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Abstract: This paper considers the design of a robust PID controller for higher order MIMO
plants. The design problem is first recast into a Static Output Feedback (SOF) controller design
problem and then the transformed SOF problem is solved within the framework of Linear Matrix
Inequalities (LMIs) through a decomposition of the Lyapunov matrix variable. Sufficient LMI
criteria are derived that ensure H∞ performance of the underlying system. By means of a
numerical example, it is shown that the designed controller yields less conservative results.
Also, a comparative study is done with the existing techniques to demonstrate the efficacy of
the proposed method.
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1. INTRODUCTION

Industrial processes commonly use PID controllers due to
the inherent ease in implementation and tuning. Potential
areas of application of such controllers include chemical
process industries, food processing industries, aerospace
industry, robotic industry and numerous other engineering
domains. Due to their popularity, a host of tuning meth-
ods have been proposed in literature such as by Åström
and Hägglund (1995), Tan et al. (2012) which consider
several modeling and autotuning techniques to determine
the gains of the PID controllers associated with the pro-
portional, integral and derivative inputs. One of the main
challenges in their design process is the appropriate gain
tuning of these controllers. Among the approaches existing
in literature for tuning the P, I and D gains are those
of root locus, bode plots, Ziegler-Nichols method, etc.
Though there exist a spectrum of tools that give different
types of performances [1], unfortunately, a single tuning
method usually does not satisfy a variety of practical issues
such as load disturbances, sensitivity of the system to
measurement noise and model uncertainties. Also, with
the growing need for improved process control, we need to
design controllers in a robust way to extract satisfactory
performance even in uncertain environments. A good ro-
bust controller should ensure stability of the overall closed-
loop system and performance over the entire uncertainty
domain (Åström and Hägglund (1995); Goodwin et al.
(2001)).

Therefore, to overcome the above-mentioned shortcom-
ings, LMI based controller design (Boyd et al., 1994) is
one of the widely used approach for designing a robust

controller since it provides solution to a large set of con-
vex problems effectively without any restriction on the
selection of certain parameters. Additionally, it provides
simplicity and flexibility in tuning the controller gain
parameters rather than other techniques such as Ziegler-
Nichols, Model Reference Adaptive Control (MRAC),
Particle Swarm Optimization (PSO), Adaptive Particle
Swarm Optimization (APSO) and the like.

Static Output Feedback (SOF) controller design is a fun-
damental problem in control engineering and it finds use
in a raft of design problems such as finding constant
feedback gain matrices for centralized control and design
of PI/PID controllers. Motivated by the above problems
and scope of solution in the design of controllers in the
framework of LMIs, the problem of PID controller design
is transformed into design of robust SOF controller using
the transformations given in Zheng et al. (2002). Various
iterative algorithms have been developed by Cao et al.
(1998a,c); El Ghaoui et al. (1997); He and Wang (2006) in
the LMI framework, which are widely used in the design of
PID controllers. But such iterative algorithms are complex
and require large computation time.

To avoid this, an approach for solving the SOF problem
was addressed in Rubió-Massegú et al. (2013), which
is based on the decomposition of the Lyapunov matrix
variable. But this approach omits the off-diagonal entries
of the Lyapunov matrix and considers only the diagonal
elements. This, however results in restrictions in the design
criteria. To this end, we recently presented new results on
the design of SOF controller based on the decomposition of
the Lyapunov matrix variable which considers the diagonal
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and Hägglund (1995), Tan et al. (2012) which consider
several modeling and autotuning techniques to determine
the gains of the PID controllers associated with the pro-
portional, integral and derivative inputs. One of the main
challenges in their design process is the appropriate gain
tuning of these controllers. Among the approaches existing
in literature for tuning the P, I and D gains are those
of root locus, bode plots, Ziegler-Nichols method, etc.
Though there exist a spectrum of tools that give different
types of performances [1], unfortunately, a single tuning
method usually does not satisfy a variety of practical issues
such as load disturbances, sensitivity of the system to
measurement noise and model uncertainties. Also, with
the growing need for improved process control, we need to
design controllers in a robust way to extract satisfactory
performance even in uncertain environments. A good ro-
bust controller should ensure stability of the overall closed-
loop system and performance over the entire uncertainty
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the LMI framework, which are widely used in the design of
PID controllers. But such iterative algorithms are complex
and require large computation time.

