
Chapter 1

Introduction

1.1 Motivation

Applications of fractional derivatives and integrals for modelling the memory and

hereditary properties of different materials supervised by anomalous diffusion have

been pointed out by many researchers. Such effects are neglected in classical integer-

order derivatives. So far, there are a large number of research works devoted to

integer order differential and integral equation but there are only a few researches

available for non –integer order differential and integral equations. Approximation of

functions using linear, quadratic and cubic interpolating polynomials provides pow-

erful techniques to the Riemann-Liouville fractional integral (RLFI), Caputo frac-

tional derivatives (CFD), generalized fractional derivatives, and generalized time-

fractional derivatives. The basic idea behind the linear, quadratic and cubic inter-

polation polynomial approximation is to discretize the computational domain into

smaller sub-domains and to approximate function by the linear, quadratic and cubic

interpolation polynomials. The main objective of this thesis is to analyse an ap-

proximate solution of integral and fractional integro-differential equations (FIDEs)
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based on linear, quadratic and cubic interpolation polynomials and to estimate the

convergence as well as an error of approximations for all proposed problems.

The thesis is decomposed into six chapters. In chapter 2, we have presented two

methods namely quadratic and cubic approximation for RLFI and CFD. In chapter

3, we have studied two numerical schemes for the generalized Abel’s integral equa-

tions (GAIEs) based on linear and quadratic interpolation polynomial. A compara-

tive study of three numerical scheme namely Linear, Quadratic and Quadratic-Linear

scheme has been presented for the fractional integro-differential equation in chapter

4. In chapter 5, we have extended application of Linear and Quadratic interpola-

tion polynomial for solving Generalized Fractional Integro-Differential Equations.

A numerical scheme has been formulated and analyzed for solving a Generalized

Time-Fractional Telegraph Type Equation defined in terms of Generalized Time

Fractional Derivative in chapter 6.

1.2 Basic Definitions and Generalized Fractional

Calculus

In this section, we present some basic definitions of fractional integral, fractional

derivative and generalized fractional derivative (GFD) and their properties.

Definition 1.2.1. The Riemann-Liouville fractional integral of a function u is de-

fined as

Iαu(t) =
1

Γ(α)

∫ t

0

(t− τ)α−1u(τ)dτ, t > 0, (1.1)

where α ∈ R+ is the order of fractional integral , u ∈ L1[a, b].
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Definition 1.2.2. The fractional derivative known as Riemann-Liouville fractional

derivative of order α > 0 is defined as,

(Iαf)(t) =
1

Γ(n− α)

(
d

dt

)n ∫ t

0

(t− τ)n−α−1f(τ)dτ, n− 1 < α ≤ n, (1.2)

where n is an integer. Another definition of fractional derivative introduced by Ca-

puto, is defined as below.

Definition 1.2.3. The definition of Caputo fractional derivatives of function u as

Dαu(t) =
1

Γ(m− α)

∫ t

0

(t− τ)m−α−1u(m)(τ)dτ, t > 0, (1.3)

where m−1 ≤ α < m is the order of fractional derivatives, m ∈ N+, u(m) ∈ L1[a, b].

Definition 1.2.4. The left/ forward generalized fractional integral of order α ∈ R+

of function u(t), with respect to a scale function z(t) and weight function w(t), is

defined as,

Iα0+;[z;w]u(t) =
[w(t)]−1

Γ(α)

∫ t

0

w(τ)z′(τ)u(τ)

[z(t)− z(τ)]1−α
dτ, (1.4)

provided the integral exists.

