
Chapter 2

Approximations of Fractional

Integrals and Caputo Derivatives

with Application in Solving Abel’s

Integral Equations

2.1 Introduction

Fractional derivatives have gained much attention in recent years and this could

be due to its non-local nature compare to the traditional integer order derivatives.

Fractional derivatives have played a significant role in analysing the behaviour of the

physical phenomena through different domains of the science and engineering. Some

of the pioneer contributions in these areas may be considered as biology [136], vis-

coelasticity [137, 138], bioengineering [139] and more can be found in [2, 5]. Some of

recent applications of fractional derivatives in emerging areas could be also noted as
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mathematical biology [140, 141, 142, 143, 144] and heat and fluid flow [145]. Numer-

ical integration is the basic tool for obtaining the approximate value of the definite

integrals where the analytical integrations are difficult to evaluate. Numerical inte-

grations for the fractional integrations also become important in developing the al-

gorithms for solving applied problems defined using fractional derivatives. In recent

years, numerical integrations of the fractional integrals and the fractional deriva-

tives have attracted many researchers. The Adams-Bashforth–Moulton method for

the fractional differential equations is discussed in [146, 147]. Kumar and Agrawal

[148] presented quadratic approximation scheme for fractional differential equations.

In [149], Odibat presented a modified algorithm for approximation of fractional in-

tegral and Caputo derivatives and also obtained its error estimate. In [150, 151],

Agrawal discussed the finite element approximation and fractional power series so-

lution for the fractional variational problems. Pandey and Agrawal [152] discussed

a comparative study of different numerical methods such as linear, quadratic and

quadratic-linear schemes for solving fractional variational problems defined in terms

of the generalized derivatives. Recently, in [153], authors present three schemes for

solving fractional integro-differential equations. Reproducing kernel algorithm are

discussed for some time fractional partial differential equations in [154, 155]. Some

more approximation schemes for solving fractional PDEs are elaborated in detail by

Li and Zeng in [156]. In [149], Odibat presented the scheme for approximating the

Riemann-Liouville fractional integral and then obtained the approximations for the

Caputo derivatives. In this chapter, we focus on the higher order approximations

such as quadratic and cubic schemes to approximate the Riemann-Liouville frac-

tional integral and Caputo derivatives. The numerical approximations are based on

the idea of dividing the whole interval into a set of small subintervals and between

these two successive subintervals the unknown functions are approximated in terms

of the quadratic and cubic polynomials. Thus, the numerical scheme presented for
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the approximation of the Riemann-Liouville fractional integral and Caputo deriva-

tives are named as quadratic and cubic schemes. The error estimates for these

approximations are also presented where we observe that the quadratic and cubic

approximations achieve high convergence order. To validate these schemes, test ex-

amples are considered from the literature [149]. We also show that the obtained

results using the proposed schemes preserve the results obtained by Odibat [149].

Further, the presented schemes are applied to solve the Abel’s integral equations.

The numerical approach for solving Abel’s integral equations are recently studied

by Jahanshahi et al. [50], using the approximation scheme presented in [149]. Avaz-

zadeh et al. [157], used fractional calculus approach together with Chebyshev poly-

nomials to solve Abel’s integral equations.

Saadatmandi and Dehghan [158], applied collocation method to solve Abel’s inte-

gral equations of first and second kind using shifted Legendre’s polynomials. Li and

Zhao [62], studied the Abel’s type integral equation using the Mikusinski’s opera-

tor of fractional order. In [159], Badr presented the solution of generalized Abel’s

integral using Jacobi polynomials. Further, Saleh et al. [64], studied solution of

generalized Abel’s integral equation using Chebyshev Polynomials. The numerical

results presented in [50], are considered here to validate and compare the results

obtained by the presented schemes. Numerical simulations validate the presented

schemes and show the advantage over existing method [50] .

2.2 Numerical Schemes

Here, two numerical schemes such as Quadratic and Cubic schemes are discussed.

First, we divide the domain into several sub domains and then approximate the

unknown function into each sub domain. Further, the approximations are obtained
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using Quadratic and Cubic polynomial approximations of the unknown function into

each sub domains.

Here, we follow the simpler notations to the fractional integral and fractional deriva-

tives and denote Riemann-Lowville fractional integral (Eq. (1.1)) and Caputo frac-

tional derivative (Eq. (1.3)) as I-operator and D-operator respectively in the up-

coming derivations of the numerical schemes. From Eq. (1.1) and Eq. (1.3), the

approximation of the I-operator and D-operator can be expressed as,

(Iαf)(t) =
1

Γ(α)

∫ t

0

(t− τ)α−1f(τ)dτ ≈ I(f, h, α), (2.1)

(Dαf)(t) =
1

Γ(m− α)

∫ t

0

(t− τ)m−α−1f (m)(τ)dτ, ≈ D(f, h, α), (2.2)

(Iαf)(t) = I(f, h, α) + EI(f, h, α), (2.3)

(Dαf(t)) = D(f, h, α) + ED(f, h, α). (2.4)

Where, I(f, h, α) and D(f, h, α) denote the approximation of the I-operator and D-

operator respectively, and EI(f, h, α), ED(f, h, α) represents the error terms of their

approximations. Now we present the quadratic and cubic approximation schemes of

the I-operator and D-operator respectively as follows:

2.2.1 The Quadratic Scheme (A1)

In this subsection, the domain interval [0, t] is distributed into even number of subin-

tervals, N = 2n for n ≥ 1, equal parts with uniform step size (or time interval) h,

where h = t
2n

such that the node points are ti = ih, i = 0, 1, 2, . . . , 2n.

