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Abstract

Au—Cu alloy nanostructures have been synthesized in aqueous phase through co-reduction of
HAuCl,.3H,0 and CuCl,.2H,0 by glucose in presence of hexadecylamine at ~80 °C. By changing the
synthesis conditions, nanostructures of various shapes such as nanowires, multiply twinned tripod,
tetrapod, etc were observed. Systematic variation of the synthesis condition not only leads to change in
size and particle morphology but also develops various other crystallographic characters in the
nanoparticles. Alloying behavior of Au—Cu has been examined through transmission electron microscope
operating in its conventional and analytical modes coupled with high resolution phase contrast
microscopy. These results suggested that nanostructures are composed of homogeneous Au—Cu alloy.
Preferential attachment along {111} and {100} crystallographic facets of Au—Cu alloy nanoparticles led
to the formation of nanowires. Multiply twinned branched shape Au—Cu (width of branch ~30 nm)
nanostructures exhibit localized surface plasmon resonance maxima in the near-infrared region. The
branched shape Au—Cu alloy nanostructures display better surface enhanced Raman scattering response
in the detection of methylene blue as compared to spherical Au nanoparticles.

1. Introduction

The simultaneous control of morphology and composition of bimetallic nanoparticles (NPs) is complicated by
two processes in wet chemical synthesis. They refer to nature of nucleation and growth of two metals precursors
concurrently. Metals pair possess large difference in the redox potentials quite often making co-reduction a
difficult route for synthesis of alloy nanoparticles. However, synthesis of bimetallic/ alloy NPs of noble metals
(Au, Cuand Ag) helps to modulate localized surface plasmon resonance (LSPR) spectral response compared to
monometallic NPs making use of their synergy. Spherical gold NPs, for example, can possess a plasmon band
typically ranging from 520 nm to the infra-red regime depending on the particle size and shape [1, 2]. The
Copper NPs (Cu NPs) have been attractive for their ability to catalyze chemical reactions [3]. Additionally, Cu
possesses a surface plasmon resonance (SPR) which can impart unique optical properties that can be exploited
for sensing, imaging, and photonics applications. Unfortunately, one limitation of Cu is that it rapidly oxidizes
to form CuO and Cu,0, and therefore the synthesis of Cu NPs is challenging compared to those of Agand Au
NPs. However, Cu is observed to be stable for prolonged period in the presence of Ag at nanometer length scale
[4]. The optical properties of gold NPs have also been modified by alloying the particle with another metal [5].
The resulting plasmon band behaves as a hybrid of the two materials, and possesses variability based upon the
proportion incorporated. This ability to tune material properties via composition combined with the wide
variety of shapes available makes gold NPs an important candidate for investigations both in elemental as well as
in alloy form. Literature on the synthesis of controlled morphology and composition of Au—Cu bimetallic NPs is

© 2020 The Author(s). Published by IOP Publishing Ltd


https://doi.org/10.1088/2053-1591/ab63c7
https://orcid.org/0000-0001-5004-7809
https://orcid.org/0000-0001-5004-7809
mailto:manish.singh@uconn.edu
mailto:drmanishsg@gmail.com
https://doi.org/10.1088/2053-1591/ab63c7
https://crossmark.crossref.org/dialog/?doi=10.1088/2053-1591/ab63c7&domain=pdf&date_stamp=2020-01-13
https://crossmark.crossref.org/dialog/?doi=10.1088/2053-1591/ab63c7&domain=pdf&date_stamp=2020-01-13
http://creativecommons.org/licenses/by/4.0
http://creativecommons.org/licenses/by/4.0
http://creativecommons.org/licenses/by/4.0

