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Abstract 

A series of nickel-cobalt bimetal oxides in varying molar ratios and its single metal oxides were 

synthesized by reactive calcination of coprecipitated basic-carbonates. Several characterization 

techniques, such as: Bruneuer Emmett Teller (BET), X-ray Diffraction (XRD), Scanning Electron 

Microscopy (SEM), Fourier Transform Infra Red (FTIR), and Hydrogen Temperature Programmed 

Reduction (H2-TPR), were performed over the oxides. Activities of oxides were evaluated in methane 

total oxidation in the presence or the absence of CO. The best catalytic performance was observed over 

NiCo catalyst with a Ni/Co molar ratio of 1:1, and the complete conversion of CO-CH4 mixture was 

achieved at 390 °C. Moreover, the presence of carbon monoxide improves CH4 total oxidation over 

nickel-cobalt mixed oxides. Structural analysis reveals that the insertion of nickel into the spinel 

lattice of cobalt oxide causes the structural disorder, which probably caused the increase of the amount 

of octahedrally coordinated divalent nickel cations that are responsible for catalytic activity. Stability 

of the best-performed catalyst has been tested in the two conditions, showing remarkable long-term 

stability and thermal stability, however, showed deactivation after thermally ageing at 700 °C. 
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1. Introduction 

International Energy Outlook report 2018 

has forecasted the natural gas as fastest-

growing source of energy next only to 

petroleum. The cleaner nature of natural gas as 

compared to oil or coal, as well as its non-

controversial nature unlike nuclear energy, is 

expected to make it a fuel of choice for the 

recent future. Natural gas consists of 85-95% 
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methane [1], which is the simplest hydrocarbon. 

The natural gas vehicles (NGVs) emit a much 

lower amount of harmful pollutants such as 

toxic non-methane hydrocarbons than those 

from conventional gasoline or diesel-powered 

vehicles [2]. 

However, NGVs also emit a significant 

amount of CO (~1.6%) and CH4 (~0.4-1%) be-

sides other pollutants like NOx and formalde-

hyde [3]. The health aspect of CO is that it avid-

ly binds to hemoglobin in blood cells with an af-

finity of about 240 times that of oxygen [4], re-

sulting in tissue hypoxia. Moreover, CO poison-

ing is often underdiagnosed as the clinical fea-
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tures of CO intoxication mimic very common 

conditions [5]. CO does not absorb terrestrial 

thermal Infra-red radiation strongly enough, 

thereby, not considered as a direct greenhouse 

gas. However, CO is an indirect greenhouse gas 

as it can influence the formation of the green-

house effect. Methane is also a potent green-

house gas with high global warming potential 

(GWP). 

Thus, in the early 1970s, Europe started im-

posing emission norms limiting CO, HC, NOx, 

and PM. These regulations were based on Eu-

ropean Union Research Organization (EURO) 

norms. Since the year 2000, India started im-

posing Bharat stage norms (BS norms), taking 

European norms as a reference and making 

these norms stricter with the need of time. 

Therefore, to meet the strict future emission 

norms, a lot of R & D work is going on world-

wide to reduce emissions. 

The low temperature of tailpipe exhaust 

(150-550 °C) demands the complete oxidation of 

CH4 at this temperature itself. However, the 

strongest C-H bond (450 kJ/mol) in CH4 among 

alkanes hinders its facile oxidative destruction 

at low temperature of tailpipe itself [6]. Thus, 

to decrease the required temperature for total 

CH4 oxidation, catalytic oxidation is used. Ad-

ditionally, as the non-catalytic oxidation of CH4 

occurs at high temperature (1500-2000 °C), it 

thermodynamically favor the formation of ni-

trogen oxides (NOx), whereas catalytic CH4 oxi-

dation occurs at much lower temperatures and 

thus generates much less amount of harmful 

NOx [7]. 

A noble metal-based catalyst exhibits an ex-

traordinary catalytic activity for oxidation of 

CO [8] and CH4 [9] at the low temperatures. 

