Figure No.	Figure Caption	Page No.
Figure 1.1	Schematic represents various component of a sensor involved	3
	in sensing.	
Figure 1.2	Schematics of electrochemical sensors.	5
Figure 1.3	Au@Pd-RGO/GCE based sensors for the simultaneous	7
	determination of DA, AA and UA.	
Figure 1.4	Optical colorimetric sensing of PANI-LBNF strips after 20 min	10
	incubation in aqueous solution of various concentrations of	
	Hg^{2+} .	
Figure 1.5	Schematic representation of the composite of (a) partially	16
	reduced graphene oxide- gold nanorods and (b) MoS_2 -gold	
	nanoparticles.	
Figure 1.6	Calixarene capped gold nanoparticles act as catalyst for the 4-	21
	nitrophenol reduction to 4-aminophenol.	
Figure 1.7	A schematic overview of MOFs synthesis, applications and	23
	properties.	
Figure 1.8	(a) Luminescence spectra of $Tb(BTC)(H_2O)_6$ in $Cu(NO_3)_2$ in	24
	aqueous solution at various concentrations (excition	
	wavelength 300 nm).	
	(b) Emission spectra of $Tb(BTC)(H_2O)_6$ in aqueous	
	suspension in presence of different acetone contents	
	(excitation wavelength 300 nm)	
Figure 1.9	Biosensing Mechanism and design of the MOCPs enzyme	25
	Biocomposites (MEBCs)-Based Biosensor (with MEBC 3 As	
	an Example)	
Figure 1.10	Structure of 1,1'-2,2'-binaphtol based ligand.	27
Figure 1.11	Catalytic activity of $\{[Ti_2(\mu {-} O)_2(binol)]\}_n$ in asymmetric	28
	carbonyl-ene reaction.	
Figure 1.12	Schematic illustration of oxidation reaction of TMB in the	30
	presence of H_2O_2 catalyzed by GQDs.	
Figure 1.13	Schematic representation of immobilization methods.	32
Figure 2.1	Schematic representation of dual beam UV-Vis	41
	spectrophotometer.	

Figure 2.2	Block diagram for FT–IR.	42
Figure 2.3	Schematic representation of X-ray beam incident on a	44
	crystallographic material.	
Figure 2.4	Physical process involved in XPS	46
Figure 3.1	Synthesis of MoS ₂ -QDs.	56
Figure 3.2	Absorption spectra of (a) MoS_2 -QDs and (b) AuNPs@MoS ₂ -	59
	QDs, Inset of (b) shows the enlarged view of AuNPs@MoS ₂ -	
	QDs peak. (524 nm)	
Figure 3.3	X-ray Diffraction of (a) MoS2QDs (b) AuNPs@MoS2-QDs	60
	obtained from JCPDS (CAS no. 77-1716 and 7440-57-5) file,	
	(c) and (d) are the zeta potential graph of MoS_2 QDs and	
	AuNPs@MoS ₂ -QDs respectively.	
Figure 3.4	(a) TEM images of MoS_2 -QDs and corresponding SAED	60
	pattern (inset), (b) particle size distribution of MoS ₂ -QDs.	
Figure 3.5	(a), (b) and (c) TEM image of AuNPs@MoS2-QDs composite	61
	(d) HR TEM image of AuNPs@MoS2-QDs showing lattice	
	fringe spacing of AuNPs and MoS_2 -QDs Inset of figure (a)	
	shows corresponding SAED pattern.	
Figure 3.6	EDS mapping of AuNPs@MoS2-QDs composite with	62
	overlapped image.	
Figure 3.7	AFM image of MoS_2 QDs and AuNPs@MoS ₂ -QDs	63
	composites.	
Figure 3.8	The absorbance spectra of TMB oxidation products for	65
	different reaction systems: (A) (a)AuNPs@MoS ₂ -QDs	
	composite, (b) AuNPs@MoS ₂ -QDs composite +TMB, (Inset	
	image shows enlarge view). (c) $AuNPs@MoS_2-QDs$	
	composite $+TMB + H_2O_2$ and (B) time dependent study of (a)	
	AuNPs@MoS ₂ -QDs composite, (b) TMB + H_2O_2 and	
	(c)AuNPs@MoS ₂ -QDs composite +TMB + H_2O_2 . (Inset	
	image shows corresponding color image). The reaction system	
	contains AuNPs@MoS ₂ -QDs composite (0.2 μ g/ml), TMB	
	$(1mM)$ and H_2O_2 (0.15mM).	
Figure 3.9	UV-Vis spectra of different catalytic system (MoS ₂ -QDs,	65

ii

AuNPs, simple mixture of AuNPs-MoS₂-QDs and AuNPs@MoS₂-QDs composite)