10P Publishing

Mater. Res. Express7 (2020) 015052 MK Singh et al

scarce [6—8]. Liu and Walker synthesized Au—Cu alloy nanocubes employing a polyol method [7]. They showed
that the size and composition of the nanocubes influenced the localized surface plasmon resonance (LSPR)
behavior significantly. Chen et al grew intermetallic Au—Cu NPs by allowing Cu atoms to diffuse into pre-
synthesized Au seeds [6]. Structural modifications in Au—Cu nanostructures at local level have also been
observed by heat-treatments of nonstoichiometric AuCu alloy nanoparticles in solution as well as in solid state
phases [9, 10]. Solution phase synthesis gives uniform and monodispersed products owing to homogeneous
atomic scale diffusion compared to that of solid-state diffusion. In spite of some remarkable studies reported in
the literature, well-defined and controlled morphology of Au—Cu bimetallic NPs are still elusive. Moreover, NPs
were reported to expose high symmetric facets such as {111} {100} and {110} very often [11]. Control of nature
of the crystal structure, exposed surfaces and facets of NPs directly dictates their properties. Thereis a
continuous push for the synthesis of nanostructures with various interesting shapes including those of NPs with
multiple branches. Nanostructures with anisotropic features such as branches, corners, edges, and bends are
expected to give increased high energy sites vis-a-vis of isotropic ones. They can be used to manipulate LSPR
spectral response, as SERS (surface enhanced Raman scattering) substrates as well as catalysts [12—15]. It has
been shown in the literature that branched nanostructures are often exhibited vicinal surfaces decorated with
low symmetric facets [16—19]. These surfaces possess many crystallographic defects which can serve as potential
sites for chemical reactions to take place [14, 17—19]. Limited reports are available pertaining to the synthesis of
alloy NPs with multiple branches. This work attempts to synthesize branched shape Au—Cu alloy NPs and study
their LSPR and SERS behaviors. This investigation proposes to address formation of another interesting
morphology of technological importance related to nanowires. It has been shown that there are two main
mechanisms by which anisotropic shapes evolve in the growth process. They are referred to as classical Ostwald
ripening (OR) and oriented attachment (OA) mechanisms [20]. It has also been deliberated in the literature that
the formation of NPs is a consequence of the growth of stable clusters by attachment of adatoms. [21-25]. A
more direct study towards this end has been carried out through in situ transmission electron microscopy (TEM)
[20]. One of the important findings of this study was to establish the formation of NPs through the growth of
pre-formed clusters [26]. Further, NPs can attach themselves crystallographically and formed nanowires which
are commonly known as oriented attachment in the literature [20, 27-31]. In a typical liquid phase chemical
synthesis, the NPs formation is the result of the growth of initially formed seeds. The seed is the stable aggregates
of adatoms produced by the reduction of precursors. Growth of NPs are usually restricted by stabilizers and NPs
move randomly in liquid phase. It has been reported that when two NPs approaches each other, the formation of
anisotropic structures is a consequence of the nature of stabilizers and strength of van der Waals forces acting
between them [28]. The purpose of this communication is to synthesize Au—Cu alloy nanostructures with varied
morphologies by changing the reaction conditions such as molar ratio of stabilizer and precursors. We describe
herein a facile and rapid method utilizing low temperature to synthesize Au—Cu nanostructures in aqueous
medium through wet chemical route. It will also be demonstrated that presence of Cu-ions is necessary to
initiate anisotropy in nanostructures. In addition, mechanistic studies pertaining to growth of Au—Cu alloy
nanowires has also been discussed in the light of kinetically controlled oriented attachment of particles. The
manipulation of LSPR spectral response from visible to near infrared region associated with shape of Au—Cu
nanostructures (nanopods) has been observed. TheSERS activity of Au—Cu alloy nanopods has been investigated
to detect methylene blue molecule and results are compared to that of pure Au NPs. Attempts have been made to
correlate the SERS results with observed morphologies and LSPR behavior. We have chosen methylene blue
(MB) as a probe molecule for examining the SERS activity of Au—Cu alloy nanopods and Au-NPs as MB is widely
used dye by textile, dying and pharmaceutical industries. MB is a heterocyclic aromatic compound and due to its
strong hydrophilic nature, it can easily contaminate water bodies in the form of effluents which poses hazard to
the environment due to its toxic and non-biodegradable nature [32, 33].

