
Chapter 4

A Wavelet Based Approach to a

Moving Boundary Problem

4.1 Introduction

Moving boundary problems (Stefan problems) involving heat and mass transfer occur

in a wide variety of natural and industrial phenomenon. In a moving boundary

problem, the location of moving boundary is not known in advance and it depends

on the dependence variable which has to calculate. Therefore, the moving boundary

becomes a part of solution. Moreover, these problems are nonlinear. Due to these

facts, the solutions of these problems are of special interest from mathematical point

of view. It is seen from Voller et al. (2004), Rajeev et al. (2009), Zhou et al. (2014)

that the moving boundary problems involving variable latent heat terms are of great

interest in recent years. In 2015, Zhou and Xia (2015) presented an exact solution for

a one phase Stefan problem in which the latent heat is a power function of position

with a positive exponent by using theory of the Kummer function.
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From literatures (Hill, 1987; Rajeev and Das, 2010), it is found that exact solutions of

moving boundary problems are available for restricted cases only. Therefore, various

numerical techniques including finite difference method (Rizwan-Uddin, 1999), finite

element method (Gawlika and Lew, 2014), integral methods (Sadoun et al., 2006),

etc. have been applied for solving these problems. Some recent papers related to

numerical solution of moving boundary problems have been reported in (Mitchell

and Vynnycky, 2014; Kim, 2014; Blasik and Klimek, 2015).

In the last two decades, many numerical schemes based on different types of wavelets

have been reported for solving ordinary and partial differential equations with fixed

boundary condition (Chang and Wang, 1983; Razzaghi and Yousefi, 2001; Arsalani

and Vali, 2011). Some numerical algorithms based on Chebyshev wavelets for var-

ious kind of integral and differential equations have been discussed in (Biazar and

Ebrahimi, 2012; Xu and Zhou, 2015; Abd-Elhameed et al., 2013; Heydari et al.,

2014). It is seen that numerical schemes based on wavelets are user friendly, accu-

rate and computer intensive. Due to these facts wavelets becomes a notable tool

from mathematical point of view. In 2014, Zhou and Xu (2014) presented a numeri-

cal solution of convection diffusion equations which is based on operational matrix of

integration of second kind Chebyshev wavelets. Recently, Rajeev and Raigar (2015)

discussed a numerical solution for a solidification problem in semi-infinite domain

which is based on similarity transformation and Operational matrix of differentiation

of shifted Chebyshev polynomial of second kind wavelets.

The main aim of this chapter is to present a numerical solution of a Stefan problem

involving variable latent heat term which is a power function of position (Zhou et

al., 2014). In order to obtain numerical solution, we use similarity transformation

and Operational matrix of differentiation of shifted Chebyshev polynomials of second

kind wavelets as given in (Rajeev and Raigar, 2015). The obtained numerical results
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are compared with exact solution for some particular cases to check the accuracy

of the solution. The dependence of movement of the moving boundary on various

parameters are also analyzed.

4.2 Mathematical Model of the Problem

In this section, we consider a phase change moving boundary problem involving

latent heat term which is a power function of position (Zhou et al., 2014; Zhou and

Xia, 2015). The governing equations of the problem are formulated as:

∂T (x, t)

∂t
= v

∂2T (x, t)

∂x2
, 0 < x < s(t), t > 0, (4.1)

T (s(t), t) = 0, t > 0, (4.2)

k
∂T (0, t)

∂x
= −c t

α−1
2 , t > 0, (4.3)

k
∂T (s(t), t)

∂x
= −γ s(t)α ds(t)

dt
, t > 0, (4.4)

s(0) = 0, (4.5)

where T (x, t) is the temperature distribution, v is the diffusivity, γs(t)α is the latent

heat term, k is the thermal conductivity, x is the position coordinate, t is the time

and s(t) is the position of moving phase front, α is a non – negative real number, γ

and c are the constants.
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4.3 Solution of the Problem

First, we consider the following similarity transformation (Zhou et al., 2014; Zhou

and Xia, 2015):

T (x, t) = t
α
2 η(ξ), where ξ =

x

2
√
vt

(4.6)

and take the movement of phase front as

s(t) = 2λ
√
vt, (4.7)

where λ is an unknown constant.