To avoid this, an approach for solving the SOF problem
was addressed in Rubió-Massegú et al. (2013), which
is based on the decomposition of the Lyapunov matrix
variable. But this approach omits the off-diagonal entries
of the Lyapunov matrix and considers only the diagonal
elements. This, however results in restrictions in the design
criteria. To this end, we recently presented new results on
the design of SOF controller based on the decomposition of
the Lyapunov matrix variable which considers the diagonal
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1. INTRODUCTION

Industrial processes commonly use PID controllers due to
the inherent ease in implementation and tuning. Potential
areas of application of such controllers include chemical
process industries, food processing industries, aerospace
industry, robotic industry and numerous other engineering
domains. Due to their popularity, a host of tuning meth-
ods have been proposed in literature such as by Åström
and Hägglund (1995), Tan et al. (2012) which consider
several modeling and autotuning techniques to determine
the gains of the PID controllers associated with the pro-
portional, integral and derivative inputs. One of the main
challenges in their design process is the appropriate gain
tuning of these controllers. Among the approaches existing
in literature for tuning the P, I and D gains are those
of root locus, bode plots, Ziegler-Nichols method, etc.
Though there exist a spectrum of tools that give different
types of performances [1], unfortunately, a single tuning
method usually does not satisfy a variety of practical issues
such as load disturbances, sensitivity of the system to
measurement noise and model uncertainties. Also, with
the growing need for improved process control, we need to
design controllers in a robust way to extract satisfactory
performance even in uncertain environments. A good ro-
bust controller should ensure stability of the overall closed-
loop system and performance over the entire uncertainty
domain (Åström and Hägglund (1995); Goodwin et al.
(2001)).

Therefore, to overcome the above-mentioned shortcom-
ings, LMI based controller design (Boyd et al., 1994) is
one of the widely used approach for designing a robust

controller since it provides solution to a large set of con-
vex problems effectively without any restriction on the
selection of certain parameters. Additionally, it provides
simplicity and flexibility in tuning the controller gain
parameters rather than other techniques such as Ziegler-
Nichols, Model Reference Adaptive Control (MRAC),
Particle Swarm Optimization (PSO), Adaptive Particle
Swarm Optimization (APSO) and the like.

Static Output Feedback (SOF) controller design is a fun-
damental problem in control engineering and it finds use
in a raft of design problems such as finding constant
feedback gain matrices for centralized control and design
of PI/PID controllers. Motivated by the above problems
and scope of solution in the design of controllers in the
framework of LMIs, the problem of PID controller design
is transformed into design of robust SOF controller using
the transformations given in Zheng et al. (2002). Various
iterative algorithms have been developed by Cao et al.
(1998a,c); El Ghaoui et al. (1997); He and Wang (2006) in
the LMI framework, which are widely used in the design of
PID controllers. But such iterative algorithms are complex
and require large computation time.

To avoid this, an approach for solving the SOF problem
was addressed in Rubió-Massegú et al. (2013), which
is based on the decomposition of the Lyapunov matrix
variable. But this approach omits the off-diagonal entries
of the Lyapunov matrix and considers only the diagonal
elements. This, however results in restrictions in the design
criteria. To this end, we recently presented new results on
the design of SOF controller based on the decomposition of
the Lyapunov matrix variable which considers the diagonal
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as well as the off-diagonal terms and the method was
shown to provide less conservative results in Sahoo et al.
(2019). This paper extends the same approach of SOF
design to the PID controller design problem. The nonlinear
terms (BKCX ) arising due to the coupling of controller
gain (K) and system matrices as defined later in (1)
are handled through the decomposition of the Lyapunov
matrix. Based on this method, a robust PID controller is
then designed.

The remaining portion of this technical note is given as
follows. Section 2 provides necessary preliminaries useful in
deriving the main results. The main idea behind designing
the SOF controller involves decomposition of Lyapunov
matrix variable which is developed in section 3. Section 4
provides the approach for the robustH∞ controller design.
Robust PID controller based on SOF design is given in
section 5. A numerical example is provided in section 6 to
illustrate the efficacy of the proposed method. Finally, the
paper is concluded in section 7 with major highlights of
this manuscript.

Notations: The symbol ∗ is used to represent the sym-
metrical off diagonal terms. (·)−1 denotes inverse of a
matrix and (·)T denotes transpose operation. I denotes an
identity matrix with suitable dimensions. He{Z} denotes
symmetric matrices, i.e., He{Z} = Z + ZT .