2. Material and methods

2.1. Synthesis of Au—Cu nanostructures

Forty-five mg of hexadecylamine (HDA) was mixed in 4.0 ml of deionized water with the help of ultra-sonicator
for about 1.0 h till complete mixing. In this emulsion, 0.3 ml (0.1 M) CuCl,.2H,0 and 0.3 ml (0.1 M)
HAuCl,.3H,0 was added and stirred magnetically for 10 min at room temperature. A light green color solution
was observed. This solution was placed in an oil bath maintained at ~80 °C for about 15 min and a light blue
color appears within several minutes. At this point 0.3 ml (1.0 M) freshly prepared glucose solution was added in
hot condition and capped the vial. After 2—-3 min, the blue color changed to light purple and within a few
minutes transformed into black color. The reaction was continued for 10 min. The vial was taken out from the
oil bath and cooled to room temperature. This alloy will be referred to as A0911 from here onwards, where first
two digits show HDA concentration in mg/ml and the next two digits correspond to precursors molar ratio
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Table 1. Alloy designation and associated synthesis conditions such as stabilizer concentration and precursors molar ratio. Growth
morphology observed through TEM and UV-vis absorbance peaks are also given.

HDA concentration Precursors molar ratio Morphology UV-vis absorbance

Alloy designation (mg/ml) Au: Cu observed (TEM) peak (nm)
A0910 9 1:0 quasi-spherical 520

A0911 9 1:1 multipods ~520and ~800
Al1811 18 1:1 nanowires —

A2711 27 1:1 nanowires —

A3611 36 1:1 nanowires —

A1831 18 3:1 nanowires —

A1821 18 2:1 multipods ~520and ~ 800
Al1812 18 1:2 nanowires —

(Au: Cu). Details of synthesis conditions and corresponding alloy designation are given in table 1. The samples
were cleaned by repeated addition of n-hexane and ethanol followed by centrifugation and ultrasonication. The
powder thus obtained was dispersed in n-hexane and a drop was coated on a TEM grid (carbon coated Ni-grid
with mesh size 400). The morphology and structures have been investigated by TEM (FEI Tecnai G T20,
operating at 200 kV). The average chemistry of the grown nanostructures was assessed by high angle annular
dark field—scanning TEM—x-ray energy dispersive spectroscopy (HAADF-STEM-EDS). UV—vis spectrometer
(Agilent Cary UV-vis and Perkin-Elmer Lambda XLS+) was utilized to investigate the LSPR behavior of the sols.

2.2. Preparation of SERS substrates

The method to prepare SERS substrate and parameters used in Raman measurements is given in detail elsewhere
[15]. In brief, Auand Au—Cu nanopowders were added in MB solution with a concentration of 1 M. This
mixture was thoroughly mixed through ultrasonication and suspension obtained was aged for 24 h. Atlast, the
suspension was drop cast on a silicon substrate and was dried before SERS investigations.

3. Results and discussion

3.1. Effect of HDA concentration on Au—Cu growth morphology

Growth morphology was followed by varying the concentration of stabilizer (~9 mg ml~", 18 mgml ™",

27 mgml~', and 36 mg ml~ ") keeping other reaction parameters nearly the same. Figure 1(a) displays branched
Au—Cu nanostructures of sample A0911. The appearance of bipod, tripod and tetrapod nanostructures were
seen. In A1811,A2711, and A3611 wire-like features associated with many nodes and stems have been observed.
For example, in A1811 (HDA concentration ~18 mg ml~") nanowires with average width, ~6.0 nm and length
~90 nm have been observed. The selected area diffraction patterns for both branched (A0911) and wires (A1811)
nanostructures are shown in figures 2(a) and (b) respectively. The rings could be indexed systematically, and
phase was found to be those of FCC solid solution of AuCu. The possible mechanism for the formation of
multipods can be explained in the following way. At the beginning of reaction ions of Auand Cu reduced to Au
and Cu by glucose. The Au ions will get reduced first due to higher redox potential (1.002 V) compared to that of
Cuions (0.34 V).