- Figure 3.10 The catalytic reaction at the presence of different radical 66 scavengers.
- Dependency of AuNPs@MoS₂-QDs composite catalytic Figure 3.11 68 Temperature, (b) pH and (c) H_2O_2 activity on (a) concentration. Optimize reaction conditions are AuNPs@MoS₂-QDs composite(0.2)TMB $\mu g/ml$), (1mM),H₂O₂(0.15 mM), 1ml of acetate buffer (0.2 M, pH 4.0) at 40°C.
- Figure 3.12 The enzyme kinetic parameter of AuNPs@MoS₂-QDs 70 composite system toward substrates (a and b). Optimized reaction condition of AuNPs@MoS₂-QDs composite (0.2µg/ml) in 1ml of 0.2 M sodium acetate buffer at 40°C (pH 4.0). (a) Kinetics of AuNPs@MoS₂-QDs composite for H₂O₂ in fix TMB (0.1 mM) (b) kinetic for TMB in fix H₂O₂ concentration (1mM).
- Figure 3.13 (a) Colorimetric response, (b) corresponding calibration plot, 73
 (c) Electrochemical response and (d) corresponding calibration plot of AuNPs@MoS₂-QDs modified electrode catalysis of H₂O₂ in 0.1 M PBS, (pH, 7.0)
- Figure 3.14The catalytic mechanism of TMB oxidation in presence74 H_2O_2 catalyzed by AuNPs@MoS2-QDs composite.74
- Figure 3.15 (a) UV-Visible spectra of colorimetric sensing of glucose 74 based on AuNPs@MoS₂-QDs composite+ TMB + GOx in buffer. Inset shows visible color in presence of glucose (1, 2, 5, 10, 15, 20, 30, 50, 100, 150, 200, 300 and 400 μM) (b) calibration curve.
- Figure 3.16 (a) Interference study and (b) Selectivity of developed sensor 76 system towards glucose. Reaction condition are 0.5 ml of sodium acetate buffer (0.2 M, pH 4.0) with TMB (1 mM), 0.2 μg /ml, AuNPs@MoS₂-QDs composite and 1 mg/ml, glucose oxidase with different interference.

Figure 3.17	The reproducibility test of developed sensing method (a)	77
	Intra-day and (b) Inter-day repeatability for same setup	
	condition for glucose (1 μ M to 400 μ M) detection.	
Figure 3.18	(a) UV-Vis spectra of test of glucose level in serum by	77
	portable test kit (based on AuNPs@MoS2-QDs composite)	
	and inset change the color of wells hydrogel with presence	
	glucose level, with typical colorimetric chart with level	
	glucose (in order to 0, 2, 4, 5, 8, 10, 11, 12 mM), (top) and (b)	
	calibration curve.	
Figure 3.19	Absorption spectra of glucose level test in tear by portable	79
	test kit and inset change the color of wells hydrogel with	
	presence glucose level (50 $\mu M,$ 100, 250, 400, 600, 800 and	
	1mM) in tear (b) corresponding calibration curve.	
Figure 3.20	Absorption spectra of glucose level test in saliva by portable	79
	test kit and inset shows change in the color of wells hydrogel	
	with presence glucose level (5 μ M, 150, 250, 350, 450, 550,	
	700 and 800 $\mu M)$ in saliva (b) corresponding calibration	
	curve.	
Figure 4.1	Reaction scheme for synthesis of nano porous co-ordination	87
	polymer AHMT-Pd.	
Figure 4.2	Portable test kit procedure for the detection of glucose in	88
	serum samples. (A) Opening the snap cap of the test kit (B)	
	adding diluted serum sample solution to the test kit, (C)	
	closing the snap cap and turning the test kit upside down	
	before incubation at 40 $^{\circ}\mathrm{C}$ for 30 min, and (D) turning the test	
	kit upside down again and opening the snap cap to observe	
	the color change of hydrogel (blue color in the hydrogel).	
Figure 4.3	FT-IR spectra of AHMT (a) and AHMT-Pd (b).	91
Figure 4.4	X-ray diffraction of AHMT-Pd (a) AHMT (b) and Pd (0) (c)	92
	obtained from JCPDS (CAS no. 65-6174.) file.	
Figure 4.5	Absorption spectra of (a) AHMT and (b) AHMT –Pd.	92
Figure 4.6	XPS spectra of AHMT-Pd for Pd (3d), N (1s), S (2p) and C	94
	(1s) regions.	