2. PRELIMINARIES

Consider the continuous-time (CT) LTI system described
by the following state space equations as:

ẋ(t) = Ax(t) + Bww(t) + Bu(t)
z(t) = Czx(t) +Dzuu(t) +Dzww(t) (1)

y(t) = Cx(t) +Dyww(t)

where x(t) ∈ Rn, u(t) ∈ Rm and z(t) ∈ Rp1 denote the
vector of states, control input and the controlled output of
the system, respectively. Also, w(t) ∈ Rm2 and y(t) ∈ Rny

are exogenous disturbance and measured output respec-
tively. A,B,Bw, Cz,Dzu,Dzw, C,Dyw are constant matrices
having compatible dimensions.

Let the SOF control law for system (1) be given as:

u(t) = Ky(t) (2)

where K is the feedback gain matrix. Then the closed-loop
system with the above control law (2) can be expressed by
the state equations as[

ẋl(t)
z(t)

]
=

[
Al Bl

Cl Dl

] [
xl(t)
w(t)

]
(3)

where xl(t) = x(t),Al = A + BKC, Bl = Bw +
BKDyw, Cl = Cz + DzuKC and Dl = Dzw + DzuKDyw

are closed-loop system matrices with suitable dimensions.
Also, the transfer function matrix for this overall system
from w(t) to z(t) ,i.e., Twz(s) can be defined as

Tzw(s) = Cl(sI −Al)
−1Bl +Dl (4)

The following lemmas are used for deriving the main
results of this work.

First, we use the below lemma for evaluating the H∞
performance of (4).

Lemma 1. (Bounded Real Lemma Boyd et al. (1994)). The
ensuing statements hold equivalence for γ > 0.

(1) ‖Twz(s)‖ < γ and Al is Hurwitz
(2) There exists X = X T > 0 satisfying


He{AlX} ∗ ∗

BT
l −γ2I ∗

ClX Dl −I


 < 0 (5)

Lemma 2. (Chang et al. (2015)). For the matrices Q, S,
L and N of appropriate dimensions and a scalar �, the
inequality

Q+ SN + N TST < 0

implies [
Q ∗

�ST + L N −He{�L }

]
< 0 (6)

3. DECOMPOSITION OF LYAPUNOV MATRIX

Let the matrix Q̄ ∈ N (C) represent the null space of the
output matrix C. Similarly the range space of C is denoted
by the matrix R̄ ∈ R(C). Based on the following facts, we
derive the main results.

Fact 1. A symmetric matrix X > 0 can be decomposed as
follows: 



X =

[
Q̄T

R̄T

]T [
XQ XS

X T
S XR

] [
Q̄T

R̄T

]
,

[
XQ XS

X T
S XR

]
> 0,

(7)

where XQ ∈ R(n−ny)×(n−ny), XS ∈ R(n−ny)×ny and XR ∈
Rny×ny .

Considering the fact that CQ̄ = 0, the matrix R̄ is selected
such that the equality CR̄ = I is satisfied. One can then
easily obtain

CX = XRR̄
T + X T

S Q̄T . (8)

Fact 2. There exists a matrix YR ∈ Rm×ny and an in-
vertible matrix XR ∈ Rny×ny such that the following
decomposition holds valid for all K and X

KCX = YRR̄
T + YRX−1

R X T
S Q̄T (9)

with
KXR = YR. (10)

4. H∞ CONTROLLER DESIGN

The following result is the reproduction of the result in
Sahoo et al. (2019).

Theorem 1. Given a CT system described by (1) along
with SOF controller (2), the former is stable and a perfor-
mance ‖Twz(s)‖ < γ is guaranteed if, there exist matrices
X = X T

Q , XR = X T
R , XS , YR and scalars α and β such that

the below LMI conditions are satisfied.



Φ1 ∗ ∗ ∗
Φ2 −γ2I ∗ ∗
Φ3 Dzw −I ∗
Φ4 Dyw αY T

R DT
zu −Φ5


 < 0, (11)

[
XQ XS

X T
S XR

]
> 0 (12)

where

Ψ = AQ̄XQQ̄
T +AR̄X T

S Q̄T +AQ̄XSR̄
T +AR̄XRR̄

T

Φ1 = He{Ψ}+He{Ξ},
Φ2 = BT

w − βDT
ywR̄

T

Φ3 = CzX +DzuYRR̄
T

Φ4 = αΓT + X T
S Q̄T

Φ5 = He{αXR}
Ξ = BYRR̄

T − βR̄X T
S Q̄T

Γ = BYR + βR̄XR

The feedback controller gain can be computed as K =
YRX−1

R .