(Iαf)(t) =

∫ t

0

(t− τ)α−1

Γ(α)
f(τ)dτ ≈ IQ(f, h, α), (2.5)
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Dαf(t) ≈ DQ(f, h, α), (2.6)

where, IQ(f, h, α), DQ(f, h, α) represent the quadratic approximation of the I and

D-operators respectively and EIQ(f, h, α), EDQ(f, h, α) represent the error terms of

the quadratic approximation such that,

EIQ(f, h, α) = (Iαf)(t)− IQ(f, h, α), (2.7)

EDQ(f, h, α) = (Dαf)(t)−DQ(f, h, α). (2.8)

The function f(τ) is approximated over the interval [t2i, t2i+2] using the following

formula [152]:

fi,2 =
−(τ − t2i+1)

h

[
1− (τ − t2i+1)

h

]
f2i +

[
1−

(
τ − t2i+1

h

)2
]
f2i+1

+
(τ − t2i+1)

2h

[
1 +

(τ − t2i+1)

h

]
f2i+2. (2.9)

In this case, results are presented as following lemmas.

Lemma 2.2.1. Suppose that f ∈ C3[0, δ], and the interval [0, δ] is divided into even

number of sub intervals [t2i, t2i+2] such that ti = ih with h = δ
2n

, i = 0, 1, 2, . . . , 2n.

Let fi,2 is the quadratic polynomial approximation for f to the subintervals [t2i, t2i+2]

then the quadratic approximation IQ(f, h, α) of the I-operator is given by,

(i) IQ(f, h, α) =
n−1∑
i=0

(Ainf(t2i) +Binf(t2i+1) + Cinf(t2i+2)), (2.10)



Chapter 2. Approximations of Fractional Integrals and Caputo... 22

where

Ain =
2αhα

Γ(α + 3)
{(n− i− 1)(α+1)(2− α + 4i− 4n)

+ (n− i)α(2 + α2 + 4i2 + i(6− 8n)3α(1 + i− n)− 6n+ 4n2)}, (2.11)

Bin =
2(α+2)hα

Γ(α + 3)
{(n− i− 1)(α+1)(α− 2i+ 2n) + (n− i)(α+1)(2 + α + 2i− 2n)},

(2.12)

Cjk =
2αhα

Γ(α + 3)
{(n− i)(α+1)(2 + α + 4i− 4n)

+ (n− i− 1)α(α2 + 2i− 3αi+ 4i2 − 2n+ 3αn− 8in+ 4n2)}, (2.13)

(ii) and the approximation error EIQ(f, h, α) has the form,

|EIQ(f, h, α)| ≤ Cα‖f ′′′‖∞(t2n)αh3, (2.14)

where Cα is a constant depending on α.

Proof: From the definition of I-operator, we have,

IQ(f, h, α) = (Iαf)(t2i) =
1

Γ(α)

∫ t2i

0

(t2i − τ)α−1f(τ)dτ, (2.15)

We approximate f(τ) over the interval [t2i, t2i+2] using the quadratic polynomials

[152] as,

fi,2 =
−(τ − t2i+1)

h

[
1− (τ − t2i+1)

h

]
f2i +

[
1−

(
τ − t2i+1

h

)2
]
f2i+1

+
(τ − t2i+1)

2h

[
1 +

(τ − t2i+1)

h

]
f2i+2. (2.16)
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Evaluating Eq. (2.15) using Eq. (2.16), the desired approximation of IQ(f, h, α) as

given in part (i) of the Lemma 2.2.1 is obtained.

For proof of the part (ii) of the Lemma 2.2.1, we use the following well known result

of the interpolation by polynomials.

Theorem 2.2.1. Let gn(t) be the polynomial interpolating a function g ∈ Cn+1[a, b]

at the nodes t0, t1, t2, . . . , tn lying in the interval [a, b]. Then for, t ∈ [a, b], there

exist a ξt ∈ (a, b) such that, En(t) = g(t)− gn(t) = g(n+1)(ξt)
(n+1)!

∏n
i=0(t− ti).

