
Chapter 3

Exact and Approximate Solutions

of a Phase Change Problem with

Moving Phase Change Material

and Variable Thermal Coefficients

3.1 Introduction

The phase-change problems (Stefan problems) involve one or more moving bound-

aries that separate the different phases of the material. These problems arise in

many natural and manufacturing phenomena. The applicability of these problems

and the presence of the moving boundaries make it interesting from industrial as well

as mathematical point of views. Moreover, the presence of moving boundary is also a

key reason for these problems to be a non-linear even in its simplest form. In the clas-

sical Stefan problems (Gupta, 2017), the velocity of phase change material has been
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assumed as zero and the thermal coefficients have been taken as constants. But it is

not always appropriate with the many materials. Hence, the variable thermal coeffi-

cients have been attracted many scientists and engineers in the field of phase-change

processes (Oliver and Sunderland, 1987; Rogers and Broadbridge, 1988; Ramos et

al., 1994; Tritscher and Broadbridge, 1994; Broadbridge and Pincombe, 1996). Mon-

dal et al. (2015) also assumed temperature-dependent thermal conductivity in the

study of thermal radiation on an unsteady MHD axisymmetric stagnation point

flow over a shrinking sheet. The temperature-dependent thermal coefficients in the

one-dimensional phase change problem are considered by Briozzo et al. (2007), and

they discussed the exact solution to the problem. Many other authors (Briozzo and

Natale, 2015; Briozzo and Natale, 2017) also took variable thermal coefficients in

their study and presented either exact or approximate solutions or both. Khader

(2016) also considered temperature-dependent thermal conductivity in the problem

of flow of Newtonian fluid over an impermeable stretching sheet. Ceretani et al.

(2018) assumed thermal conductivity which linearly varies with temperature and

Robin boundary condition in a phase change problem, and presented the similarity

solution of the problem. Recently, Kumar et al. (2018a) presented a Stefan problem

involving thermal conductivity as a function of time and temperature. They dis-

cussed similarity solution for a limit case and approximate solution for the general

case. Another Stefan problem containing temperature-dependent specific heat and

thermal conductivity is mentioned by Kumar et al. (2018b).

The occurrence of the phase change when the material is moving itself during the

process is not much studied in the literature (Fila and Souplet, 2001; Lombardi

and Tarzia, 2001). However, this type of physical situation may arise in many

phase change processes. Recently, Turkyilmazoglu (2018) discussed the problems

concerning melting and solidification processes that include moving phase change
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material (PCM). He has presented some analytical solutions to the problem by

taking constant thermal coefficients. Singh et al. (2018) also discussed a freezing

problem including convective boundary condition, moving phase change material

and variable thermal coefficients.

Inspired by all these work, we consider a phase change problem related to melting

process in which the phase change material moves with a speed u in the positive

direction of x-axis which depends on time. Simultaneously, the variable thermal

conductivity k(T ) and specific heat c(T ) are assumed in the problem. The constant

melting temperature Tm is assumed as initial temperature of the material. The

mathematical model governing the process is given below:

ρc(T )

(
∂T

∂t
+ u

∂T

∂x

)
=

∂

∂x

(
k(T )

∂T

∂x

)
, 0 < x < s(t), t > 0, (3.1)

T (0, t) = Tw, t > 0, (3.2)

T (s(t), t) = Tm, t > 0, (3.3)

k(Tm)
∂T

∂x
(s(t), t) = −ρLds

dt
, t > 0, (3.4)

s(0) = 0, (3.5)

where T (x, t) denotes the temperature description at the location x and time t, s(t)

denotes the location of the moving boundary, Tw(> Tm) is a constant temperature

applied at the fixed boundary x = 0, ρ is the density of the material and L is the

latent heat, respectively. Here, we consider the temperature-dependent specific heat

capacity c(T ) and thermal conductivity k(T ) as:

c(T ) = c0

(
1 + α

T − Tw
Tm − Tw

)
(3.6)
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and

k(T ) = k0

(
1 + β

T − Tw
Tm − Tw

)
(3.7)

where c0 > 0, k0 > 0 and α > 0, β > 0 are given constants and ∆Tw(= Tm − Tw) is

reference temperature.

