List of Tables

Table No.	Table Caption	Page No.
Table 1.1	Various immobilization methods.	32
Table 1.2	Importance of immobilization methods.	33
Table 1.3	Typical properties of nanomaterials and coordination polymers used in sensing and catalysis pathway.	36
Table 3.1	An illustration for calculation of initial reaction rate.	70
Table 3.2	Comparative table of steady state kinetics of various catalytic substrates and HRP though TMB oxidation.	71
Table 3.3	Comparison of various nanoparticles- based methods for detection of glucose.	75
Table 3.4	Glucose determinations in serum, saliva and tear samples.	80
Table 4.1	An illustration for calculation of initial reaction rate.	105
Table 4.2	Comparative table of steady state kinetics of various catalytic substrates and HRP though TMB oxidation.	106
Table 4.3	Analytical figure of glucose detection based on various catalytic systems.	110
Table 4.4	Glucose determination in serum, tears and saliva samples.	114
Table 5.1	Comparative table of steady state kinetics of various catalytic substrates and HRP though TMB oxidation.	132
Table 5.2	The recovery of standard addition of choline in milk.	139
Table 7.1	Interaction parameters involved in three AHMT–Ag molecular fusions.	174