From Eq. (2.15) and Eq. (2.16) we have,

|EIQ(f, h, α)| = |Iαf(t)− IQ(f, h, α)|

=

∣∣∣∣Iαf(t)− 1

Γ(α)

∫ t2i

0

(t2i − τ)α−1f(τ)dτ

∣∣∣∣
=

1

Γ(α)

∣∣∣∣∣
∫ t2n

0

(t2n − τ)α−1f(τ)dτ −
n−1∑
i=0

∫ t2i+2

t2i

(t2n − τ)α−1fi,2(τ)dτ

∣∣∣∣∣
=

1

Γ(α)

∣∣∣∣∣
n−1∑
i=0

∫ t2i+2

t2i

(t2n − τ)α−1(f(τ)− fi,2(τ))dτ

∣∣∣∣∣ , (2.17)

Using Theorem 2.2.1, and Eq. (2.17) we have,

≤ 1

6Γ(α)
‖f ′′′‖∞

∣∣∣∣∣
n−1∑
i=0

∫ t2i+2

t2i

(t2n − τ)α−1(τ − t2i)(τ − t2i+1)(τ − t2i+2)dτ

∣∣∣∣∣
≤ h3

9
√

3Γ(α)
‖f ′′′‖∞

∣∣∣∣∣
n−1∑
i=0

∫ t2i+2

t2i

(t2n − τ)α−1dτ

∣∣∣∣∣ = Cα‖f ′′′‖∞(t2n)αh3. (2.18)

where Cα is a constant depending on α. The proof is completed.

Lemma 2.2.2. Suppose that f ∈ Cm+3[0, δ], and the interval [0, δ] is divided into

even number of sub intervals [t2i, t2i+2] such that ti = ih with h = δ
2n

, i = 0, 1, 2, . . . , 2n.
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Let fi,2 is the quadratic polynomial approximation for f (m) to the subintervals [t2i, t2i+2]

then the quadratic approximation DQ(f, h, α) of the D-operator is given by,

(i) DQ(f, h, α) =
n−1∑
i=0

(Ainf (m)(t(2i)) + Binf (m)(t(2i+1)) + Cinf (m)(t(2i+2))), (2.19)

where,

Ain =
2(m−α)hm−α

Γ(m− α + 3)
[(n− i− 1)(m−α+1)(2−m+ α + 4i− 4n) + (n− i)(m−α)

{(2 + (m− α)2) + 4i2 + i(6− 8n) + 3(m− α)(1 + i− n)− 6n+ 4n2}], (2.20)

Bin =
2(m−α+2)hm−α

Γ(m− α + 3)
[(n− i− 1)(m−α+1)(m− α− 2i+ 2n)

+ (n− i)(m−α+1)(2 +m− α + 2i− 2n)], (2.21)

Cin =
2(m−α)hm−α

Γ(m− α + 3)
[(n− i)(m−α+1)(2 +m− α + 4i− 4n) + (n− i− 1)(m−α)

{(m− α)2 + 2i− 3(m− α)i+ 4i2 − 2n+ 3(m− α)n− 8in+ 4n2}] (2.22)

(ii) And the approximation error EDQ(f, h, α) has the form,

|EDQ(f, h, α)| ≤ C ′α‖f (m+3)‖∞t(m−α)
2n h3, (2.23)

where C
′
α is a constant depending only α.

Proof: The proof of the part (i) and part (ii) of the lemma can be carried out

following the similar steps and replacing α to m−α and f(τ) by f (m)(τ) as described

in the proof of the Lemma 2.2.1.



Chapter 2. Approximations of Fractional Integrals and Caputo... 25

2.2.2 The Cubic Scheme (A2)

Lemma 2.2.3. Suppose that f ∈ C4[0, δ], and the interval [0, δ] is divided into

subintervals [t3i, t3i+3] such that ti = ih with h = δ
3n

, i = 0, 1, 2, . . . , 3n. Let fi,3

is the cubic polynomial approximation for f to the subintervals [t3i, t3i+3] then the

cubic approximation IC(f, h, α) of the I-operator is given by,

(i) IC(f, h, α) =
n−1∑
i=0

(Dinf(t3i) + Einf(t3i+1) + Finf(t3i+2) +Ginf(t3i+3)) , (2.24)

where,

Din =
3αhα

2Γ(α + 4)
{2(n− i− 1)(1+α)

(
α2 + α(−4− 9i+ 9n) + 3(1 + 3i− 3n)(2 + 3i− 3n)

)
+ (n− i)α(2α3 + α2(12 + 11i− 11n) + α(22 + 36(i− n)2 + 55(i− n))

+ 6(1 + 3i− 3n)(2 + 3i− 3n)(1 + i− n))}, (2.25)

Ein =
3α+2hα

2Γ(α + 4)
{2(n− i)(1+α)(α2 + 5α(1 + i− n)) + 3(2 + 3i− 3n)(1 + i− n)

− (n− i− 1)α+1(α2 + α(−3− 8i+ 8n) + 6(2 + 3i− 3n)(i− n))}, (2.26)

Fin =
3α+2hα

2Γ(α + 4)
{2(n− i− 1)(α+1)(α2 + 5α(n− i)) + 3(1 + 3i− 3n)(i− n)

− (n− i)1+α(α2 + α(5 + 8i− 8n) + +6(1 + 3i− 3n)(1 + i− n))}, (2.27)

Gin =
3αhα

2Γ(α + 4)
{2(n− i)(1+α)(α2 + α(5 + 9i− 9n)) + 3(1 + 3i− 3n)

− (n− i− 1)α(2α3 + α2(1− 11i+ 11n) + α(3 + 36(i− n)2 + 17(i− n))

− 6(1 + 3i− 3n)(2 + 3i− 3n)(i− n))}, (2.28)
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(ii) and the approximation error EIG(f, h, α) has the form,

|EIC(f, h, α)| ≤ Dα‖f ′′′′‖∞(t3n)αh4, (2.29)

where Dα is a constant depending on α.