Figure 4.7	Structural morphology of AHMT-Pd (a) and (b) HR SEM, (c)	95
	and (d) TEM, inset of (d) corresponding SAED pattern.	
Figure 4.8	EDX of AHMT–Pd provided by HR TEM graph.	96
Figure 4.9	EDS Mapping of AHMT-Pd.	96
Figure 4.10	Structural network of AHMT-Pd.	97
Figure 4.11	(a) TGA (left ordinate) and (b) DTA (right ordinate) plot of	98
	AHMT-Pd.	
Figure 4.12	Plot of the Thermal activation energy for AHMT–Pd.	99
Figure 4.13	(A) Absorption spectra of various combinations of reaction	100
	systems (B) A typical absorbance peak changes with of TMB	
	oxidation at 652 nm in different systems: AHMT-Pd,	
	$AHMT-Pd + TMB, TMB + H_2O_2, TMB + AHMT-Pd + H_2O_2.$	
	(Inset of B shows corresponding photograph of TMB	
	oxidation products). AHMT-Pd (0.5 µgmL ⁻¹), TMB (1mM)	
	and H ₂ O ₂ 0.5 mM.	
Figure 4.14	Possible mechanism for the electron transfer investigation and	101
	OH radical's formation for production of colored TMB	
	oxidation product in catalysis reaction.	
Figure 4.15	(a) The Normalized UV-Vis spectrum of AHMT-Pd,	102
	(b) $(\alpha hv)^2$ versus optical band gap achieved from equation.	
Figure 4.16	The peroxidase-like activity of AHMT-Pd and dependency on	104
	a) temperature, (b) pH, (c) H_2O_2 concentration and (d)	
	AHMT-Pd concentration. Experiments were carried out at 0.5	
	$\mu g {\cdot} m L^{-1}$ AHMT-Pd in 1mL of 0.2 M acetate buffer with	
	TMB (5 mM) as substrate. The H_2O_2 concentration was 0.5	
	mM at pH 4.0, the temperature was 40 $^{\circ}$ C	
Figure 4.17	The enzyme kinetic K_m and V_{max} of AHMT-Pd toward TMB	107
	substrates (a and b). The analysis of reaction rate in presence	
	of AHMT-Pd, 0.5 μ g·mL ⁻¹ in 1 mL of 0.2 M sodium acetate	
	buffer at pH 4.0, 40 °C. (a) The H_2O_2 concentration (10 mM)	
	was fixed for AHMT-Pd and various TMB concentrations (b)	
	Concentration of reactant TMB (0.1 mM) was fixed and the	
	H ₂ O ₂ was varied for AHMT-Pd.	

Figure 4.18 Au@Pd-RGO/GCE based sensors for the simultaneous **107** determination of DA, AA and UA. Figure 4.19 Electrochemical response of AHMT-Pd modified electrode 108 catalysis of H_2O_2 in 0.1 M PBS, (pH, 7.0) Schematic representation of the composite of (a) partially 109 Figure 4.20 reduced graphene oxide- gold nanorods and (b) MoS₂-gold nanoparticles. (a) UV-Visible spectra of a mixture of AHMT-Pd + TMB + Figure 4.21 110 GOx with different concentration of glucose (1µM, 2, 10, 15, 20, 30, 50, 100, 150, 200 and 300 µM) (b) corresponding calibration curve. Figure 4.22 (a) Intra-day and (b) inter-day repeatability test result of 111 AHMT-Pd (0.5 µgmL⁻¹) mediated detection of glucose (concentration range 1 μ M - 300 μ M). The error bar represents the standard deviation of triplicate measurement. Figure 4.23 The catalytic reaction at the presence of different 112 interferences. (a) Specificity of method for glucose detection. Specificity Figure 4.24 113 checked in 0.5 mL of 0.2 M sodium acetate buffer (pH 4.0) with TMB (1 mM), 0.5 µgmL⁻¹, AHMT-Pd and 1 mgmL⁻¹, glucose oxidase. (b) Ten times repeated experiments for

glucose detection with AHMT-Pd (0.5 µgmL⁻¹), (1 mM) TMB solution and measurement in same set of reaction condition with GOx (1 mgmL⁻¹) and (0.1 mM) glucose. The error bars represent the standard deviation of three-time measurements.