Though, their high cost has led to the advance-

ments in transition metal oxides (TMOs) syn-

thesis as a practical alternative to noble metal-

based catalysts owing to their low economic 

cost and high activity [10]. Among TMOs, 

Co3O4 is a homogeneous spinel with variable 

valence states (Co2+, Co3+, and Co4+) of its cati-

ons is known to be very active for CO [11] as 

well as CH4 oxidation [2]. Its outstanding cata-

lytic activity is attributed to its weak M-O bond 

strength [12] and high turnover frequency 

(TOF) for redox reaction [2]. Meanwhile, NiO is 

also an important TMO having cubic lattice 

structure, contributes to the prominent defects 

such as cation vacancies and electron holes and 

thereby exhibits distinct magnetic, electronic, 

and catalytic properties [13,14]. 

Various researches in this field have demon-

strated that the intrinsic activity of single oxide 

spinels such as Co3O4, can be further enhanced 

by substitution of Co2+ cations on the tetrahe-

dral sites by other transition metal cations (e.g. 

Mn2+, Ni2+, Zn2+, and Cu2+), forming spinel 

mixed metal oxides or spinel bimetal oxides. 

This substitution enhances the catalytic perfor-

mance owing to the presence of highly oxidized 

redox couples as well as the synergism between 

cations [3]. Junhua et al. [15] have reported the 

synergistic effect of Co-Mn spinel bimetal ox-

ides and found that Co/Mn in the ratio of 5/1 

shows the outstanding performance for me-

thane oxidation owing to the best interaction 

among the metal ions at this ratio. The inser-

tion of Mn into the spinel lattice of Co3O4 in-

creases crystal defections, which lead to the en-

hancement in catalytic activity of the catalysts. 

Based on the previously published literature, it 

is anticipated that the appropriate mixing of 

NiO with Co3O4 can achieve outstanding cata-

lytic activity for both methane and CO oxida-

tion owing to their desirable intrinsic proper-

ties. Indeed, few studies on the individual oxi-

dation of CO and CH4 over nickel-cobalt mixed 

oxides have been reported in the literature. 

However, a study on the simultaneous catalytic 

oxidation of CO and CH4 over Ni-Co mixed spi-

nel oxides is not reported anywhere, even 

though this is a significant step towards practi-

cal environmental applications. 

Further, various calcination parameters 

such as temperature [16], duration, and atmos-

phere (oxidative/reductive) are well known to 

influence the structural characteristics of a cat-

alyst. Trivedi et al. [17] examined the influence 

of the calcination atmosphere on the catalytic 

performance of the catalysts. They found that 

the Mn-promoted Co3O4 spinel catalysts pro-

duced by reactive calcination (RC) form the ox-

ygen-deficient highly active sites for CO-CH4 

oxidation. Such enthusiastic findings of our lab 

have motivated us to consider the RC route in 

our present study. 

Thus, in this work, a series of Ni/Co bimetal 

oxides in the varied molar ratio were synthe-

sized via co-precipitation technique, and the 

promotional effect of nickel on cobalt-based ox-

ides was investigated. Additionally, the influ-

ence of CO (as reactant) on CH4 oxidation was 

investigated. N2 adsorption-desorption with 

BET method, XRD, FTIR, SEM, and H2-TPR 

were used to examine the physiochemical and 

reducibility characteristics of the observed cat-

alysts. 

 

2. Materials and Methods 

2.1 Catalyst Preparation 

The Ni/Co bimetal oxide catalysts with var-
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ying molar ratios of Ni to Co were synthesized 

via co-precipitation method following the proce-

dure described by Junhua and co-workers [15]. 

All chemicals used in the preparation of the 

catalysts were of AR grade. The required 

amount of Ni(NO3)2.6H2O and Co(NO3)2.6H2O, 

was dissolved in distilled water and mixed. 