Proof: From Eq. (1.1), we have,

Iαf(t3n) =
n−1∑
i=0

∫ t3i+3

t3i

(t3n − τ)α−1f(τ)dτ, (2.30)

We approximate f(τ) over the interval [t3i, t3i+3] using the cubic polynomial as,

fi,3 =

[
−(τ − t3i+1)(τ − t3i+2)(τ − t3i+3)

6h3

]
f3i

+

[
(τ − t3i)(τ − t3i+2)(τ − t3i+3)

2h3

]
f3i+1

−
[

(τ − t3i)(τ − t3i+1)(τ − t3i+3)

2h3

]
f3i+2

+

[
(τ − t3i)(τ − t3i+1)(τ − t3i+2)

6h3

]
f3i+3. (2.31)

Evaluating Eq.(2.30) using Eq.(2.31), the desired approximation of IC(f, h, α) as

given in part (i) of the Lemma 2.2.1 is obtained. Proof of the second part of Lemma

2.2.3 is established here using Lemma 2.2.1.

From Eq.(2.30) and Eq.(2.31), we have,

|EIC(f, h, α)| = |Iαf(t)− IC(f, h, α)| =
∣∣∣∣Iαf(t3n)− 1

Γ(α)

∫ t3n

0

(t3n − τ)α−1f(τ)dτ

∣∣∣∣ ,
=

1

Γ(α)

∣∣∣∣∣
∫ t3n

0

(t3n − τ)α−1f(τ)dτ −
n−1∑
i=0

∫ t3i+3

t3i

(t3n − τ)α−1fi,3(τ)dτ

∣∣∣∣∣ ,



Chapter 2. Approximations of Fractional Integrals and Caputo... 27

=
1

Γ(α)

∣∣∣∣∣
n−1∑
i=0

∫ t3i+3

t3i

(t3n − τ)α−1(f(τ)− fi,3(τ))dτ

∣∣∣∣∣ (2.32)

Using Lemma 2.2.1 and Eq.(2.32), we have,

≤ 1

24Γ(α)
‖f ′′′′‖∞

∣∣∣∣∣
n−1∑
i=0

∫ t3i+3

t3i

(t3n − τ)α−1(τ − t3i)(τ − t3i+1)(τ − t3i+2)(τ − t3i+3)dτ

∣∣∣∣∣ ,

≤ h4

24Γ(α)
‖f ′′′′‖∞

n−1∑
i=0

∫ t3i+3

t3i

(t3n − τ)α−1τ = Dα‖f ′′′′‖∞(t3n)αh4, (2.33)

where Dα is constant depending on α.

This completes the proof.

Lemma 2.2.4. Suppose that f ∈ Cm+4[0, δ], and the interval [0, δ] is divided into

subintervals [t3i, t3i+3] such that ti = ih with h = δ
3n

, i = 0, 1, 2, 3, . . . , 3n. Let fi,3 is

the cubic polynomial approximation for f (m) to the subintervals [t3i, t3i+3] then the

cubic approximation DC(f, h, α) of the D-operator is given by,

(i) DC(f, h, α) =
n−1∑
i=0

(
Dinf (m)(t3i) + Einf (m)(t3i+1) + Finf (m)(t3i+2) + Ginf (m)(t3i+3)

)
,

(2.34)

where,

Din =
3(m−α)h(m−α)

2Γ(m− α + 4)
{2(n− i− 1)(m−α+1)((m− α)2 + (m− α)(−4− 9i+ 9i)

+ 3(1 + 3i− 3n)(2 + 3i− 3n)) + (n− i)m−α(2(m− α)3 + (m− α)2(12 + 11i− 11n)

+ (m− α)(22 + 36(i− n)2 + 55(i− n)) + 6(1 + 3i− 3n)(2 + 3i− 3n)(1 + i− n))}

(2.35)
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Ein =
3(m−α+2)h(m−α)

2Γ(m− α + 4)
{2(n− i)(m−α+1)((m− α)2 + 5(m− α)(1 + i− n)

+ 3(2 + 3i− 3n)(1 + i− n))− (n− i− 1)(m−α+1)((m− α)2

+ (m− α)2(12 + 11i− 11n)

+ (m− α)(−3− 8i+ 8n) + 6(2 + 3i− 3n)(i− n))}, (2.36)

Fin =
3(m−α+2)h(m−α)

2Γ(m− α + 4)
{2(n− i− 1)(m−α+1)((m− α)2 + 5(m− α)(n− i)