Proof: Given
[
Q̄ R̄

]
is full rank and from (7) and (12), it

is clear that X > 0. Then it remains to show that (11) is
sufficient for (5). Replacing (9) in (5), one can rewrite a
sufficient criterion of (5) as



Φ1 ∗ ∗
Φ2 −γ2I ∗
Φ3 Dzw −I




+



He{ΓX−1

R X T
S Q̄T } ∗ ∗

DT
ywX−1

R ΓT 0 ∗
DzuYRX−1

R X T
S Q̄T DzuYRX−1

R Dyw 0


 < 0 (13)

The above equation (13) can be rewritten as



Φ1 ∗ ∗
Φ2 −γ2I ∗
Φ3 Dzw −I


+

[
Γ
0

DzuYR

]
X−1

R



Q̄XS

DT
yw

0



T

+



Q̄XS

DT
yw

0


X−1

R

[
Γ
0

DzuYR

]T

< 0 (14)

Finally, applying Lemma 2 and substituting L = XR, one
obtains (11). �

In the upcoming section, we discuss the method of PID
controller design by appropriately transforming it into
SOF design problem.

5. PID CONTROLLER DESIGN

The schematic diagram of the overall closed-loop system is
shown in Figure 1. The figure clearly demonstrates that the
PID controller undergoes a transformation using the T (·)
function block to SOF controller design which is inverse
transformed using the T−1(·) function block to compute
the original gains of the PID controller. The appropriate
control signal is then generated using these recovered gains
and is fed back into the plant.

5.1 Transformation from PID to SOF Controller Design
Problem

Consider the nominal CT LTI system with w(t) = 0 in (1),
given by

ẋ(t) = Ax(t) + Bu(t), y(t) = Cx(t), (15)

with the PID controller in the form as

u(t) = K1y(t) +K2

∫ t

0

y(τ)dτ +K3
dy(t)

dt
(16)

where K1,K2,K3 ∈ Rm×ny represent the proportional,
integral and derivative gains, respectively which are to
be designed. Here, our objective is to transform the PID
controller design problem into an SOF design problem.
In order to achieve our goal, we consider the coordinate
transformation variable defined by Zheng et al. (2002) as

ν1(t) = x(t), ν2(t) =
∫ t

0
y(τ)dτ to incorporate the states

to be tracked for incorporating the integral control terms.

Let us define ν(t) =
[
νT1 (t) νT2 (t)

]T
, where ν(t) can be

seen as the new state vector of the transformed system,
whose dynamics is given by{

ν̇1(t) = Aν1(t) + Bu(t),
ν̇2(t) = Cν1(t).

(17)

Rewriting the equation (17), we get,{
ν̇(t) = Āν(t) + B̄u(t),
ȳ(t) = C̄ν(t), (18)

where Ā =

[
A 0
C 0

]
, B̄ =

[
B
0

]
, C̄ =

[C1
C2
C3

]
, ȳ(t) =

[
y1
y2
y3

]
,

C1 = [C 0], C2 = [0 I], C3 = [CA 0].

Assuming that the matrix (I − K3CB) is invertible and
using above matrix definitions, the system (18) and con-
troller (16) reduce to an SOF controller as

u(t) = K̄ȳ(t) (19)

where, K̄ =
[
K̄1 K̄2 K̄3

]
, K̄1 = (I − K3CB)−1K1, K̄2 =

(I −K3CB)−1K2, K̄3 = (I −K3CB)−1K3.
Once the controller gain matrix K̄ =

[
K̄1 K̄2 K̄3

]
is com-

puted, the original PID controller gains can be recalculated
as 


K3 = K̄3(I + CBK̄3)

−1

K2 = (I −K3CB)K̄2

K1 = (I −K3CB)K̄1.

The following lemma guarantees the existence and invert-
ibility of the matrix (I + CBK̄3).