Definition 1.2.5. Left/ forward generalized derivatives of order 1 of a function u(t)

with respect to a scale function z(t) and weight function w(t), is defined as

D[z;w;L]u(t) = [w(t)]−1

[(
1

z′(t)
Dt

)
(w(t)u(t))

]
, (1.5)

provided the right-side of the equation is finite, where Dt is the classical first-order

derivatives with respect to t.
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Definition 1.2.6. Left/ forward generalized derivatives of order m of a function

u(t) with respect to a scale function z(t) and weight function w(t), is defined as

Dm
[z;w;L]u(t) = [w(t)]−1

[(
1

z′(t)
Dt

)m
(w(t)u(t))

]
, (1.6)

provided the right-side of the equation is finite, where m ∈ N+ and Dt is the classical

first-order derivatives with respect to t.

Definition 1.2.7. Left/ forward generalized fractional derivatives of order α ∈ R+

and type 1 of a function u(t) with respect to a scale function z(t) and weight function

w(t), is defined as,

(
Dα

0+;[z,w,1]u
)

(t) = Dm
[z,w,L]

(
Im−α0+;[z;w]u

)
(t), (1.7)

Definition 1.2.8. Left/ forward generalized fractional derivatives of order α ∈ R+

and type 2 of a function u(t) with respect to a scale function z(t) and weight function

w(t), is defined as

(
Dα

0+;[z;w,2]u
)

(t) = Im−α0+;[z;w]

(
Dm

[z,w,L]u
)

(t), (1.8)

provided the right-side of the Eq.(1.8) is finite, where m− 1 ≤ α < m, and m ∈ N+.

In the above definition, fractional derivatives of type 2 is also generalized from the

Caputo fractional derivatives. We will call them generalized Caputo type fractional

derivatives. In all the above definitions, we assume that the weight function w(t) and

scale function z(t) are sufficiently smooth such that the integrals and derivatives in

definitions are finite. It is to notice that in above definitions, we are only given for

left/forward sense of generalized fractional integral and GFD. They can be defined

in the right/backward sense. We will not repeat them here, since in this thesis we

considered left Caputo type GFD because Caputo derivative appears most frequently
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in depicting real-world models. For m = 1, i.e. 0 ≤ α < 1, the new GFD in Eq.

(1.8) will be given as,

Dα
∗ u(t) =

(
Dα

0+;[z;w;2]u
)

(t) =
[w(t)]−1

Γ(1− α)

∫ t

0

[w(τ)u(τ)]′

(z(t)− z(τ))α
dτ. (1.9)

1.3 Review on Fractional Calculus

Fractional calculus is a branch of mathematics which investigates the properties

of derivatives and integrals of non-integer order (called fractional derivatives and

integrals). Additionally, the theory of fractional calculus includes even complex

orders of integro-differential equation and left and right integro-differential equation

(analogously to left and right derivatives). The theory of fractional derivative goes

back to the Leibniz’s note in his list to L’Hospital in 1695, in which the meaning

of the half derivatives and integrals of the arbitrary order more or less finished by

Liouville, Grunwald, Riemann and Letnikov. In the last few decades, many authors

remarked that derivatives and integrals of arbitrary order are very appropriate for

the description of various real material, e.g. polymers. It has been proved that

new fractional order models are more adequate than integer order models. Laplace,

Fourier, Abel, Liouville, Riemann, Grunwald, Letnikov, Levy, Marchaud, Erdelyi,

and Riesz have provided important contributions in the field of fractional calculus

up to the middle of last century. Initially, the concept of fractional calculus was

considered and developed mainly as a purely theoretical field of mathematics, and

it has been the subject of specialized conferences and treatises only.

Ross organized the first conference on fractional calculus and its applications at the

University of New Haven in June 1974. After a joint collaboration started in 1968,

Oldham and Spanier [1] published a book for fractional calculus in 1974. In 1999,
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Podlubny [2] published a book providing the basic theory of fractional derivatives,

fractional-order differential equations, methods of their solution and its applications

in the diverse fields of science and engineering. Volumes edited by Carpinteri and

Mainardi [3] in 1997 and Hilfer [4] in 2000, the book by Kilbas, Srivastava and

Trujillo [5] in 2006, and the book by Sabatier, Agrawal, Tenreiro Machado [6] in

2007 are some of the latest works in the area of fractional models of anomalous

kinetics in complex processes. The remarkably comprehensive encyclopedic-type

monograph by Samko, Kilbas and Marichev [7] and the book devoted substantially

to fractional differential equations by Miller and Ross [8], which was published in

1993 are some remarkable works in this field.