+ 3(1 + 3i− 3n)(i− n))− (n− i)(m−α+1)((m− α)2

+ (m− α)(5 + 8i− 8n) + 6(2 + 3i− 3n)(1 + i− n))}, (2.37)

Gin =
3(m−α)h(m−α)

2Γ(m− α + 4)
{2(n− i)(m−α+1)((m− α)2 + (m− α)(5 + 9i− 9m)

+ 3(1 + 3i− 3n)(2 + 3i− 3n))− (n− i− 1)(m−α)(2(m− α)3

+ (m− α)2(1− 11i− 11n) + (m− α)(3 + 36(i− n)2

+ 17(i− n))− 6(1 + 3i− 3n)(2 + 3i− 3n)(i− n))}, (2.38)

(ii) and the approximation error EDC(f, h, α) takes the form,

|EDC(f, h, α)| ≤ D
′

α‖f (m+4)‖∞t(m−α)
3n h4, (2.39)

where D
′
α is a constant depending only on α.

Proof: The proof of the part (i) and part (ii) of the above lemma can be carried out

using the similar steps and replacing α to m − α and f(τ) by f (m)(τ) as described
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in the proof of Lemma 2.2.3.

2.3 Results and Discussions

Here, we consider the example as illustrated by Odibat [149] with f(τ) = sin τ in

the I-operator for the comparison purpose. Lemmas 2.2.1, 2.2.2, 2.2.3 and 2.2.4 are

applied for the approximation of the I and D-operators for different values of the

fractional order α and numerical results are obtained. The numerical results using

Quadratic and Cubic approximation schemes for the I-operator is calculated for

different values of the step size and fractional order α , and are placed in the Tables

2.1-2.3. For the comparison purpose, the similar values of the parameters such as

fractional order α and step size are chosen as presented in [149]. It is clear from

the Tables 2.1-2.3, that the scheme A1 works well and achieves the better accuracy

compare to the linear scheme presented in [149]. From, Tables 2.1-2.3, it can be

seen that the errors are getting reduced as we increase the number of subintervals.

The convergence order of the scheme A1 for the results discussed in Tables 2.1-

2.3 are presented in Tables 2.4-2.6 respectively. From Tables 2.4-2.6, it can be

seen that the scheme A1 achieves the convergence order more than 3. Further, we

observe that the scheme A2 works well and achieves the better accuracy compared

to the scheme [149] and the scheme A1. The results of scheme A2 are presented

in Tables 2.7-2.9. Table 2.10 represents the convergence order of the scheme A2

for a particular case considered in Table 2.8. Schemes A1 and A2 are also applied

to approximate the Caputo derivative (D-operator). We consider the test function

f(τ) = sin τ , the fractional order α = 0.5 and vary the step size to generate the

numerical results. Numerical results using schemes A1 and A2 for approximations of

D-operators are showed in Table 2.11 and table 2.12 respectively. In the tables, MAE
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denotes the maximum absolute error and the convergence order (CO) is calculated

as: Convergence order =lg[MAE(h)/MAE(h/2)]/lg(2).

Table 2.1: Numerical results obtained using scheme A1 for I-operator, Iαf(t)(1)
for f(t) = sin t and α = 0.5.

n h IQ(f, h, 0.5) EIQ(f, h, 0.5) EIL(f, h, 0.5)[149]

10 0.05 0.6696838267942012 4.32783 ×10−7 1.30405×10−4

20 0.025 0.6696842212539105 3.83238×10−8 3.32769×10−5

40 0.0125 0.6696842561832945 3.39437×10−9 8.4373×10−6

80 0.00625 0.6696842592769013 3.00762×10−10 2.1301×10−6

Table 2.2: Numerical results obtained using scheme A1 for I-operator, Iαf(t)(1)
for f(t) = sin t and α = 1.

n h IQ(f, h, 1) EIQ(f, h, 1) EIL(f, h, 1) [149]

10 0.05 0.4596977100983376 1.59665 ×10−8 9.57743 ×10−5

20 0.025 0.4596976951295424 9.97682 ×10−10 2.39428 ×10−5

40 0.0125 0.4596976941942119 6.23516 ×10−11 5.9856×10−6

80 0.00625 0.4596976941357571 3.89683×10−12 1.4964×10−6

Table 2.3: Numerical results obtained using scheme A1 for I-operator, Iαf(t)(1)
for f(t) = sin t and α = 1.5.

n h IQ(f, h, 1.5) EIQ(f, h, 1.5) EIL(f, h, 1.5) [149]

10 0.05 0.2823225014367666 1.21065×10−7 5.89010×10−5

20 0.025 0.2823223880461549 7.67480×10−9 1.47111×10−5

40 0.0125 0.2823223808560551 4.84695×10−10 3.6767×10−6

80 0.00625 0.2823223804019575 3.05977×10−11 9.191×10−7
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Table 2.4: Convergence order using scheme A1 for I-operator, Iαf(t)(1) for
f(t) = sin t and α = 0.5.