With the help of Eqs. (4.6)-(4.7), the Eqs. (4.1)-(4.3) turn into

η′′(ξ) + 2 ξ η′(ξ)− 2αη(ξ) = 0, 0 < λ < 1, (4.8)

η(λ) = 0, (4.9)

η′(0) = −2c
√
v

k
, (4.10)

respectively and the Stefan condition (4.4) becomes

η′(λ) = −γ
k
v(α+2)/2(2λ)α+1. (4.11)

As given in Eq. (1.29), we write η(ξ) and ξ in the following truncated series form

(Rajeev and Raigar, 2015):

η(ξ) =
2k−1∑
n=0

M∑
m=0

Cnmψnm(ξ) = Cψ(ξ) (4.12)

ξ =
2k−1∑
n=0

M∑
m=0

fnmψnm(ξ) = Fψ(ξ) (4.13)
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where

C = [c0,0, c0,1, c0,2, ..., c0,M , ..., c2k−1,0, c2k−1,1, ...., c2k−1,M ],

ψ(t) = [ψ0,0, ψ0,1, ψ0,2, ..., ψ0,M , ..., ψ2k−1,0, ψ2k−1,1, ...., ψ2k−1,M ]T ,

and

F = [f0,0, f0,1, f0,2, ..., f0,M , ..., f2k−1,0, f2k−1,1, ...., f2k−1,M ]

From Eq. (1.35), we have

η′(ξ) = CDψ(ξ), (4.14)

η′′(ξ) = CD2ψ(ξ). (4.15)

Substituting Eqs. (4.14)-(4.15) into Eq. (4.8), we get

CD2ψ(ξ) + 2Fψ(ξ)CDψ(ξ)− 2αCψ(ξ) = 0, 0 < ξ < λ, (4.16)

Again substituting Eqs. (4.14) and (4.15) into Eqs. (4.9)-(4.11) that give

Cψ(λ) = 0, (4.17)

CDψ(0) = −2c
√
v

k
, (4.18)

and

CDψ(λ) = −γ
k
v(α+2)/2(2λ)α+1 (4.19)

In order to get approximate solution of η(ξ), we solve Eq. (4.16) at the first(
2k(M + 1)− 2

)
roots of U∗

2k(M+1)
(ξ) which gives

(
2k(M + 1)− 2

)
equations. More-

over, Eqs. (4.17)-(4.19) generate three more equations in terms of 2k(M + 1) con-

stants (cnm) and λ. By applying any appropriate numerical technique, the solution

of these equations can be found. With the help of Eq. (4.12), we can obtain an
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approximate solution of η(ξ). After that approximate solutions of T (x, t) and s(t)

can be determined with the help of Eqs. (4.6)-(4.7).

4.4 Numerical Comparisons and Discussions

In this section, all numerical computations have been made for temperature distri-

bution T (x, t) and moving interface s(t) by taking M = 2, k = 0. The results are

obtained by using MATHEMATICA software and shown through tables and figures.

The following matrices are taken in our calculations:

D =


0 0 0

4 0 0

0 8 0

 , D =


0 0 0

0 0 0

32 0 0

 , C =

√
π

2

(
c0 c1 c2

)
,

ψ(ξ) =

√
2

π


2

8ξ − 4

32ξ2 − 32ξ + 6

 and F =

√
π

2

(
0 0 0

)
.

In order to show the accuracy of our solution, we take two cases α = 0 and α = 1.

It can be seen in (Zhou et al., 2014) that

T (x, t) =
c
√
πv

k

(
erfc

(
x√
4vt

)
− erfc(λ)

)
,

s(t) = 2 λ
√
vt,

where λ is the root of following equation:

exp(−λ2) =
γ
√
v

c
λ,
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are the exact solutions of Eqs. (4.1)-(4.5) in case of α = 0. When α = 1 then Eqs.

(4.1)-(4.5) become a limit case of a basic shoreline problem whose analytical solution

is discussed by Voller et al. [1]. Table 4.1 shows the absolute errors and relative

errors between obtained solution and exact solution (Zhou et al., 2014) for moving

interface s(t) at α = 0, v = 2.0, k = 1.0, γ = 20. Table 4.2 depicts the absolute

errors and relative errors between our solution and analytic solution [1] for the case

of α = 1 at v = 1.0, k = 1.0, γ = 20. From both the tables, it is clear that our

obtained numerical solutions are near to the exact solutions.