Then, the mixed nitrate solution was added 

dropwise to the stoichiometric amount of 

Na2CO3 (2 M) aqueous solution with continuous 

stirring at 60 °C until pH reaches 9.3±0.01. The 

resulting precipitates were aged at 60 °C for 

4h, then filtered and washed with warm dis-

tilled water several times, followed by drying at 

100 °C overnight. The dried material was 

crushed and sieved to 40-60 mesh. The crushed 

precursor was reactively calcined (RC) and 

cooled in situ in the reactor in flowing reactive 

gas mixture of 4.5% CO in air. The detail of the 

RC method is described in next section 2.2 sep-

arately devoted to reactive calcination. 

The catalysts with various Ni/Co ratios were 

designated as NiCo (molar ratio) in the manu-

script. In addition, single oxides (NiO and 

Co3O4) were also prepared using respective ni-

trates and are reactively calcined before study 

of the reaction. 

 

2.2 Reactive Calcination 

Reactive calcination of the precursor was 

carried in situ in downflow bench-scale tubular 

reactor under atmospheric conditions in flow-

ing reactive gas mixture consisting of 4.5% CO 

in air, flow rate of 40 mL.min-1. The tempera-

ture was increased from room temperature at 

the rate of 2 °C.min-1 to a value where CO con-

version was initiated; this temperature was 

maintained for a time till total CO conversion 

to CO2 was observed. For the case of NiCo (1:1) 

precursor, this temperature was 160 °C and 

time required for 100% CO conversion was 32 

minutes. After this, the temperature was in-

creased to 500 °C, and the resultant catalyst 

was thermally annealed there for 2 h under the 

same reactive gas flowing conditions. In the be-

ginning, at a constant temperature of 160 °C, 

very slow rate of oxidation of CO over the pre-

cursor’s crystallites was observed, which 

caused an increase in the local temperature 

due to exothermic reaction. Such increase in lo-

cal temperature started the slow decomposition 

of the precursor. Afterwards, slightly faster CO 

oxidation was observed due to the formation of 

crystalline structures which acted as a catalyst 

causing an increase in the rate of the oxidation 

process. During this period, the simultaneous 

occurrence of multifarious phenomenon of oxi-

dation - decomposition - redox - surface - reac-

tions produced a synergistic effect which helps 

in the creation of oxygen-deficient active phas-

es in the catalyst. The morphological character-

istics attained by catalyst at low temperature 

found to remain intact at high-temperature 

conditions. 

 

2.3 Catalyst Characterizations 

X-ray powder diffraction patterns of the 

samples were recorded with an X-ray diffrac-

tometer (Rigaku Ultima IV, Germany) using 

nickel-filtered Cu-K radiation between 20° to 

80° with continuous mode. The anode current 

and voltage were 250 mA and 40 kV, respec-

tively. The mean crystallite size (d) of the 

phase was calculated from the line broadening 

of the most intense reflection using the Scher-

rer Equation (1). 

 

(1) 

 

where 0.89 is the Scherrer constant,  is the 

wavelength of the X-ray used (1.54056 Å), θ is 

the Bragg angle, and  is the effective lin-

ewidth of the observed X-ray reflection, calcu-

lated by the expression  = B2–b2 where B is 

the full width at half maximum (FWHM), b is 

the instrumental broadening determined 

through the FWHM of the X-ray reflection at 

2θ of crystalline SiO2 for the instrument used 

(b = 0.00274). 

The textural characterizations such as spe-

cific surface area and pore volume of the cata-

lysts under study were examined by nitrogen 

sorption method (Micrometrics ASAP 2020) us-

ing liquid N2 as adsorbent at its boiling point of 

-196 °C. BET surface areas of the samples were 

calculated from adsorption isotherm at a rela-

tive pressure range of 0.05-0.30. Before meas-

urement, all the samples were degassed under 

vacuum conditions (10-6 torr) at 250 °C for 

overnight to make the surface clean for the 

sorption experiment. 

Fourier transform infrared (FT-IR) absorb-

ance spectra of the prepared catalysts was ob-

tained on Shimadzu 8400 FTIR spectrometer 

from 400-4000 cm-1 using KBr pellets at ambi-

ent temperature. Micrographs were recorded 

on a high-resolution Carl Zeiss EVO 18 SEM 

instrument at an acceleration voltage of 15 kV 

and a work distance of 15 mm. Unless stated 

otherwise stated, 3000X magnification was 

used for all images. 