h = 1
2n

MAE (A1) CO

1/10 4.89232×10−6

1/20 4.32783×10−7 3.49733

1/40 3.83238×10−8 3.49733

1/80 3.39437×10−9 3.49702

1/160 3.00762×10−10 3.49645

Table 2.5: Convergence order using scheme A1 for I-operator, Iαf(t)(1) for
f(t) = sin t and α = 1.

h = 1
2n

MAE (A1) CO

1/10 2.55692×10−7

1/20 1.59665×10−8 4.00129

1/40 9.97682×10−10 4.00032

1/80 6.23516×10−11 4.00008

1/160 3.89683×10−12 4.00005

It is noticed that exact value of the fractional integral Iα sin t is calculated using the

formula stated in Odibat [149] as, Iα sin t = tα
∑∞

i=0
(−1)it2i+1

Γ(α+2i+2)
, t > 0, and value

at t = 1, is used to compute the error.
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Table 2.6: Convergence order using scheme A1 for I-operator, Iαf(t)(1) for
f(t) = sin t and α = 1.5.

h = 1
2n

MAE (A1) CO

1/10 1.90186×10−6

1/20 1.21065×10−7 3.97356

1/40 7.67480×10−9 3.97951

1/80 4.84695×10−10 3.98498

1/160 3.05977×10−11 3.98558

Table 2.7: Numerical results obtained using scheme A2 for I-operator, Iαf(t)(1)
for f(t) = sin t and α = 0.5.

n h IC(f, h, 0.5) EIC(f, h, 0.5) EIL(f, h, 0.5) [149]

10 1/30 0.6696842705520611 1.09744×10−8 1.30405×10−4

20 1/60 0.6696842602530784 6.75415×10−10 3.32769×10−5

40 1/120 0.6696842596262024 4.85388×10−11 8.4373×10−6

80 1/240 0.6696842596896193 1.11956×10−10 2.1301×10−6

Table 2.8: Numerical results obtained using scheme A2 for I-operator, Iαf(t)(1)
for f(t) = sin t and α = 1.

n h IC(f, h, 1) EIC(f, h, 1) EIL(f, h, 1) [149]

10 1/30 0.4596977012278377 7.09598×10−9 9.57743×10−5

20 1/60 0.4596976945752709 4.43411×10−10 2.39428×10−5

40 1/120 0.4596976941318603 6.23516×10−11 5.9856×10−6

80 1/240 0.4 3.89683×10−12 1.4964×10−6
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Table 2.9: Numerical results obtained using scheme A2 for I-operator, Iαf(t)(1)
for f(t) = sin t and α = 1.5.

n h IC(f, h, 1.5) EIC(f, h, 1.5) EIL(f, h, 1.5) [149]

10 1/30 0.2823223847105428 4.33918×10−9 5.89010×10−5

20 1/60 0.2823223806431222 2.71762×10−10 1.47111×10−5

40 1/120 0.282322380395719 2.43592×10−11 3.6767×10−6

80 1/240 0.2823223804266486 5.52888×10−11 9.191×10−7

Table 2.10: Convergence order using scheme A2 for I-operator, Iαf(t)(1) for
f(t) = sin t and α = 1.

h = 1
3n

MAE (A2) CO

1/15 1.13626×10−7

1/30 7.09598×10−9 4.00115

1/60 4.43411×10−10 4.00029

1/120 2.77117×10−11 4.00008

1/240 1.73189×10−12 4.00008

Table 2.11: Numerical results obtained using scheme A1 for the D-operator,
Dαf(τ)(1) for f(t) = sin t and α = 0.5.

k h DQ(f, h, 0.5) EDQ(f, h, 0.5) EDL(f, h, 0.5) [149]

10 0.05 0.846057377964953 5.91241×10−7 1.706097×10−4

20 0.025 0.84605684138235 5.46582×10−8 4.30544×10−5

40 0.0125 0.846056791702752 4.9786×10−9 1.08365×10−5

80 0.00625 0.846056787174921 4.50768×10−10 2.7222×10−6
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Table 2.12: Numerical results obtained using scheme A2 for the D-operator,
Dαf(τ)(1) for f(t) = sin t and α = 0.5.

k h DC(f, h, 0.5) EDC(f, h, 0.5) EDL(f, h, 0.5) [149]

10 1/30 0.846056800339386 1.36152×10−8 1.706097×10−4

20 1/60 0.846056787554831 8.30678×10−10 4.30544×10−5

40 1/120 0.846056786769922 4.57691×10−11 1.08365×10−5

80 1/240 0.846056786169989 5.54164×10−10 2.7222×10−6

2.4 Application: Solving Abel’s Integral Equa-

tion

To establish the application of the Quadratic and Cubic schemes for the D-operator

as discussed in Section 2.2, we go through Abel integral equation of the first kind,

f(t) =

∫ t

0

g(τ)

(t− τ)α
dτ, 0 < α < 1, 0 ≤ t ≤ δ, (2.40)

where, f ∈ C1[a, b] is given function satisfying f(0) = 0 and g(τ) is unknown

function. The solution to Eq.(2.40) can be obtained as,

g(t) =
sin(αt)

π

∫ t

0

f ′(τ)

(t− τ)1−αdτ. (2.41)

The solution given by Eq.(2.41) can also be presented in terms of the I and D-

operators, using definition (Eq.(1.3)) as follows,

f(t) = Γ(1− α)I1−αg(t). (2.42)
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Using the property D-operator is left inverse of I-operator and simplifying Eq.(2.42),

it follows that,

g(t) =
1

Γ(1− α)
D1−αf(t). (2.43)

Now, we apply Lemma 2.2.2 and Lemma 2.2.4 to Eq.(2.43) to get the approximate

solution of the Abel’s integral equation given by Eq.(2.40).