The dependence of movement of interface s(t) for different value of v at α = 0 and

α = 1 are presented through Fig. 4.1 and Fig. 4.2, respectively. From both the

figures, it is seen that movement of interface increases as the value of v decreases and

consequently, the freezing/ melting process becomes fast if we decrease the diffusivity

for α = 0 as well as α = 1. Fig. 4.3 and Fig. 4.4 show variations of trajectories of

interface s(t) for different values of c at α = 0 and α = 1, respectively. It is clear

from Figs. 4.3 and 4.4 that the freezing/ melting process becomes fast if we increase

the value of c for both the cases α = 0 as well as α = 1. Figs. 4.1-4.4 show that the

movement of interface increases as the value of α increases, i.e. the freezing/melting

process becomes fast with the increment in the value of α.
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c t sN(t) sE(t) AbsoluteError RelativeError

0.1 0.0152591 0.0158064 5.4× 10−4 3.4× 10−2

0.2 0.162679 0.160212 2.40× 10−3 1.50× 10−2

0.5 0.3 0.113274 0.109579 3.60× 10−3 3.30× 10−2

0.4 0.064106 0.059189 4.90× 10−3 8.30× 10−2

0.5 0.015176 0.009037 6.10× 10−3 6.70× 10−2

0.1 0.641957 0.637125 4.80× 10−3 7.50× 10−3

0.2 0.542968 0.533223 9.70× 10−3 1.80× 10−2

1.0 0.3 0.444652 0.430042 1.40× 10−2 3.30× 10−2

0.4 0.347007 0.327569 1.90× 10−2 5.90× 10−2

0.5 0.250031 0.225792 2.40× 10−2 1.00× 10−1

0.1 1.213060 1.202430 1.00× 10−2 8.80× 10−3

0.2 1.064920 1.043280 2.10× 10−2 2.00× 10−2

1.5 0.3 0.918012 0.885505 3.20× 10−2 3.60× 10−2

0.4 0.772339 0.729075 4.30× 10−2 5.90× 10−2

0.5 0.627896 0.573966 5.30× 10−2 9.30× 10−2

Table 4.1: Comparison between exact value sE(t) and numerical value sN (t) of
moving interface at α = 0, v = 2.0, k = 1.0, γ = 20.



Chapter 4. A Wavelet Based Approach to... 63

c t sN(t) sE(t) AbsoluteError RelativeError

0.1 0.212321 0.211090 1.20× 10−3 5.80× 10−3

0.2 0.162679 0.160212 2.40× 10−3 1.50× 10−2

0.5 0.3 0.113274 0.109579 3.60× 10−3 3.30× 10−2

0.4 0.064106 0.059189 4.90× 10−3 8.30× 10−2

0.5 0.015176 0.009037 6.10× 10−3 6.70× 10−2

0.1 0.641957 0.637125 4.80× 10−3 7.50× 10−3

0.2 0.542968 0.533223 9.70× 10−3 1.80× 10−2

1.0 0.3 0.444652 0.430042 1.40× 10−2 3.30× 10−2

0.4 0.347007 0.327569 1.90× 10−2 5.90× 10−2

0.5 0.250031 0.225792 2.40× 10−2 1.00× 10−1

0.1 1.213060 1.202430 1.00× 10−2 8.80× 10−3

0.2 1.064920 1.043280 2.10× 10−2 2.00× 10−2

1.5 0.3 0.918012 0.885505 3.20× 10−2 3.60× 10−2

0.4 0.772339 0.729075 4.30× 10−2 5.90× 10−2

0.5 0.627896 0.573966 5.30× 10−2 9.30× 10−2

Table 4.2: Comparison between exact value sE(t) and numerical value sN (t) of
moving interface at α = 1, v = 1.0, k = 1.0, γ = 20.
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Figure 4.1: Plot of s(t) vs t at α = 0, c = 1.0, k = 1.0, γ = 20.

Figure 4.2: Plot of s(t) vs t at α = 1, c = 1.0, k = 1.0, γ = 20.

Figure 4.3: Plot of s(t) vs t at α = 0, v = 1.0, k = 1.0, γ = 20.
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Figure 4.4: Plot of s(t) vs t at α = 1, v = 1.0, k = 1.0, γ = 20.

4.5 Conclusion

In this chapter, an approach based on operational matrix of differentiation of shifted

second kind Chebyshev wavelets is successfully applied to a moving boundary prob-

lem involving variable latent heat term (a power function of position). It is seen

that this approach provides a simple and accurate algorithm for the moving bound-

ary problems in order to understand the physical behavior of dependent variables

involved in the process. Moreover, the proposed method is computer intensive.

Therefore, this approach is helpful for the researchers who are working in this area.

It is also found that the movement of interface increases if we increase the values of

α and constant c. However, the movement of interface decreases with the increment

in the value of diffusivity.

***********
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