Due to the complexity associated with the phase change problems, the establishment

of analytical solutions always draws the attention of investigators. Some existing

exact solutions of phase change problems can also be seen in (Voller et al., 2004;

Voller and Falcini, 2013; Zhou and Li-jiang, 2015). In this chapter, the similarity

solution to the problem (mentioned in Eqs. (3.1)- (3.5)) is discussed for α = β and

the uniqueness of this solution is also deliberated. Beside analytical method, we

also present a spectral approach with the aid of shifted Legendre polynomials and

collocation technique to the problem for all α and β.

Due to the exponential rate of convergence, spectral methods have been used by

many researchers to solve differential equations of various orders, and few of them

are Canuto et al. (1988), Gottlieb and Hesthaven (2001), Doha and Abd-Elhameed

(2006), Guo and Yan (2009), Doha et al. (2012), Atabakzadeh et al. (2013), Hosseini

et al. (2013), Agbaje et al. (2018). The application of spectral relaxation method in

fluid flow can be seen in (Haroun et al., 2015a; Haroun et al., 2015b; Haroun et al.,

2015; oyelakin et al., 2016; Haroun et al., 2016). Some other applications of spectral

method, viz. spectral quasi linearization method, multi-domain quasilinearization

method and multi-domain collocation method are reported by Mondal et al. (2016),

Ahamed et al. (2016), Mahapatra et al. (2018), almakki et al. (2018), Goqo et

al. (2018), Noreldin et al. (2018), Mondal et al. (2019). Ahmadian et al. (2013)

discussed the operational matrix based on shifted Legendre polynomials to solve the

fuzzy differential equations of fractional order. Khader and Babatin (2014) used

Legendre spectral collocation method to solve SIRC model and influenza A. Bhrawy
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and Zaky (2014) proposed shifted Jacobi collocation technique based on Jacobi op-

erational matrix for Caputo fractional derivatives and solved the fractional order

cable equation in one and two dimensional spaces. Abd-Elhameed et al. (2015)

presented a new operational matrix method to solve the various boundary value

problems by using the collocation method and Petrov-Galerkin method. Bhrawy

and Zaky (2017a) developed an exponential order accurate Jacobi-Gauss-Lobatto

collocation method to find the solution of the fractional Schrodinger equations in

one and two dimensions. Bhrawy and Zaky (2017b) have derived new operational

matrices of the shifted Jacobi polynomials for the fractional derivatives of Caputo

and Riemann-Liouville types. They also used this development to find the solution

of the variable-order Schrodinger equations. The spectral methods used to solve the

differential/integral equations are characterized by the representation of the func-

tion to be known by a truncated series of smooth functions like polynomials. In this

expansion, the main concern is to determine the unknown expansion coefficients.

Doha et al. (2018) presented an article to give an overview of numerical difficul-

ties while determining these coefficients and proposed the rich variety of tools to

resolve these difficulties. Recently, Zaky (2018) produced an efficient method based

on the Legendre-tau approximation for fractional Rayleigh-Stokes problems for a

generalized second-grade fluid. Zaky et al. (2018) established a Legendre spectral-

collocation technique for numerical solution of the distributed order fractional initial

value problems and also discussed the convergence analysis of the method.
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3.2 Formulation of the Problem

Substituting the following transformation

f(x, t) =
T (x, t)− Tw
Tm − Tw

(3.8)

into the Eqs. (3.1)-(3.5), we obtain

(1 + αf)

(
∂f

∂t
+ u

∂f

∂x

)
= v

∂

∂x

(
(1 + βf)

∂f

∂x

)
, 0 < x < s(t), t > 0, (3.9)

f(0, t) = 0, t > 0, (3.10)

f(s(t), t) = 1, t > 0, (3.11)

∂f(s(t), t)

∂x
=

1

v(1 + β)Ste

ds

dt
, t > 0, (3.12)

s(0) = 0, (3.13)

where Ste = − c0∆Tw
L

is the Stefan number.