- Figure 4.25 Human serum glucose level and corresponding typical 114 colorimetric chart (from left to right: 0, 2, 4, 5, 8, 10, 11, 12 mM) (top); the hydrogel color change in presence of various concentrations of glucose in human complex system (opening the snap cap).
- Figure 4.26 UV-Visible spectra of AHMT-Pd + TMB + GOx with 115 different concentration of glucose (10 μ M, 100, 200, 400,

600, 800 and 1000 μ M) in tear (b) corresponding calibration curve (c) UV-Visible spectra of AHMT-Pd + TMB + GOx with different concentration of glucose (5 μ M, 50, 100, 200, 400, 600 and μ M) in saliva (b) corresponding calibration curve.

- Figure 5.1Synthesis of tungsten disulfide-quantum dots (WS2-QDs).121
- Figure 5.2 Absorption spectra of (a) WS₂-QDs and (b) AuNPs@WS₂QDs, Inset of (b) shows the enlarged view of AuNPs@WS₂QDs peak. (600 nm).
- Figure 5.3 X-ray Diffraction of (a) WS₂-QDs (b) AuNPs@WS₂-QDs 123 obtained from JCPDS (CAS no. 84-1398 and 65-2870) file.
- Figure 5.4 (a) and (b) are the zeta potential graph of WS_2 -QDs and 124 AuNPs@WS₂-QDs respectively.
- Figure 5.5 (a) TEM image of WS₂-QDs and inset shows SEAD pattern 125
 (b) particle size distribution graph of WS₂-QDs (c,d,e) TEM image of AuNps@WS₂-QDs composite (f) HRTEM image of AuNps@WS₂-QDs with lattice fringe spacing of AuNPs ~0.23 nm and WS₂-QDs ~0.21 nm and inset of (c) shows SAED pattern of AuNps@WS₂-QDs to confirm crystalline nature.
- Figure 5.6 EDS mapping of AuNPs@WS₂-QDs composite with 126 overlapped image.
- **Figure 5.7** AFM image of WS_2 -QDs and AuNPs@WS₂-QDs composites **127**
- Figure 5.8 (a) UV-visible absorption spectra of reaction system 128 containing AuNPs@WS₂-QDs composite+TMB+H₂O₂ (B) Time-dependent absorbance changes at 652 nm of reaction mixture containing AuNPs@WS₂-QDs composite, H₂O₂, and TMB are 1.0 μ g mL⁻¹, 0.5 mM, and 2.0 mM respectively.
- Figure 5.9 The catalytic reaction system in presence of various radical 129 scavengers.
- Figure 5.10 Optimizations of various parameters for catalytic activity of AuNPs@WS₂-QDs composite: (a) H₂O₂, (b) temperature and (c) pH. Experiments were carried out mixture of

AuNPs@WS₂-QDs (1 μ g.mL⁻¹), TMB (1mM) and H₂O₂ (0.5 mM) in pH 4.0 maintained by acetate buffer at 40°C.