The traditional partial differential equations may not be adequate for describing

the transport phenomena in complex systems (such as random fractal structures),

exhibiting many anomalous features that are qualitatively different from the stan-

dard characteristics of regular systems [9]. Various phenomena strongly connected

with the interactions within complex and non-homogeneous backgrounds is known

as Anomalous diffusion, which can be observed in transport of fluid in porous media,

amorphous semiconductors and also in two-dimensional rotating flows. Particularly,

in the case of fractals, the spatial complexities of the substrate are the main cause of

such anomalies, which imposes geometrical constraints on the transport process on

every length scale. In recent years, rigorous analytical as well as numerical work has

been made to make some breakthrough interpretations about the unusual transport

properties of fractal structures [10]. Special emphasis has been given to under-

stand diffusion phenomena on such spatially correlated media. The laws of Markov

diffusion might be altered due to various non-homogeneities of the medium. Partic-

ularly, the probability density of the concentration field may have a heavier end than

the Gaussian density, resulting in long-range dependence [11]. A key approach to
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anomalous diffusion is that of a continuous time random walk (CTRW) in which the

random motion is performed on a regular lattice, but the length of a jump and the

waiting time between two successive jumps are assumed to be random and drawn

from a probability density function. Diverse suppositions on this probability den-

sity function lead to a variety of fractional differential equations (FDE) such as the

fractional heat equation [12], the fractional advection-dispersion equation [13], the

fractional kinetic equation [14], and the fractional Fokker-Planck equation (FFPE)

[15]. Recently, significant interest in fractional differential equations has been en-

couraged due to its applications in the numerical analysis and the different areas of

physical and chemical processes and engineering, including fractal phenomena [11].

Generalized diffusion equation containing derivatives of fractional order in space, or

time, or space-time is the basis for physical-mathematical approach to anomalous

diffusion [11]. The rigorous theoretical analysis of fractional differential equations

and the development and implementation of efficient and accurate numerical meth-

ods are very difficult tasks, in particular for the cases of high dimensions. Therefore,

development of new numerical methods and analysis techniques, is needed. The

occurrence of fractional derivatives is by no means new. In fact, they are almost

as old as integer-order counterparts [1, 2, 7, 8]. Fractional derivatives have been

recently applied in the area of system biology [16], medicine [17, 18, 19, 20], physics

[11, 14, 21, 22, 23], chemistry and biochemistry [24], hydrology [13, 15, 25], and

finance [26, 27, 28].

1.4 Integral Equations

Integral equation is an important subject of applied mathematics. Integral equations

are used to represent mathematical models for many physical systems, and also occur
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in formulation of many mathematical problems. We begin with a brief classification

of integral equations. We present some of the classical theory for one of the most

popular types of integral equations which are called as Fredholm integral equation

of second kind. An integral equation is an equation in which an unknown function

appears under one or more integral sign.

For Example, for (x, t) ∈ [a, b]× [a, b] the equations

∫ b

a

K(x, t)y(t)dt = f(x), (1.10)

y(x)− λ
∫ b

a

K(x, t)y(t)dt = f(x), (1.11)

y(x) =

∫ b

a

K(x, t) [y(t)]2 dt = f(x), (1.12)

where the function y(x), is unknown function while the function f(x) and K(x, t)

are known functions and λ, a and b are the constants.