This leads to a large population of small seed crystals. The sub-nanometer size particles containing multiply
twinned crystallographic defects viz., icosahedra and decahedra have been reported to be stable than
cuboctahedra [11, 34-36]. This leads to the formation of multiply twinned seeds. The concentration of Au-ions
in the suspension went down very fast due to their faster reduction, whereas Cu-ions concentration was
maintained at a relatively high level. The multiply twinned particles grown initially could not be sustained
further and subsequent growth seems to be controlled by kinetics. Adatoms attached preferentially at twinning
planes owing to high energy sites rather on facets. This preferential deposition could be attributed to the
underpotential deposition of Cu on Au seeds [37]. The twin boundaries observed in tripod and tetrapod
nanostructures are shown in figure S1 (supplementary information is available online at stacks.iop.org/MRX/
7/015052/mmedia). The preferential attachments of metal atoms along the twinning planes of multiply
twinned seeds led to the formation of multipods. The chemistry of the Au—Cu multipods was investigated by
HAADEF-STEM-EDS and average composition was found to be ~80 at% Au and ~20 at% Cu respectively. The
STEM-EDS elemental maps shown in figure 3 depicted uniform distribution of Au and Cu throughout the
tripod and tetrapod features. It was inferred that Au—Cu alloy has been formed. In order to probe the influence
of Cuions in the formation of multipods, an experiment was conducted without Cu precursor (referred to as
A0910in table 1). The morphology and corresponding SAD pattern are presented in figures 4(a) and (b)
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Figure 2. Selected area electron diffraction patterns of alloys (a) A0911, and (b) A1811.
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Figure 3. STEM-EDS elemental maps of a tripod (a) HAADF image, (b) Au map, (c) Cumap and a tetrapod (d) HAADF image, (¢) Au
map, and (f) Cumap in alloy A0911.

Figure 4. (a) TEM image of A0910 with a high-resolution phase contrast image as an inset showing twin boundary and (b) indexed
rings corresponding to the image shown in (a).

respectively. AHRTEM image of a particle shown as an inset in figure 4(a) displays twins. The TEM image shows
that nearly spherical NPs of average size ~8.0 nm have formed. The DP was indexed, and phase was found to
those of FCC-Au. The absence of morphological anisotropy points out that the presence of Cu ions seems to play
asubstantial role in promoting the anisotropy in Au—Cu nanostructures in the present synthesis conditions.

3.2. Effect of precursors ratio on Au—Cu growth morphology

The experiments were also designed to investigate the role of precursors molar ratio (Au: Cu) on the growth
morphology of the nanostructures while keeping the HDA concentration ~18 mg ml ™. Figure 5 depicts images
showing morphology with changing precursor molar ratios of Au: Cuaas 3:1, 2:1,1:1 and 1:2 respectively (A1831,
A1821,A1811,and A1812). The wire-like features with nodes and stems have been observed in all the samples
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50 nm

Figure 5. Growth morphology of (a) A1831, (b) A1821, (c) A1811, and (d) A1812 samples respectively.

except A1821 where AuCu multipods were observed. The SAD patterns in all the cases could be indexed to those
of FCC-AuCu (shown in figure S2, supplementary information). Based on the above observations, it may be
argued that the ratio of Au precursor with HDA play an important role in the formation of AuCu multipods. The
ratio of HAuCl,.3H,O to HDA for A0911 and A1821 is nearly the same and observation of multipods in them
appears to be rather accommodating. The HAADF image and STEM-EDS spectrum of AuCu nanowires are
displayed in figure S3 (supplementary information). The presence of both Au and Cu in nanowires indicating
the formation of an AuCu alloy phase. The average composition of Au and Cu was found to be ~52 at% and ~48
at% respectively. The lattice parameter was derived to be ~3.85 A by invoking Vegard’s law.

3.3. Formation of Au—-Cu nanowires
The AuCu alloy nanowires was observed when experiments were conducted with molar precursors ratio and
HDA concentration as Au: Cu (1:1) and ~18 mg ml ™' onwards respectively. Interrupted growth experiments
were carried out to decipher the growth mechanism of the AuCu nanowires. The aliquots were taken out after
2 min, 4 min, 6 min, and 10 min after addition of glucose from A1811 alloy. The evolution of growth
morphology was followed with TEM investigations and images are shown in figure 6(a) to 6(d). In 2 min grown
sample, nanowires with many nodes and stems having average width ~4 nm and length of ~200 nm were
observed. In addition, NPs of the average size ~3 nm were also observed. As the growth proceeds further,
particle density decreased, and more nodes and stems emerged in 4 min grown sample. The average width and
length were measured to be ~ 5 nm and 100 nm respectively. The average particle size, in this case, was found to
be ~5 nm. In 6 min grown sample, the average width and length of the nanowires was observed to be ~7.0 nm
and 70 nm respectively and finally, after 10 min of growth, no significant change in the dimensions of the
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Figure 6. Temporal evolution of Au—~Cu morphology of A1811 at (a) 2 min, (b) 4 min, (c) 6 min, and (d) 10 min respectively.