Lemma 3. (He and Wang (2006)). The matrix (I+CBK̄3)
is always invertible if and only if the matrix (I − K3CB)
is invertible, where K3 and K̄3 are related to each other
as K̄3 = (I − K3CB)−1K3, or equivalently K3 = K̄3(I +
CBK̄3)

−1

5.2 H∞ Based Robust PID controller

This section focusses on the design of PID controllers with
the underlying performance criteria chosen as H∞ perfor-
mance (γ). Consider the system (1) and PID controller
(16). Under the assumption that the matrix (I − K3CB)
is invertible and using the transformation discussed in the
earlier section to change the PID controller design problem
to SOF design problem, the augmented system dynamics
are as follows




˙̃x(t) = Ãx̃(t) + B̃ũ(t) + B̃ww(t)

z̃(t) = C̃zx̃(t) + D̃zuũ(t) + D̃zww(t)

ỹ(t) = C̃x̃(t) + D̃yww(t)

ũ(t) = K̃ỹ(t)

(20)

where Ã =

[
A 0
C 0

]
, B̃ =

[
B
0

]
, B̃w =

[
Bw

0

]
, C̃ =

[C1
C2
C3

]
,

C1 = [C 0], C2 = [0 I], C3 = [CA 0], C̃z = [Cz 0],
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Ψ = AQ̄XQQ̄
T +AR̄X T

S Q̄T +AQ̄XSR̄
T +AR̄XRR̄

T

Φ1 = He{Ψ}+He{Ξ},
Φ2 = BT

w − βDT
ywR̄

T

Φ3 = CzX +DzuYRR̄
T

Φ4 = αΓT + X T
S Q̄T

Φ5 = He{αXR}
Ξ = BYRR̄

T − βR̄X T
S Q̄T

Γ = BYR + βR̄XR

The feedback controller gain can be computed as K =
YRX−1

R .

Proof: Given
[
Q̄ R̄

]
is full rank and from (7) and (12), it

is clear that X > 0. Then it remains to show that (11) is
sufficient for (5). Replacing (9) in (5), one can rewrite a
sufficient criterion of (5) as



Φ1 ∗ ∗
Φ2 −γ2I ∗
Φ3 Dzw −I




+



He{ΓX−1

R X T
S Q̄T } ∗ ∗

DT
ywX−1

R ΓT 0 ∗
DzuYRX−1

R X T
S Q̄T DzuYRX−1

R Dyw 0


 < 0 (13)

The above equation (13) can be rewritten as



Φ1 ∗ ∗
Φ2 −γ2I ∗
Φ3 Dzw −I


+

[
Γ
0

DzuYR

]
X−1

R



Q̄XS

DT
yw

0



T

+



Q̄XS

DT
yw

0


X−1

R

[
Γ
0

DzuYR

]T

< 0 (14)

Finally, applying Lemma 2 and substituting L = XR, one
obtains (11). �

In the upcoming section, we discuss the method of PID
controller design by appropriately transforming it into
SOF design problem.

5. PID CONTROLLER DESIGN

The schematic diagram of the overall closed-loop system is
shown in Figure 1. The figure clearly demonstrates that the
PID controller undergoes a transformation using the T (·)
function block to SOF controller design which is inverse
transformed using the T−1(·) function block to compute
the original gains of the PID controller. The appropriate
control signal is then generated using these recovered gains
and is fed back into the plant.

5.1 Transformation from PID to SOF Controller Design
Problem

Consider the nominal CT LTI system with w(t) = 0 in (1),
given by

ẋ(t) = Ax(t) + Bu(t), y(t) = Cx(t), (15)

with the PID controller in the form as

u(t) = K1y(t) +K2

∫ t

0

y(τ)dτ +K3
dy(t)

dt
(16)

where K1,K2,K3 ∈ Rm×ny represent the proportional,
integral and derivative gains, respectively which are to
be designed. Here, our objective is to transform the PID
controller design problem into an SOF design problem.
In order to achieve our goal, we consider the coordinate
transformation variable defined by Zheng et al. (2002) as

ν1(t) = x(t), ν2(t) =
∫ t

0
y(τ)dτ to incorporate the states

to be tracked for incorporating the integral control terms.

Let us define ν(t) =
[
νT1 (t) νT2 (t)

]T
, where ν(t) can be

seen as the new state vector of the transformed system,
whose dynamics is given by{

ν̇1(t) = Aν1(t) + Bu(t),
ν̇2(t) = Cν1(t).

(17)

Rewriting the equation (17), we get,{
ν̇(t) = Āν(t) + B̄u(t),
ȳ(t) = C̄ν(t), (18)

where Ā =

[
A 0
C 0

]
, B̄ =

[
B
0

]
, C̄ =

[C1
C2
C3

]
, ȳ(t) =

[
y1
y2
y3

]
,

C1 = [C 0], C2 = [0 I], C3 = [CA 0].