1.4.1 Volterra and Fredholm Integral Equations

In 1896, Vito Volterra published nine papers, six of which deal with the solvability of

certain functional equations which are now referred to as Volterra integral equations

of the first kind. He was 36 years old and had held the chair of rational mechanics at

the University of Torino since 1893. In mathematics, the Volterra integral equations

are a special type of integral equations. They are divided into two groups referred

to as the first and the second kind. A linear Volterra equation of the first kind is

f(x) =

∫ x

a

K(x, t)y(t)dt, x ∈ [a, a+ A], (1.13)
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where, f is a given function and y(t) is an unknown function to be solved. A linear

Volterra equation of the second kind is

y(x) = f(x) +

∫ x

a

K(x, t)y(t)dt. (1.14)

In integral equation the upper limit may be either variable x or fixed. In case of

fixed limit, it is called Fredholm otherwise Volterra integral equation.

1.4.2 Singular Integral Equations

An integral equation in which the range of integration is infinite, or in which the

kernel is discontinuous, is known as a singular integral equation. One of the such ex-

ample is Abel’s integral equation. Abel’s integral equation occurs in many branches

of scientific fields such as microscopy, seismology, radio astronomy, electron emis-

sion, atomic scattering, radar ranging, plasma diagnostics, X-ray radiography, and

optical fiber evaluation. Abel’s equation is one of the integral equations derived

directly from a concrete problem of physics, without passing through a differential

equation. The great mathematician Niels Abel, gave the initiative of integral equa-

tions in 1823 in his study of mathematical physics. Abel’s integral equation can be

defined as a singular Volterra integral equation.

1.4.3 Abel’s Integral Equations

General Abel’s integral equation is a type of first and second kind Volterra integral

equation and defined by

First kind:

∫ x

a

ψ(t)

(x− t)µ
dt = f(x), (1.15)
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Second kind:

∫ x

a

ψ(t)

(x− t)µ
dt+ f(x) = ψ(x), (1.16)

where, 0 < µ < 1, ψ is unknown function and f is known function.

1.4.4 Generalized Abel’s Integral Equations

The Generalized Abel’s Integral Equation is defined by ,

∫ x

a

ψ(t)

(x− t)µ
dt+

∫ b

x

ψ(t)

(t− x)µ
dt = ξ(x), (1.17)

Or,

∫ x

a

ψ(t)

(xα − tα)µ
dt+

∫ b

x

ψ(t)

(tα − xα)µ
dt = ξ(x), (1.18)

where, 0 < µ < 1, ψ is unknown function, ξ is known function and α ∈ N. Above

Eq.(1.17) have been studied in the chapter three .

1.5 Literature Review on Abel’s and Generalized

Abel’s Integral Equations

Abel’s equations are identified with a widespread variety of physical real world prob-

lems like heat transfer [29], the propagation of nonlinear waves [30], nonlinear diffu-

sion [31] and applications in the area of neutron transport and traffic theory. Abel

inversion is broadly utilized by various researchers in the field of plasma physics

to get the electronic density from phase-shift maps got by laser interferometry [32]
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or radial emission patterns from observed plasma radiances [33, 34]. Photoion and

photoelectron imaging in molecular dynamics [35], assessment of mass density and

velocity laws of stellar winds in astrophysics [36, 37], and atmospheric radio oc-

cultation signal analysis [38, 39] are additional fields which often necessitate the

numerical solution of Abel’s integral equations. Concentration on Abel’s integral

equations has been increased in several methodologies including numerical investi-

gation along with their numerous applications [40, 41, 42, 43, 44, 45, 46, 47, 48, 49].

In [50], Jahanshahi solved Abel’s integral equation numerically by approximating

Riemann-Liouville fractional integrals and Caputo derivatives. Integrable solutions

of Abel’s integral equation under certain restrictions using different integral opera-

tors has been studied by Tamarkin [51] in 1930. In [52], authors obtained a stable

numerical solution of Abel’s integral equation by using concept of an almost Bern-

stein operational matrix. Using orthogonal polynomials, Minerbo and Levy [53]

studied a numerical solution of Abel’s integral equation. Iterative schemes [54] have

been proved to be rather stable but are time-consuming in nature. Fourier-Hankel

transform based inversion techniques are studied in [55, 56]. In [57], Kumar et al.

suggested a simple algorithm for the analytical solution of Abel’s integral equation

via Laplace transform. Stable inversion of Abel’s integral equation of first kind by

means of orthogonal polynomials is presented in [58]. In [59], stable solution of a de-

convolution problem of the Abel’s integral equation based on Jacobi-Legendre poly-

nomial is discussed by Ammari and Karoui. Chebyshev polynomials based methods

on getting the approximate solution of Abel inversion have been presented in [60, 61].