Now, let us consider the following similarity variable

f(x, t) = θ(η) where η =
x

2
√
vt

(3.14)

and assume that

s(t) = 2λ
√
vt, (3.15)

where v = k0
ρc0

(thermal diffusivity for k0 and c0) and λ is a unknown parameter.

Substituting Eqs. (3.14)-(3.15) into Eqs. (3.9)-(3.12), we get the following system

involving ordinary differential equations:

θ′′(η) + βθ(η)θ′′(η) + β(θ′(η))2 + 2(η − Pe)θ′(η) + 2α(η − Pe)θ(η)θ′(η) = 0, (3.16)
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θ(0) = 0, (3.17)

θ(λ) = 1, (3.18)

θ′(λ) =
2λ

(1 + β)Ste
, (3.19)

where Pe = u
√

t
v

denotes the Peclet number.

Now, we substitute the following transformation

θ(η) = y(η) +
η

λ
, (3.20)

into the Eqs. (3.16)-(3.19) which produce

y′′(η) + β
(
y(η) +

η

λ

)
y′′(η) + β

(
y′(η) +

1

λ

)2

+ 2(η − Pe)
(
y′(η) +

1

λ

)
+ 2α(η − Pe)

(
y(η) +

η

λ

)(
y′(η) +

1

λ

)
= 0, (3.21)

y(0) = 0, y(λ) = 0, (3.22)

y′(η) +
1

λ
=

2λ

(1 + β)Ste
. (3.23)

3.3 Approximate Solution

To solve Eq. (3.21), we take an approximation of y(η) in terms of the shifted

Legendre polynomials as:

y(η) ≈ yN(η) =
N∑
i=0

ciφi(η) = CCCTφφφ(η), (3.24)

where

CCCT = [c0, c1, ..., cN ], φφφ(η) = [φ0(η), φ1(η), ..., φN(η)]T . (3.25)
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As mentioned in Section 1.4 of chapter 1, y′(η) and y′′(η) can be approximated as

y′(η) ≈ CCCTDφφφ(η) +CCCTδδδ, (3.26)

and

y′′(η) ≈ CCCTD2φφφ(η) +CCCTDδδδ +CCCTδδδ′. (3.27)

Substituting the considered approximations of y(η), y′(η) and y′′(η) into the Eq.

(3.21), we get the residual denoted by RN(η) corresponding to the Eq. (3.21) which

is given below:

RN(η) =
(
CCCTD2φφφ(η) +CCCTDδδδ +CCCTδδδ′

)
+ β

(
CCCTDφφφ(η) +

η

λ

)
(
CCCTD2φφφ(η) +CCCTDδδδ +CCCTδδδ′

)
+ β

(
CCCTDφφφ(η) +CCCTδδδ +

1

λ

)2

+ 2(η − Pe)
(
CCCTDφφφ(η) +CCCTδδδ +

1

λ

)
+ 2α(η − Pe)

(
CCCTDφφφ(η) +

η

λ

) (
CCCTD2φφφ(η) +CCCTDδδδ +CCCTδδδ′

)
(3.28)

According to the spectral collocation method (Abd-Elhameed et al., 2015), we im-

pose RN(η) = 0 at the first (N + 1) roots of L∗N+1(η) which produces (N + 1) non-

linear algebraic equations involving (N + 2) unknowns ( c0, c1, ..., cN and λ). Beside

these (N + 1) non-linear algebraic equations, one additional algebraic equation can

be obtained with the aid of Eq. (3.23) which is

CCCTDφφφ(η) +CCCTδδδ +
1

λ
=

2λ

(1 + β)Ste
. (3.29)

The obtained system of (N +2) algebraic equations can be solved by an appropriate

numerical technique like Newton-Raphson method to get all the (N + 2) unknowns.