Lemma 2.4.1. Let 0 < t < δ and suppose that the interval [0, δ] is subdivided into

n sub intervals [t2i, t2i+2], i = 1, 2, 3, . . . , n − 1 of length h = δ
2n

by using the nodes

ti = ih, i = 0, 1, . . . , 2n. Then the approximate solution g(t) to the solution g(t) of

the Abel integral equation given by Eq.(47) can be expressed using scheme A1 as,

g̃(t) =
n−1∑
i=0

(Ainf
′(t2i) + Binf ′(t2i+1) + Cinf

′(t2i+2)) , (2.44)

where,

Ain =
2αhα

Γ(α + 3)Γ(1− α)
{(n− i− 1)(α+1)(2− α + 4i− 4n)

+ (n− i)α(2 + α2 + 4i2 + i(6− 8n) + 3α(1 + i− n)− 6n+ 4n2}, (2.45)

Bin =
2(α+2)hα

Γ(α + 3)Γ(1− α)
{(n− i− 1)(α+1)(α− 2i+ 2n) + (n− i)(α+1)(2 + α + 2i− 2n)},

(2.46)

Cin =
2αhα

Γ(α + 3)Γ(1− α)
{(n− i)(α+1)(2 + α + 4i− 4n)

+ (n− i− 1)α(α2 + 2i− 3αi+ 4i2 − 2n+ 3αn− 8in+ 4n2)} (2.47)
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Moreover, if f ∈ C4[0, t], then g(t) = g̃(t)− 1
Γ(1−α)

E(t) with

|E(t)| ≤ Sα‖f ′′′′‖∞tαh3, (2.48)

where Sα is the constant depending only on α and ‖f ′′′′‖∞ = maxx∈[0,t]|f ′′′′(x)|.

Proof: The solution of the Abel’s integral equation (Eq.(2.40)) represented by

Eq.(2.43) in the form of D-operator can be express as,

g(t) =
sin(απ)Γ(α)

π
D1−αf(t). (2.49)

The results can be obtained using Lemma 2.2.2 to Eq.(2.49) with some simple cal-

culation. To validate the proposed approximation, an illustrative example from [50]

is considered and the approximate solution is obtained.

Lemma 2.4.2. Let 0 < t < δ and suppose that the interval [0, δ] is subdivided into

n sub intervals [t3i, t3i+3], i = 0, 1, 2, 3, . . . , n− 1 of length h = δ
3n

by using the nodes

ti = ih, i = 0, . . . , 2n. Then the approximate solution g(t) to the solution g(t) of

the Abel integral equation given by Eq.(2.43) can be expressed using scheme A2 as,

g̃(t) =
n−1∑
i=0

(Dinf
′(t3i) + Einf ′(t3i+1) + Finf ′(t3i + 2) + Ginf

′(t3i+3)) , (2.50)

where,

Din =
3αhα

2Γ(1− α)Γ(α + 4)
{2(n− i− 1)(1+α)(α2 + α(−4− 9i+ 9n)

+ 3(1 + 3i− 3n)(2 + 3i− 3n)) + (n− i)α(2α3 + α2(12 + 11i− 11n)

+ α(22 + 36(i− n)2 + 55(i− n)) + 6(1 + 3i− 3n)(2 + 3i− 3n)(1 + i− n))}

(2.51)



Chapter 2. Approximations of Fractional Integrals and Caputo... 37

Ein =
3α+2hα

2Γ(1− α)Γ(α + 4)
{2(n− i)(1+α)(α2 + 5α(1 + i− n)

+ 3(2 + 3i− 3n)(1 + i− n))− (n− i− 1)(α+1)(α2 + α(−3− 8i+ 8n)

+ 6(2 + 3i− 3n)(i− n))}, (2.52)

Fin =
3α+2hα

2Γ(1− α)Γ(α + 4)
{2(n− i− 1)(α+1)(α2 + 5α(n− i)

+ 3(1 + 3i− 3n)(i− n))− (n− i)(1+α)(α2 + α(5 + 8i− 8n)

+ 6(1 + 3i− 3n)(1 + i− n))}, (2.53)

Gin =
3α+2hα

2Γ(1− α)Γ(α + 4)
{2(n− i)(1+α)(α2 + α(5 + 9i− 9n)

+ 3(1 + 3i− 3n)(2 + 3i− 3n))− (n− i− 1)α(2α3 + α2(1− 11i+ 11n)

α(3 + 36(i− n)2 + 17(i− n))− 6(1 + 3i− 3n)(2 + 3i− 3n)(i− n))}, (2.54)

|E(t)| ≤ Sα‖f (5)‖∞tαh4, (2.55)

where Tα is the constant depending only on α and ‖f ′′′′′‖∞ = maxx∈[0,t]|f ′′′′′(x)|.