Recently, Mikusinski’s operator of fractional order is used to solve integral equation

of Abel’s type by Li and Zhao [62]. Sumner [63] studied Abel’s integral equation

using convolutional transform. Saleh et al. [64] investigated the numerical solution

of Abel’s integral equation by Chebyshev polynomials.
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1.6 Literature Review on Fractional Integro Dif-

ferential Equations

The fractional integro-differential equation is an equation in which fractional deriva-

tive and integral terms appear for the unknown function to be determined. Frac-

tional integro-differential equation (FIDEs) arises in numeral fields such as fluid

dynamics, biological models and chemical kinetics [65, 66]. Generally speaking, it is

very difficult to obtain analytical solutions of most FIDEs. Therefore, it is very im-

portant to find numerical solutions of such FIDEs. In [67], Zhu and Fan proposed a

numerical technique to solve fractional order Volterra integro-differential equations

using Chebyshev wavelet of second kind. Khader and Sweilam discussed the nu-

merical solutions for system of FIDEs based on Chebyshev pseudo-spectral method

in [68]. Recently, numerous numerical methods to solve FIDEs have been given

including variational iteration method [69, 70], Adomian’s decomposition method

[71], homotopy perturbation method [70, 72, 73, 74], homotopy analysis method [75]

and collocation method [76, 77]. In [69], author presented approximate solution for

seepage flow with fractional derivatives in porous media. Swielam et al. [70] studied

solution for system of FIDEs using variational iteration and homotopy perturbation

methods. In [71], Hashim proposed a solution for linear and non-linear boundary

value problems of fourth order integro-differential equations using Adomian’s de-

composition method. He’s homotopy perturbation method [74] has been applied to

many areas such as heat radiation [72], reaction-diffusion [73] etc. In [75], authors

considered approximate analytical solutions of linear and non-linear fractional ini-

tial value problems using homotopy analysis method. Khader presented numerical

treatment for the solutions of fractional diffusion equation [76] and fractional Riccati

differential equation [77] based on collocation method.
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1.7 Finite Difference Method

Analytical solutions of partial differential equations provide closed-form expressions,

which depict the variation of the dependent variables in the domain. However, it is

hard to find analytical solutions of a large number of PDEs. To cope with this prob-

lem, numerical solutions play a very important role for such PDEs. The numerical

solutions based on finite differences provide values at discrete points in the domain,

known as grid points. The finite difference approximations for derivatives are one

of the most straightforward and most seasoned numerical techniques to understand

differential equations. It was at that point known by L. Euler (1707-1783) ca. 1768,

in one-dimensional space and was presumably reached out to two-dimensional space

by C. Runge (1856-1927) ca. 1908. The approach of finite difference methods in

numerical applications started in the mid-1950s, and their advancement was fortified

by the rise of PCs that offered a helpful system for managing complex problems of

science and engineering. Theoretical outcomes have been acquired amid the most

recent five decades in regards to the accuracy, stability, and convergence of the finite

difference method for the partial differential equation.