From Eq. (3.24), the approximate solution of y(η) can be found, hence the f(x, t)
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can be obtained by back substitution. After getting λ, the moving phase front s(t)

can also be achieved with the help of Eq. (3.15).

3.4 Exact Solution

First, we take α = β in the problem (3.16)-(3.19), hence the ordinary differential

equation (3.16) becomes:

(1 + βθ(η))θ′′(η) + β(θ′(η))2 + 2(η − Pe)(1 + βθ(η))θ′(η) = 0. (3.30)

According to Singh et al. (2018), the solution of the Eq. (3.30) with the conditions

(3.17) and (3.18) is given by

θ(η) =
1

β

−1 +

(
1 +

2βλe(Pe−λ)2
√
π

Ste
(erf(Pe)− erf(Pe− η))

) 1
2

 , (3.31)

where erf(.) denotes the well-known error function.

The Eqs. (3.14) and (3.31) give rise to the following equation:

f(x, t) =
1

β

−1 +

(
1 +

2βλe(Pe−λ)2
√
π

Ste

(
erf(Pe)− erf

(
Pe− x

2
√
vt

))) 1
2

 .

(3.32)

Now, the Eqs. (3.19) and (3.31) yield the following equation:

2λe(Pe−λ)2
√
π

Ste
(erf(Pe)− erf(Pe− λ))− (2 + β) = 0. (3.33)

We can calculate the unknown λ from transcendental equation (3.33) if it exists.

After getting λ, we can easily find analytical expressions of s(t) and f(x, t) with
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the aid of Eqs.(3.15) and (3.32), respectively. The existence and uniqueness of λ

satisfying the transcendental Eq. (3.33) is deliberated in the next section.

3.5 Existence and Uniqueness

In order to show the existence and uniqueness of the exact solution discussed in

previous section, we consider the following function:

h(λ) =
2λe(Pe−λ)2

√
π

Ste
(erf(Pe)− erf(Pe− λ))− (2 + β). (3.34)

To prove the uniqueness of solution to the considered problem, it is enough to show

that there exists a unique value of λ in the interval (0,∞) which satisfies the Eq.

(3.34). From the Eq. (3.34), it is obvious that the function h(λ) is continuous

and differentiable on the interval (0,∞). Moreover, limλ→0+ f(λ) = −(2 + β) and

limλ→∞ f(λ) =∞ for the positive parameters β and Ste.

Now, the derivative of h(λ) is given as

h′(λ) =
4λ

Ste
+

2e(Pe−λ)2
√
π

Ste
(erf(Pe)− erf(Pe− λ))

(
λ2 + 2Peλ− 1

)
. (3.35)

It is also observed that h′(λ) > 0 on the interval (0,∞) for Ste > 0, P e ≤
√

2.

Hence, h(λ) is a strictly increasing function on the interval (0,∞). This shows that

the equation h(λ) = 0 has exactly one positive root in the interval (0,∞) for the

positive values of parameters.
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3.6 Results and Discussions

We first discuss about the correctness of the solution obtained by spectral collocation

technique and the results thus found are depicted through the Tables 3.1-3.2. In this

study, Wolfram Research (8.0.0) software and the following matrices are used in the

calculation:

D =
2

λ


0 0 0

3 0 0

0 6 0

 , D2 =
4

λ


0 0 0

0 0 0

18 0 0

 and φφφ(η) =


φ0(η)

φ1(η)

φ2(η)

 , (3.36)

where φ0(η) = η(λ− η), φ1(η) = η(2η−λ)(λ−η)
λ

and φ1(η) = η(λ− η)
(

3(2η−λ)2

2λ2
− 1

2

)
.