Temperature programmed reduction by hy-

drogen (H2-TPR) was conducted to examine the 

reducibility characteristics of the samples by 

0.89

cos
d



 


=


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detecting the H2 consumption. The H2-TPR ex-

periments were carried out in atmospheric 

pressure in a fixed-bed quartz reactor. Before 

experiments, the samples were pre-treated for 

30 minutes under argon flow of 30 mL min-1 at 

400 °C to remove the adsorbed moisture and 

other contaminants, followed by cooling to room 

temperature. After that, the reducing gas con-

taining a mixture of 5%H2 / 95%Ar at a flow 

rate of 40 mL.min-1 was passed over the sam-

ples (50 mg). The temperature was raised from 

room temperature to 650 °C at a heating rate of 

10 °C.min-1. The outlet stream was analyzed for 

H2 by a TCD. 

 

2.4 Catalytic Activity Measurement 

The catalysts were evaluated for simultane-

ous oxidation of CO and CH4 in a fixed bed con-

tinuous downflow tubular quartz reactor hav-

ing an equivalent diameter 5.0 mm. The de-

tailed description and dimensions of the reactor 

used in the study are mentioned elsewhere 

[18]. Being the exothermic nature of both CO 

and methane oxidation reaction, the catalysts 

were diluted with -alumina (SBET = 3.02    

m2.g-1, pore volume = 0.01 cm3.g-1) to maintain 

the isothermal conditions in the bed under each 

steady-state observations. The following reac-

tion conditions were maintained: 0.5 g of cata-

lyst (35-60 mesh) (diluted to 1.5 mL with -

Al2O3), 1.5% CO + 1.5% CH4 in 97% air and to-

tal flow rate of 100 mL.min-1. Being the exo-

thermic nature of both CO and methane oxida-

tion reaction, the catalysts were diluted with α-

alumina (SBET = 3.02 m2.g-1, pore volume = 0.01 

cm3.g-1) to maintain the isothermal conditions 

in the bed under each steady-state observa-

tions. The following reaction conditions were 

maintained: 0.5 g of catalyst (35-60 mesh) 

(diluted to 1.5 mL with -Al2O3), 1.5% CO + 

1.5% CH4 in 97% air and total flow rate of 100 

mL.min-1. The uniform catalyst bed thickness 

was ensured to avoid any bypassing and axial 

dispersion [19]. 

The flow was controlled with the help of dig-

ital bubble gas flow meters at a GHSV of 

60,000 h-1. The air was made free of moisture 

and CO2 by passing through a tower containing 

CaO and KOH. The reactor was placed vertical-

ly in a split open electrical furnace. The tem-

perature of the catalyst bed was raised from 

room temperature to the temperature where to-

tal conversion of CO and CH4 occurred with in-

termediate reactants conversions under steady-

state conditions. The temperature was moni-

tored and controlled using a K-type thermocou-

ple placed in a thermo-well extended to the cat-

alyst bed. A microprocessor-based temperature 

controller with an accuracy of ±0.2 °C was 

used. The reactants and products gas composi-

tions were analyzed by an on-line gas chro-

matograph (Nucon series 5765) equipped with 

Porapack Q-column, methanizer, and FID. 

The catalytic activity for the simultaneous 

oxidation was calculated in terms of the con-

version of limiting reactants such as CO and 

CH4. The CH4 conversion was calculated by the 

following Equation (2): 

 

(2) 
 

Meanwhile, the conversion of CO-CH4 mixture 

was measured on the using values of the con-

centration of CO2 in the product stream by the 

following Equation (3): 

 

(3) 

 

 

2.5 Catalyst Stability Test 

The life of a catalyst is a significant factor 

in examining the overall performance of the 

catalyst. The thermal sintering of a catalyst is 

a major cause of irreversible catalyst deactiva-

tion. Therefore, the stability test on the best-

performed catalyst was performed in the reac-

tion environment by employing two different 

methods. These tests were conducted at the op-

timum GSHV necessary to achieve the maxi-

mum conversion, i.e. 60,000 h-1 so that the de-

activation would not be hidden because of the 

presence of excess of active sites. The methods 

are as follows:  

Time on stream run test: The time on 

stream experiment was conducted for the best-

performed catalyst to observe the influence of 

time on the catalyst performance at a constant 

temperature under reaction conditions. The ox-

idation of CO-CH4 mixture was conducted at 

390 °C corresponding to the total oxidation of 

reactants for 50 h, with hourly measurement of 

reactants conversions. 