nanowires was noticed. The co-existence of nanowires and larger size of the NPs suggest that both OR and OA
mechanisms (mentioned in section 1) are operative in the present synthesis conditions during the growth
process. To investigate the insight of the formation of nanowires and branched morphologies, HRTEM images
were acquired from two minutes grown sample of Au—Cu nanostructures and is shown in figure 7. Figure 7(a)
displays defect-free single crystalline NWs oriented along (111) direction with lattice fringe spacing of ~

0.21 nm corresponding to d-spacing of { 111} planes of FCC AuCu. It may be attributed to perfect matching of
the particles along { 111} planes as observed in the case of Au nanowires [28]. Figure 7(b) shows attachment of
three crystals along via twin boundaries. The exposed facet planes of crystal 1 are observed tobe {111} and
{100}, expected from FCC crystal. Crystals 1,2 and 2,3 are found to be attaching along {111} planes through
twin. The attachment of two particles along { 100} planes are depicted in figure 7(c), however, a misorientation
ofless than 1° have been noticed in this case. Figure 7(d) shows HRTEM image from Au—Cu branched
nanostructure displaying exposed facets mostly of { 111} types. Additionally, planar faults such as twins are also
seen. Our findings suggest that initially formed Au—Cu NPs attached themselves along {111} planes perfectly or
through twins giving rise to anisotropic morphology. Moreover, particles exhibit low energy facets of the types
{111} and {100}, can also undergo aforesaid crystallographic attachment process and led to the branched
morphology. This growth mode appears to be different than those reported in the literature for nanowire
[38—40]. For instance, twin defects in the Ag seeds were reported to be crucial for the formation of Ag nanowires
[40]. On contrary to this, defects were not essentially required for the formation of Au and Pt-Ag

nanowires [26, 28].
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Figure 7. High resolution phase contrast images of A1811 after 2 min of growth showing lattice matched attachment (a) and (c),
twinning attachment (b) of particles respectively. Possibility of branching through MA and TA is displayed in figure 7(d).

3.4.LSPR behavior of Au—Cu alloy nanostructures

The UV—-vis-NIR absorbance spectra (200 nm—1100 nm) of A0910 and A0911 is shown in figure 8. The LSPR
absorbance maxima X\, corresponding to A0910 is observed at ~520 nm. The LSPR response of A0911 shows
the presence of a peak in the visible region at ~520 nm and a peak in near infra-red region at ~800 nm. This
drastic red shift in the LSPR peak can be attributed to excitation of higher order multipoles [11]. When the
concentration of HDA was increased from ~9 mg ml~' to ~18 mg ml~' and onwards, no LSPR peak was
observed (cf figure 9(a)). As discussed in section 3.1, morphologies observed from TEM are wire-like for A1811,
A2711,and A3611 respectively. The highly agglomerated nanowires might lead to absence of LSPR peak in

200 nm to 800 nm range. The appearance of LSPR response similar to A0911 has been observed for A1821 as
displayed in figure 9(b). The LSPR peaks in near infra-red region motivated us to conduct SERS measurements
with a source excitation wavelength of 785 nm as discussed in the following section.