The approximate dimensionless temperature fA(x, t), exact dimensionless temper-

ature fE(x, t) and absolute error between them are revealed in Table 3.1 at v =

1.5, t = 1 and N = 2 for different α, β, Pe and Stefan number. Table 3.2 portrays

the assessment for the accuracy of the exact solution sE(t) and the approximate

solution sA(t) of the moving phase front at a constant thermal diffusivity v = 1.5 by

considering the matrices given in (3.36). Both the Tables endorse that the proposed

approximate solutions of f(x, t) and s(t) are sufficiently near to the analytical so-

lution discussed in Section 3.4 for α = β. Therefore, spectral collocation approach

is a useful procedure to solve the moving boundary problems associated with phase

change phenomenon.

With the aid of the procedure discussed in Section 1.4 and considering the opera-

tional matrix of order three; the Figs. 3.1-3.6 are plotted. The dependency of dimen-

sionless temperature f(x, t) on x for three different Peclet numbers (Pe = 1, 2, 3)

at v = 1.5 and t = 5 is displayed in Fig. 3.1. Fig. 3.2 demonstrates the variations

of f(x, t) versus x for three different α (α = 1, 2, 3) at the fixed thermal diffusivity
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(v = 1.5) and time (t = 5). These figures represent that the dimensionless temper-

ature are zero at x = 0 and continuously increases till the last point of domain, i.e.

x = 1 . It is also detected from Figs. 3.1-3.2 that the rate of change of dimensionless

temperature with respect to x decreases when we increase either the Peclet numbers

or the parameter α. But, the temperature distribution is more affected with the

variation of Peclet numbers than the parameter α. Fig. 3.3 shows the temperature

distribution with in the domain for three cases, i.e., β = 1, 2 and 3 at v = 1.5 and

t = 5. This figure presents that the rate of change of temperature with respect to

x increases with the enhancement in the value of β till some points of x and after

that the reverse situation is observed that can be seen in the figure.

Figure 3.1: Plot of f(x, t) for different values of Pe at Ste = 0.5 and α = β = 1.
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Figure 3.2: Plot of f(x, t) for different values of α at Ste = 0.5, β = 1 and
Pe = 1.

Figure 3.3: Plot of f(x, t) for different values of β at Ste = 0.5, α = 1 and
Pe = 1.
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Figure 3.4: Plot of s(t) for different values of Pe at Ste = 0.5 and α = β = 1.

Figure 3.5: Plot of s(t) for different values of α at Ste = 0.5, β = 1 and Pe = 1.

Figure 3.6: Plot of s(t) for different values of β at Ste = 0.5, α = 1 and Pe = 1.
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Figure 3.7: Convergence of approximate λ.

Figure 3.8: Convergence of approximate θ(η).

Figs. 3.4-3.6 depict the dependency of trajectory of phase front s(t) on Pe, α

and β for the fixed thermal diffusivity (v = 1.5) and Stefan number (Ste). From

Fig. 3.4, it is seen that the phase front s(t) propagates faster in the direction of

phase change material as we increase the Peclet numbers (Pe = 1, 2, 3). Moreover,

the similar observations are established from Figs. 3.5-3.6, i.e. the enhancement

in the movement of phase front s(t) is found if we increase the value of either α

or β or both. If phase front moves more quickly with the increment in the value
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of a parameter then this indicates that the material melts/solidifies faster when

we increase or decrease the same parameter. Therefore, the advancement of melting

process is detected by the improvement of either α or β or Pe form the Figs. 3.4-3.6.

It is also observed that the effect of Peclet numbers in the progression of tracking of

the phase front s(t) is more than the parameters α or β .