Assuming that the matrix (I − K3CB) is invertible and
using above matrix definitions, the system (18) and con-
troller (16) reduce to an SOF controller as

u(t) = K̄ȳ(t) (19)

where, K̄ =
[
K̄1 K̄2 K̄3

]
, K̄1 = (I − K3CB)−1K1, K̄2 =

(I −K3CB)−1K2, K̄3 = (I −K3CB)−1K3.
Once the controller gain matrix K̄ =

[
K̄1 K̄2 K̄3

]
is com-

puted, the original PID controller gains can be recalculated
as 


K3 = K̄3(I + CBK̄3)

−1

K2 = (I −K3CB)K̄2

K1 = (I −K3CB)K̄1.

The following lemma guarantees the existence and invert-
ibility of the matrix (I + CBK̄3).

Lemma 3. (He and Wang (2006)). The matrix (I+CBK̄3)
is always invertible if and only if the matrix (I − K3CB)
is invertible, where K3 and K̄3 are related to each other
as K̄3 = (I − K3CB)−1K3, or equivalently K3 = K̄3(I +
CBK̄3)

−1

5.2 H∞ Based Robust PID controller

This section focusses on the design of PID controllers with
the underlying performance criteria chosen as H∞ perfor-
mance (γ). Consider the system (1) and PID controller
(16). Under the assumption that the matrix (I − K3CB)
is invertible and using the transformation discussed in the
earlier section to change the PID controller design problem
to SOF design problem, the augmented system dynamics
are as follows




˙̃x(t) = Ãx̃(t) + B̃ũ(t) + B̃ww(t)

z̃(t) = C̃zx̃(t) + D̃zuũ(t) + D̃zww(t)

ỹ(t) = C̃x̃(t) + D̃yww(t)

ũ(t) = K̃ỹ(t)

(20)

where Ã =

[
A 0
C 0

]
, B̃ =

[
B
0

]
, B̃w =

[
Bw

0

]
, C̃ =

[C1
C2
C3

]
,

C1 = [C 0], C2 = [0 I], C3 = [CA 0], C̃z = [Cz 0],
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Fig. 1. Closed-loop system block diagram

D̃zu = Dzu, D̃zw = Dzw, D̃yw = Dyw. Thus, the composite

feedback controller gain matrices K̃ =
[
K̄1 K̄2 K̄3

]
can be

obtained by applying Theorem 1 to system (20).

6. NUMERICAL EXAMPLE

A numerical example is considered in this section to
demonstrate the efficacy of the proposed design. Note that
the scalar parameters α, β in Theorem 1 are obtained using
linear search algorithm of fminsearch, which is a function
of the optimization toolbox in Matlab as in Grace (1993).

Example 1. Consider the state space linearized model of
an aircraft system given by Zheng et al. (2002) where only
H∞ output feedback optimization problem is considered
with the given parameters.

A =




−0.0266 −36.6170 −18.8970 −32.0900
0.0001 −1.8997 0.9831 −0.0007
0.0123 11.7200 −2.6316 0.0009

0 0 1 0
0 0 0 0
0 0 0 0

3.2509 −0.7626
−0.1708 −0.0050
−31.6040 22.3960

0 0
−30 0
0 −30




(21)

B =




0 0
0 0
0 0
0 0
30 0
0 30



,Bw =




0
0
0
0
30
0



, C =

[
0 1 0 0 0 0
0 0 0 1 0 0

]
, Cz =




0
1
0
0
0
0




T

,

Dzu = [1 1] , Dzw = 0, Dyw = [0 0]T .

The results computed using Theorem 1 are listed in Table
1. These are further compared with the existing results
given by Zheng et al. (2002) and Cao et al. (1998b) for two
different cases. The first is that of an SOF stabilization
problem and the second considers SOF design with H∞
performance measure (γ). Note that smaller the value
of the performance measure, better is the disturbance
rejection capability of the controller. Also, the gains in
the Table 1 correspond to the original gains of the PID
controller. It is clearly seen that the proposed results give
improved results over existing designs.
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8. CONCLUSION

This paper addresses the problem of robust PID SOF
controller design for CT LTI systems. Sufficient conditions
are developed in the framework of LMIs for designing the
controller ensuring H∞ performance. The development is
based on decomposition of the Lyapunov matrix which
provides ease in handling the nonlinear terms arising
due to the coupling of system matrices and controller
gain. Invertible transformations convert the PID design
problem into an SOF one which allows for easy recovery
of the original PID controller gains. The proposed theory
is supported through a numerical example and from the
obtained results, it is seen that the proposed gives less
conservative results.
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