- Figure 5.11 Steady state kinetic measurement of AuNPs@WS₂-QDs 132 composite through (a) variation of H₂O₂ concentration and fix TMB and (b) variation of TMB concentration and fix H₂O₂.
- Figure 5.12 (a) Concentration dependent UV-Visible graph for H₂O₂ 133 detection (1 to 200 μM) and (b) linear calibration plot for H₂O₂. Inset of (a) shows the images of TMB oxidation colored product for different concentration of H₂O₂.
- Figure 5.13 Mechanism of choline detection based on TMB oxidation 134 catalyzed by AuNPs@WS₂-QDs composite.
- Figure 5.14 (a) UV-Visible spectra of colorimetric sensing of choline 135 based on AuNPs@WS₂-QDs composite + TMB + ChOx in buffer, inset shows visible color of various concentration of choline and (b) corresponding calibration curve at 652 nm.
- Figure 5.15 (a) Selectivity analysis AuNPs@WS₂-QDs composite system 135 with interfering substances by recording absorbance at 652 nm, including 10.0 mM of ascorbic acid, cysteine, cholesterol, uric acid, urea and (b) reproducibility of six samples prepared in same set of conditions.
- Figure 5.16 The manufacture of AuNPs@WS₂-QDs composite based 137 choline detection test strips for quick detection of choline level by using naked eyes.
- Figure 5.17 Demonstration of the utility of paper strip in the analysis of choline in real sample. Visualize the choline in real sample by paper strip (a) control,(b) 120 μM.
- Figure 5.18 (a) UV-Visible spectra of colorimetric sensing of choline 138 based on AuNPs@WS₂-QDs composite + TMB + ChOx in milk, inset shows visible color of various concentration of choline and (b) corresponding calibration curve at 652 nm.
- Figure 5.19 (a) UV-Visible spectra of colorimetric sensing of choline 138 based on AuNPs@WS₂-QDs composite + TMB + ChOx in serum, inset shows visible color of various concentration of

	choline and (b) corresponding calibration curve at 652 nm.	
Figure 6.1	Schematics of Ag@AHMTsynthesis	145
Figure 6.2	Time dependent study for the formation of Ag@AHMT	146
	nanoparticles by UV-Vis spectrum, (at 0 min, 5 min, 15 min,	
	25 min, 35 min, 45 min, 55 min)	
Figure 6.3	(a) UV-Vis spectra (b) FT-IR Spectra of AHMT and	146
	Ag@AHMT nanoparticles.	
Figure 6.4	(a) X-ray Diffraction of Silver nanoparticles indexed from	147
	JCPDS(CAS no. 7440-22-4) file and (b) XPS spectrum of Ag	
	(0)	
Figure 6.5	HR SEM of Ag@AHMT nanoparticles.	148
Figure 6.6	TEM images of Ag@AHMT nanoparticles (a,b,c) and	150
	corresponding SAED pattern (d).	
Figure 6.7	Particle size distribution of Ag@AHMTnanoparticles.	150
Figure 6.8	EDAX of Ag@AHMT nanoparticles.	151
Figure 6.9	EDS Mapping of Ag@AHMT silver nanoparticles.	151
Figure 6.10	Surface Zeta potential graph of Ag@AHMTnanoparticles (a)	152
	and naked silver nanoparticles (b)	
Figure 6.11	Stability of Ag@AHMTNps checked by UV-Vis.	153
Figure 6.12	(a) Colorimetric sensing with different concentration of picric	154
	acid (1, 2, 3, 4, 5, 6, 7, 8 nM). (b) Calibration curve of	
	colorimetric sensing with different concentration of picric	
	acid (1, 2, 3, 4, 5, 6, 7, 8 nM)	
Figure 6.13	Photographs showing the color-change during colorimetric	155
	sensing of Picric acid.	
Figure 6.14	TEM images of Ag@AHMT+Picric acid.	155
Figuro 6 15	The schematic presentation of formation of $\Delta \alpha \otimes \Delta HMT$	156
riguie 0.15	nanoparticles and interaction with pictic acid	130
Figuro 6 16	Intra-day (a) and inter-day (b) repeatability test for	157
riguit 0.10	the detection of nicric acid (concentration ranges from 1nM to	137
	8 nM)	
Figure 7 1	Possible mechanism for formation of $\Delta HMT_{-}\Delta q$	161
1 iguit /.1	r obstore meenamon for formation of Allivi 1-Ag.	101