1.8 Literature Review on Numerical Methods for

Fractional Partial Differential Equations

Recently, many researchers have solved fractional partial differential equations with

the help of numerical as well as analytical methods. Problems related with frac-

tional order partial differential equations are also solved using several numerical

techniques, but their convergence has rarely been discussed. We have existence

and uniqueness theorem for integer order partial differential equations. However,
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there does not exist any analytical method for the existence and uniqueness of

the solution for the fractional partial differential equations in general; the exist-

ing methods may obtain only approximate solutions. It is not encouraged to search

a strong solution of fractional order partial differential equations due to the complex-

ity and non-local nature of fractional order derivative. Due to frequent appearance

of fractional order ordinary and partial differential equations in various areas like

viscoelasticity, fluid mechanics, biology, physics, and engineering, etc., it always has

been in the center of attraction for researchers. A natural extension of integer-

order calculus is fractional calculus which provides a fundamental idea to construct

different mathematical tools for many modeling processes arises from real life prob-

lems. Some scholars have provided many contributions in this area. Due to their

work, there are several Fractional Derivatives (FDs) being used nowadays, such as

Riemann–Liouville Derivative (RLD), Grünwald–Letnikov derivative, and Caputo

derivative, see [1, 2, 5, 78] for a concrete comprehension of fractional derivatives.

In recent years, many researchers have contributed to the development of fractional

derivatives by introducing new results on the analysis of fractional order differen-

tial equations [79, 80, 81, 82, 83]. Fractional Diffusion Equations (FDEs) can be

obtained by introducing fractional derivatives in place of integer order derivatives.

Recently, a new Generalized Fractional Derivative (GFD) is discussed in [83], which

in special case reduces to other fractional derivatives such as Riemann–Liouville,

Caputo, Riesz, Hadamard, Erdéldi–Kober fractional derivatives. Agrawal [83] dis-

cussed the solutions of integral equations in terms of the new GFD. During past

two decades, this area has attracted many researchers for investigation of its ap-

plications in various fields of science and engineering [84, 85, 86] such as particle

diffusion [87], chemistry [88], biology [89], economics and finance [90, 91]. Numer-

ical methods for solving fractional partial differential equations have been studied

by many researchers [92, 93, 94, 95, 96, 97, 98, 99, 100, 101, 102, 103, 104, 105].
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Authors studied numerical solutions of fractional partial differential equations using

finite difference methods [93, 95, 96, 97, 98, 99, 100, 101, 102, 103], finite element

method [94], spectral methods [104, 105] and so on.

Ma and Sun [106], presented a Legendre-Petrov-Galerkin and Chebyshev collocation

methods for FPDEs. In [107], a pseudo-spectral method is implemented with the

split-step technique to solve KdV equation.

Advection-diffusion equations arise while dealing with many physical processes. In

physical, chemical, and biological sciences involving dispersion or diffusion, these

equations are broadly used to model a range of problems (see [108, 109, 110, 111, 112,

113, 114, 115, 116, 117]). In recent years, the number of contributions on the research

of potentially useful tools for solving FDEs and its applications has been increased.

In which, most of the FDEs have been solved by variational iteration method [118],

Laplace transforms method [119], multigrid method [120], finite element methods

[121] and finite difference schemes [96, 122, 123]. We refer the readers to go through

references [121, 123, 124, 125, 126, 127, 128, 129] for detail review of other analytical

and numerical methods. Among all these discussed methods, the finite difference

method is very widespread for solving FPDEs. Nowadays, the initial value problem,

as well as a boundary value problem for FPDEs, have been studied extensively

[13, 130, 131, 132, 133, 134, 135]. Since the investigation of FDEs is very much

useful for many real-world applications, hence further study is required.

***********


	1 Introduction
	1.1 Motivation
	1.2 Basic Definitions and Generalized Fractional Calculus
	1.3 Review on Fractional Calculus
	1.4 Integral Equations 
	1.4.1 Volterra and Fredholm Integral Equations 
	1.4.2 Singular Integral Equations 
	1.4.3  Abel's Integral Equations 
	1.4.4  Generalized Abel's Integral Equations 

	1.5 Literature Review on Abel's and Generalized Abel's Integral Equations 
	1.6 Literature Review on Fractional Integro Differential Equations
	1.7 Finite Difference Method
	1.8 Literature Review on Numerical Methods for Fractional Partial Differential Equations


