In this example, we consider the fractional integro-differential

equation similar to the one considered in [182] such that,

D1/3ϕ(x) =
3
√
πx7/6

4Γ(13/6)
− 2

63
x9/2(9 + 7x2) +

∫ x

0

(xτ + x2τ 2)ϕ(τ) dτ, 0 ≤ x, τ ≤ 1,

subject to ϕ(0) = 0 with the exact solution ϕ(x) = x3/2.

The numerical schemes S1, S2 and S3 are performed on this example and the

obtained numerical results varying the step size h are shown through Tables. Tables
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4.11-4.12 present the obtained numerical solution using schemes S1, S2 and S3 for

step sizes h = 1/5 and h = 1/10 respectively. And Tables 4.13-4.15 represent the

maximum absolute errors and convergence orders for each schemes. From Tables

4.13-4.15, we observe that the scheme S1 performs comparatively better than the

schemes S2 and S3. The occurrence of such behaviour may be due to the appearance

of the fractional powers terms in the right side of the integro-differential equations

and approximation of such fractional terms becomes difficult.

Table 4.11: Numerical solutions obtained using schemes S1, S2 and S3 for
Example 4.5.3 for n = 5.

xj Exact Solution S1 S2 S3

0.0 0.00 0.00 0.00 0.00

0.2 0.089443 0.099203 0.099203 0.099203

0.4 0.252982 0.263841 0.257785 0.257849

0.6 0.464758 0.476607 0.467637 0.467942

0.8 0.715542 0.72966 0.718179 0.719065

1.0 1.00 1.01967 1.00327 1.00547
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Table 4.12: Numerical solutions obtained using schemes S1, S2 and S3
for Example 4.5.3 for n = 10.

xj Exact Solution S1 S2 S3

0.0 0.00 0.00 0.00 0.00

0.2 0.089443 0.093188 0.091088 0.09109

0.4 0.252982 0.256826 0.253615 0.253637

0.6 0.464758 0.46881 0.465257 0.465341

0.8 0.715542 0.72024 0.716039 0.716264

1.0 1.00 1.00634 1.00061 1.00115

Table 4.13: MAE and CO for Example 4.5.3 using scheme S1.

h MAE CO

1/5 1.96715× 10−2 −

1/10 6.34357× 10−3 1.63274

1/20 2.05203× 10−3 1.62824

1/40 6.61465× 10−4 1.63332

1/80 2.12232× 10−4 1.64002
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Table 4.14: MAE and CO for Example 4.5.3 using scheme S2.

h MAE CO

1/5 9.76046× 10−3 −

1/10 3.44045× 10−3 1.50435

1/20 1.21603× 10−3 1.50042

1/40 4.29918× 10−4 1.50005

1/80 1.51999× 10−4 1.5

Table 4.15: MAE and CO for Example 4.5.3 using scheme S3.

h MAE CO

1/5 9.76046× 10−3 −

1/10 3.44045× 10−3 1.50435

1/20 1.21603× 10−3 1.50042

1/40 4.29918× 10−4 1.50005

1/80 1.51999× 10−4 1.5

4.6 Conclusions

We studied comparative study of the different approximations schemes such as Lin-

ear, Quadratic and Quadratic-linear schemes for the fractional integro-differential

equations. The convergences of the presented numerical schemes are also established.

The discussed schemes successfully validate the numerical results. The convergence

of the numerical schemes is also discussed and validated through numerical results.

It is observed that the Quadratic-linear scheme S3 performs comparatively better to
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schemes S1 and S2 for the Example 4.5.1. However, it appears that the scheme S2

performs comparatively good than schemes S1 and S3 for Example 4.5.2. Schemes

S2 and S3 achieve second order convergence in both the examples. In the third

Example 4.5.3, the fractional integro-differential equation having exact solution as

fractional power of x is considered and numerical schemes are performed. And, in

this case, it is observed that the scheme S1 achieves better convergence order than

the schemes S2 and S3. Thus from these examples, it is concluded that all the

schemes perform well and provides accurate numerical results. It is also observed

that the performance of the schemes depends on the nature of the problem. Here,

the developed schemes are discussed only for the linear fractional integro-differential

equations.

***********
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