Figure 7.2	Reaction scheme for synthesis of nanocrystalline coordination	164
	polymer AHMT-Ag.	
Figure 7.3	Schematic illustration of controlled experiments for the	165
	formation of AHMT–Ag using TEMPO and BHT.	
Figure 7.4	(I) FT-IR of spectra (a) AHMT-Ag (b) AHMT and (II)	166
	Absorption spectra of (a) AHMT and (b) AHMT –Ag.	
Figure 7.5	(I) X-ray Diffraction of (a) AHMT-Ag (b) AHMT and (c) Ag	167
	(0) obtained from JCPDS (CAS no. 87-0720.) file. (II) Le-bail	
	fit of AHMT-Ag.	
Figure 7.6	XPS spectra of the AHMT-Ag for Ag (3d), N (1s), S (2p) and	169
	C (1s) regions.	
Figure 7.7	¹ H NMR of (a) AHMT and (b) AHMT –Ag.	170
Figure 7.8	HR SEM of AHMT-Ag.	171
Figure 7.9	HR TEM of AHMT-Ag (a, b), size distribution graph from	172
	TEM image (c) and corresponding SAED pattern (d).	
Figure 7.10	EDX of AHMT–Ag provided by HR-TEM graph.	172
Figure 7.11	EDS Mapping of AHMT-Ag.	173
Figure 7.12	Ball-stick model structure of AMT-Ag in the (1) anti and (2)	175
	syn orientation generated by CS 3D Chem bio-draw with	
	structural energy minimization. Here blue, cyan, light grey,	
	golden, dark grey (large size) and pink balls represent N, H,	
	C, S, Ag atoms and lone pairs.	
Figure 7.13	Three possible structures of the AHMT dimer coordinated	176
	with Ag atom obtained at the B3LYP/6-31G**+LanL2DZ	
	level of theory in water solvent.	
Figure 7.14	Proposed Structural network of AHMT-Ag.	176
Figure 7.15	Zeta potential of AHMT-Ag.	177
Figure 7.16	TGA plot of AHMT-Ag.	178
Figure 7.17	Thermal activation energy plot of AHMT-Ag.	179
Figure 7.18	The CV of the electrodes in 5mM Fe(III) in PBS pH 7	180
	unmodified CPE (a) and AHMT-Ag modified CPE (b).	
Figure 7.19	Cyclic voltammetric (CV) response by the serial addition of	182

6-MP to AHMT–Ag/CPE in PBS at different pH.

- **Figure 7.20** (a) CV of AHMT–Ag/CPE in 18 μ M 6-MP at scan rates 10, **183** 20, 30, 50, 70 and 100 mV, (b) plots of the 6-MP anodic peak current against $v^{1/2}$ and (c) anodic peak potentials against log v.
- Figure 7.21 Effect of Matrix on the anodic peak current and potential, (A) 184 anodic current vs. dilution times, (B) peak potential vs. dilution times. The spiked concentration of 6-MP in serum is $60 \ \mu M \ (mean \pm SD \ for \ n = 5).$
- Figure 7.22 (a) Differential pulse voltammogram recorded on AHMT– 185
 Ag/CPE in 0.1 M PBS (pH 7) by successive addition of 6-MP, inset of (a) cyclic voltammogram recorded by successive addition of 6-MP, (b) corresponding calibration plot.
- **Figure 7.23** Mechanism for electro–oxidation of 6-MP.
- Figure 7.24 (a) Differential pulse voltammogram recorded on AHMT– 187
 Ag/CPE in 0.1 M PBS (pH 7) by successive addition of 6-MP
 Tablet, inset of (a) cyclic voltammogram recorded by successive addition of 6-MP, (b) corresponding calibration plot .
- Figure 7.25 (a) Differential pulse voltammogram recorded on AHMT– 188
 Ag/CPE in urine sample by successive addition of 6-MP, inset of (a) cyclic voltammogram recorded by successive addition of 6-MP, (b) corresponding calibration plot.
- Figure 7.26 Differential pulse voltammogram recorded on AHMT– 188 Ag/CPE in serum sample by successive addition of 6-MP, inset of (a) cyclic voltammogram recorded by successive addition of 6-MP, (b) corresponding calibration plot.
- Figure 7.27 Analytical figures for the comparision of present work with 189 other methods.
- Figure 7.28Differential pulse voltammetric (DPV) responses of
electrochemical sensor to
 $55 \ \mu\text{M}$ 6-MP, $55 \ \mu\text{M}$ 6-MP+ 100
 μM ethanol, $55 \ \mu\text{M}$ 6-MP + 100 μM glucose, $55 \ \mu\text{M}$ 6-MP+

186

100 μ M starch, 55 μ M 6-MP+ 100 μ M Ascorbic acid, 55 μ M 6-MP+ 100 μ M uric acid and 55 μ M 6-MP+ 100 μ M Dopamine. Error bar = RSD, (*n* = 5).