3.5. SERS study of AuNPs and Au—Cu alloy Nanopods

In order to investigate the SERS activity of Au NPs and Au—Cu multipods (A0910, A0911 and A1821), methylene
blue (MB) was chosen as a probe molecule. For comparison, normal Raman spectrum of MB powder was
collected using 0.003 mW of the laser power as shown in figure 10(A). The Raman peaks for MB appear at

1622 cm™ ' (ring stretching of C—C), 1500 cm ™' (asymmetrical stretching of C-C), 1441 cm ™' (asymmetrical
stretching of C-N), 1395 cm ™' (symmetrical stretching of C-N), 1300 cm ™" (in-plane ring deformation of C-H),
1180 cm ™! (stretching of C-N), 1155-771 cm ™' (in-plane bending of C-H), 591 cm ' (skeletal deformation of
C-S-C)and 501 cm™'—448 cm ™' (skeletal deformation of C-N—C) [33]. Figure 10(B) (a) shows normal Raman
spectrum of 100 M MB using a bare Si substrate. It is evident that due to the low concentration of MB used only
fewer Raman vibrational signatures of MB are visible as compared to MB powder (cf figure 10(A)). The SERS
response of A0910, A0911 and A1821 are investigated by lowering the concentration of MB to 1 M as shown in
figure 10(B) (b), (c) and (d) respectively. It is apparent that A0910 does not show Raman vibrational signatures of
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Figure 8. UV-vis-NIR absorbance spectra of A0910 and A0911. The positions of LSPR and TSPR peaks for A0911 are shown with
arrows.
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Figure 9. UV—vis absorbance spectra of AuCu with varying HDA concentration (a), and by changing molar precursors ratio Au: Cu at
fixed HDA concentration of ~ 18 mg ml™ " (b).

MB in the entire scan range except a peak appearing at 521 cm ™' which is the background signal from Si substrate.
In contrast to previous findings where AuNPs are known to be SERS active, we attribute the absence of SERS effect
in A0910 to two major factors: first, as can be seen from the TEM images (cf figure 4(a)) that the AuNPs are
spherical and mono-dispersed with no tell-tale signs of agglomeration. The SERS activity of metal NPs are mainly
contributed by the presence of rough surfaces and edges in nanoparticle as well as NPs clusters which act as
hotspots for the enhancement of Raman signal [41, 42]. The synthesized Au NP in this work lacks all of these
features which manifests itself into a SERS inactive substrate at a concentration of 1 M of MB. Second, for
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Figure 10. (A) Raman spectra of MB powder with 0.003 mW laser power, (B) (a) Raman spectra (1.5 mW laser power) of 100 M MB
stain on bare Si substrate, Raman spectra of 1 M MB with (b) A0910, (c) A0911 and (d) A1821 as SERS substrates.

maximum SERS enhancement, the laser excitation wavelength should be close to the plasmon resonance
frequency of NPs [43, 44]. The UV-vis-NIR absorbance spectrum of A0910 (cf figure 9) shows the A,y lies at
~520 nm which is in the far energy range as compared to the laser excitation energy (785 nm). However, in case of
A0911 and A1821, strong Raman vibrational signatures of MB (1 M) appear which is either weak or absent while
using bare Si as a substrate (100 M MB). This observation suggests that they act as potential SERS substrate for
detecting MB. The alloys A0911 and A1821 have similar multiply twinned branched shape morphology with sharp
edges and corners that allows for the strong coupling of laser electromagnetic field leading to enhancement of MB
signal via SERS effect [41, 42, 44]. Additionally, these samples show an additional LSPR peak centred at A,
~800 nm as discussed in UV—vis section (cf see figure 9). As the SERS spectra are collected with 785 nm excitation
wavelength which is very close to LSPR A,,, ~800 nm, we attribute the facilitation of electromagnetic
enhancement of Raman signal due to activation of LSPR at 785 nm which leads to generation of electromagnetic
field in the vicinity of the NP via which the MB molecule interacts leading to enhancement of its Raman signal
[43, 44]. Furthermore, the branched shaped nanostructures in A0911 and A1821 also possess a higher surface to
volume ratio as compared to spherical Au NPs (A0910) leading to increased adsorption capacity for MB molecules
over its surface. The excess presence of MB molecule over branched nanostructures also contributes to enhancing
the SERS signal.