To show the accuracy of the proposed numerical solution with increasing the number

of terms, Figs. 3.7 and 3.8 are plotted according to Zaky et al. (2018). Fig. 3.7

demonstrates the plot of log10|error| of the moving interface factor (λ) for different

approximating polynomials of degree (N + 2) at the value of α = β = 0, Ste = 0.5

and Pe = 1.5. In Fig. 3.8, we plot the graph of log10|error| of the obtained numerical

solution of θ(η) for different approximating polynomials of degree (N + 2) at the

value of α = β = 0, η = 0.5, Ste = 0.5 and Pe = 1.5. From Figs. 3.7 and 3.8, it

is clear that the proposed solution converges rapidly as the degree of approximating

polynomials or N increases.
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α, β Pe, Ste x fE(x, t) fA(x, t) Absolute error

Pe = 1, 0.1 0.09096898 0.09102588 5.6901× 10−5

Ste = 0.2 0.2 0.18148967 0.18162926 1.3958× 10−4

α = β = 1 0.3 0.27186285 0.27203707 1.7421× 10−4

0.4 0.36228358 0.36243156 1.4797× 10−4

0.5 0.45287079 0.45295025 7.9463× 10−5

Pe = 1, 0.2 0.04834152 0.04840274 6.1216× 10−5

Ste = 0.2 0.4 0.10496521 0.10513470 1.6948× 10−4

α = β = 1.5 0.6 0.17005546 0.17028651 2.3104× 10−4

0.8 0.24359455 0.24380526 2.1070× 10−4

1.0 0.32537556 0.32549448 1.1891× 10−4

Pe = 1, 0.5 0.02080022 0.02045477 3.4545× 10−4

Ste = 0.2 1.0 0.06143613 0.05962531 1.8108× 10−3

α = β = 1.5 1.5 0.13171326 0.12936176 2.3514× 10−3

2.0 0.23907970 0.23642179 2.6579× 10−3

2.5 0.38546466 0.38247065 2.9940× 10−3

Table 3.1: Absolute error between exact value fE(x, t) and approximate value
fA(x, t) of f(x, t) at v = 1.5 and t = 1.
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γ t sE(t) sA(t)|N=2 sA(t)|N=3 sA(t)|N=4

0.2 0.1433605391 0.1434231706 0.1433613581 0.1433605381

0.4 0.2027424187 0.2028309930 0.2027435770 0.2027424173

0.5 0.6 0.2483077376 0.2484162185 0.2483091561 0.2483077358

0.8 0.2867210782 0.2868463413 0.2867227162 0.2867210762

1.0 0.3205639108 0.3207039591 0.3205657421 0.3205639085

0.2 0.4931638371 0.4932423228 0.4932255542 0.4931648450

0.4 0.6974389870 0.6975499825 0.6975262681 0.6974404123

2.0 0.6 0.8541848224 0.8543207636 0.8542917196 0.8541865681

0.8 0.9863276743 0.9864846457 0.9864511085 0.9863296901

1.0 1.1027478639 1.1029233632 1.1028858676 1.1027501176

0.2 0.5937586335 0.6016120367 0.5937787903 0.5937558057

0.4 0.8397015123 0.8508079016 0.8397300183 0.8396975131

5 0.6 1.0284201207 1.0420226141 1.0284550333 1.0284152227

0.8 1.1875172671 1.2032240735 1.1875575807 1.1875116114

1.0 1.3276846668 1.3452454102 1.3277297388 1.3276783436

Table 3.2: Comparison between exact values of moving boundary sE(t) and
approximate values of moving boundary sA(t) at α = β = 1, α0 = 1, P e = 1 and

Ste = 0.5.

3.7 Conclusion

This chapter included a problem of melting process in which it is assumed that the

thermal coefficients depend on temperature and the phase change material moves

with a variable velocity. The spectral collocation method is successfully applied to

get an approximate solution to the problem. It is found that the spectral collocation
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method is a simple and sufficiently accurate scheme to develop the solution of the

phase change problems. Hence, spectral collocation is an effective tool to get the

solution of the problems associated to phase change processes. Beside this solution,

an exact solution to the problem is established for a particular case, i.e. α = β and it

is revealed that there occurs a unique solution to the problem when Pe ≤
√

2. Like

classical phase change problems Gupta (2017), this problem also consists of phase

front s(t) proportional to
√
t. This chapter also described that the melting process

is dependent on Peclet number Pe, α and β; and the melting process becomes rapid

as the parameter Pe or α or β improves.

***********
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