Proof: The proof can be acquired using some simple calculations to Eq. (2.43)

together with the scheme A2 as discussed in Lemma 2.2.4. The results can be

obtained using Lemma 2.2.4 to Eq.(2.49) with some simple calculation. To validate

the proposed approximation, an illustrative example from [50] is considered and

numerical results are presented.

Example 2.4.1. Consider the Abel’s integral equation [50], et − 1 =
∫ t

0
g(τ)

(t−τ)1/2
dτ .

The exact solution for this problem is given by, g(t) = et√
π

erf(
√
t), where erf(x) is

error fnction, that is, erf(t) = 2√
π

∫ t
0
e−τ

2
dτ.
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Example 2.4.1 is solved using the Lemma 2.4.1 and Lemma 2.4.2 and the obtained

approximate results are presented in Tables 2.13-2.14 respectively. For solving this

problem, the number of subintervals is considered as 10 and 100 and in each case

the errors are obtained. From the Tables 2.13-2.14, it is clear that the error ob-

tained by the proposed scheme is comparatively better even with the less number

of subintervals than the method presented in [50].

Table 2.13: Comparison of the exact solution, approximate solution using
Lemma 2.4.1 and respective errors for n = 10, 100.

ti Exact solution Approx. sol.n = 10 Error n = 10 Error n = 100 Error [50] for n = 100

0.1 0.2152905021493694 0.2152905022928531 1.434×10−10 1.72×10−10 3.75×10−8

0.2 0.3258840763232928 0.3258840781067156 1.783×10−9 1.99×10−12 2.61× 10−8

0.3 0.427565657562311 0.4275656656608028 8.098×10−9 5.18×10−13 2.14× 10−7

Table 2.14: Comparison of the exact solution, approximate solution using
Lemma 2.4.2 and respective errors for n = 10, 100.

ti Exact solution Approx. sol. n = 10 Error n = 10 Error n = 100 Error [50] for n = 100

0.1 0.2152905021493694 0.2152905021496013 2.31787×10−13 4.34356×10−15 3.75×10−8

0.2 0.3258840763232928 0.325884076331575 8.28221×10−12 6.19821×10−10 2.61× 10−8

0.3 0.427565657562311 0.4275656576182749 5.5964×10−11 7.65846×10−10 2.14× 10−7

Example 2.4.2. Consider the following Abel integral equation [50], such that, t =∫ t
0

g(τ)

(t−τ)4/5
dτ , having the exact solution, g(t) = 5

4

sin(π
5

)

π
t4/5.

Lemma 2.4.1 and Lemma 2.4.2 are applied to solve the considered integral equation

and the obtained numerical results are presented in Tables 2.15-2.16 respectively.

The numerical results are obtained using the values of n = 5, 10 and the results are

presented. Absolute errors for each values of the subinterval n are also presented.

Numerical results show that the presented schemes works well and produce the

approximate solution to high accuracy.
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Table 2.15: Comparison of the exact solution, approximate solution using
Lemma 2.4.1 and respective errors for n = 5, 10.

ti Exact solution Approx. sol. n = 5 Error n = 5 Error n = 10 Error [50] for n = 10

0.4 0.1123639036486324 0.1123639036486326 2.77556×10−16 2.58127×10−15 1×10−10

0.5 0.1343243751756705 0.1343243751756709 3.60822×10−16 3.13638×10−15 1×10−10

0.6 0.1554174667790617 0.155417466779062 3.33067×10−16 3.60822×10−15 ≤ 10−11

Table 2.16: Comparison of the exact solution, approximate solution using
Lemma 2.4.2 and respective errors for n = 5, 10.

ti Exact solution Approx. sol. n = 5 Error n = 5 Error n = 10 Error [50] for n = 10

0.4 0.1123639036486324 0.1123639036486273 5.06539×10−15 2.35562×10−13 1×10−10

0.5 0.1343243751756705 0.1343243751756645 5.9952×10−15 2.03615×10−13 1×10−10

0.6 0.1554174667790617 0.1554174667790548 6.93889×10−15 1.7035×10−13 ≤ 10−11

2.5 Conclusions

We studied two approximation schemes namely Quadratic and Cubic schemes for

Riemann-Liouville and Caputo derivatives. The error convergences for the presented

schemes are obtained. The presented schemes are successfully validated on test cases.

It is clear that the presented schemes show the advantages over the scheme discussed

in [149]. Further, the presented schemes are applied to solve Abel’s integral equation.

The numerical results obtained by the presented schemes are appreciable as compare

to the schemes presented in [50]. The schemes presented in the chapter could be

considered as the higher order approximation methods for the approximations of the

fractional integrals and fractional derivatives.

***********
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