In addition to the observed SERS effectin A0911 and A1821, the SERS spectra of MB differ in peak profile as
compared to that of normal Raman spectrum of MB powder (cf figure10(A)). The appearance of peaks at
1580 cmfl, 1230 cmfl, 1120 cmfl, 1038 cmfl, 1011 cm ™ 'and 863 cm ™! using A0911 as a SERS substrate are
either weak or not visible in normal Raman spectrum of MB powder. Similarly, peaks at 1329 cm ™' and
888 cm ™' in case of alloy A1821 are absent/feeble in normal Raman spectrum of MB powder. By comparing
figure 10(B) (¢) and (d) a peculiar trend in the relative increase in the intensity of Raman peaks of MB can be
observed. For instance, the peaks at 448 cm ™' and 501 cm ™ for alloy A0911 (figure 10(B) (c)) are relatively
weaker in intensity as compared to the intensity of peaks lying between 1011-1622 cm ™' and vice-versa for the
alloy A1821. The enhancement in the intensity depends on the orientation of the MB molecule with respect to
the NP surface. For MB molecule adsorbed with its plane parallel to the surface of NPs, out of plane bending
mode will be more enhanced and vice-versa compared to its orientation perpendicular to NP surface [44]. In
addition to that, the peaks appearing at 1300 cm 1, 1395cm 1, 1441 cm ™Y, 1500 cm !, and 1580 cm ™ ! are
considerably enhanced when A0911 is used as a SERS substrate as compared to that of A1821. Although thereisa
nearly similar increase in the intensity of Raman peaks of MB with A0911 and A1821 as SERS substrates, the
drastic increase in intensity in some of these peaks in A0911 as compared to that in A1821 suggests interplay of
chemical enhancement in addition to electromagnetic enhancement contributing to SERS. This suggests that
charge transfer from A0911 to MB is more pronounced compared to that of A1821 which is due to a drastic
difference of surface energies leading to charge transfer from high energy branched nanostructures to MB
[44, 45]. The enhancement in the Raman peak intensity of MB using Au and Au—Cu alloy nanostructures as
SERS substrates can be quantified in terms of enhancement factor (EF) defined as EF = Isgrg Cnrs/Ings Cserss
where Isggs is the Raman peak intensity of MB molecule with concentration Csggrs while using A0910, A0911
and A1821 as SERS substrates and Iygs is the normal Raman peak intensity of MB molecule having
concentration Cyrs while using Si as a substrate. The peak highlighted by * (448 cm ') in figure 10(B) has been
chosen as a reference peak for calculating EF as it is a well distinguished and enhanced as compared to other
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peaks. Due to SERS inactive A0910 substrate, no peak corresponding to MB appears (figure 10(B)(b)) and hence
the EF of A0911 and A1821 have been calculated. The obtained value of EF corresponding to A1821 substrate is
far more superior (EF = 1.2 x 10’)as compared to that of A0911 (EF = 3.2 x 10%). The sharp increase of EF
in A1821 may be attributed to the increased concentration of Au contributing to SERS in Au—Cu alloy
nanostructure as compared to A0911.

4. Conclusions

It has been shown that manipulation of the morphology of AuCu alloy nanostructures by varying reaction
conditions such as concentrations of stabilizer and molar ratio of precursors at ~ 80 °C is possible. Extensive
electron microscopy investigation revealed the development of various crystallographic characters during the
growth of the nanostructures as well as their alloying behavior. The presence of Cu-ions is capable of incubating
anisotropy in the grown nanostructures through changing the surface/interface energies of initially formed
nanocrystals. The HDA concentration of ~9 mg ml ™' gave rise to branched Au—Cu alloy NPs. The ratio of Au-
precursor to HDA appears to play an important role in the growth of branched Au—Cu alloy NPs. With further
increase in the concentration of HDA (~18 mg ml~' onwards) nanowires have been observed with several
branch and bends. The formation of nanowires under the present synthesis conditions has been explained in
terms of oriented attachment kinetics of AuCu alloy NPs. Multiply twinned branched shape AuCu alloy (width
of branch ~30 nm) products display strong LSPR peak in the near-infra-red region (~800 nm). These
nanostructures employed as a SERS substrate for detection of MB and their response has been observed superior
to that of pure spherical Au NPs. This study may serve as a template to modulate the LSPR behavior by
controlling the shape and composition for other alloy systems.
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