Thermal ageing tests: These tests are simu-

lation of ageing occurring due to a complex set 

of physical and chemical changes during the 

lifetime of the catalyst. Various factors such as 

prevalence of lower flame speed, long engine 

running hours and fuel shut off conditions re-

sults in higher temperature of CNG engine ex-

haust [20]. Thermal ageing is a consequence of 

these high-temperature surges in the exhaust 

control systems. The rapid deactivation of TWC 

due to thermal and chemical ageing is observed 

on CNG fueled vehicles than on gasoline fueled 
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ones [21]. Therefore, thermal ageing tests were 

conducted by ageing the catalysts at the target-

ed temperature to examine the influence of 

ageing on their respective catalytic performanc-

es. Aged catalysts were obtained by treating 

fresh ones in muffle furnace at 500, 600, and 

700 °C for overnight period. The ageing tem-

peratures were above the normal operating 

temperature of the catalysts in the converter. 

The performance tests of such aged catalysts 

were conducted as discussed under the previ-

ous Section 2.4. 

3. Results and Discussions 

3.1 XRD results 

The XRD patterns of all the samples are 

shown in Figure 1. The peaks in XRD patterns 

of NiO and CO3O4 samples are accurately as-

signed to NiO phase (JCPDS 47-1049) and 

Co3O4 phase (JCPDS 43-1003), respectively. 

For the case of Ni-Co containing oxides (b-e), 

both NiCo2O4 phase (JCPDS 20-0781) and NiO 

phase exist together except for the case of 

Ni/Co molar ratio of 1:2. For NiCo (1:2) single 

phase of NiCo2O4 appeared. The lattice param-

eters (a) and the crystallite size (d) are summa-

rized in Table 1. The gradual shift in the dif-

fraction peak toward low 2θ angle is observed 

with increasing Ni content from Ni/Co molar 

ratio of 1:2 to 1:1. The NiCo (1:1) and (1:2) 

sample are largely shifted to a lower angle, in-

dicating the substitution of the smaller Co3+ (r 

= 0.055 nm) ions with larger Ni2+ (r = 0.069 

nm) ions preferring the octahedral sites in 

Co3O4 spinel lattice. Further, it was observed 

that in the case of samples corresponding to 

the Ni/Co molar ratio of 1:2 and 1:1, compara-

tively broad and low-intensity peaks were ob-

served indicating a low degree of crystallinity 

and small size of a crystalline grain. However, 

when Ni/Co exceeds 1:1 molar ratio, such as in 

case of NiCo (2:1) and single NiO, the peak in-

tensity again gets increased and crystalline 

NiO phase starts dominating, resulting in the 

large average size of crystalline grains. The 

number of crystal defections such as the for-

mation of distorted spinel lattice in case of Ni-

Co (1:1) may get increased with the insertion of 

Ni into the spinel lattice of cobalt oxide. Hence, 

the noteworthy factors such as less crystallini-

ty, small average crystallite size, and distorted 

spinel phase in case of samples such as NiCo 

(1:1) can be accountable for its desirable char-

acteristics. 

Cat 
NiO  NiCo2O4  Co3O4 SBET 

(m2 g-1)  

Pore Volume 

(cm3g-1)  aa (Å)  aa (Å) D (nm)  aa (Å) D (nm) 

Co3O4 -  - -  8.061 23.02 46.1 0.26 

NiCo(1:2) 4.177  8.120 12.2  - - 55.5 0.28 

NiCo(1:1) 4.16  8.125 10  - - 65.5 0.33 

NiCo(2:1) 4.183  8.111 11  - - 46.7 0.26 

NiO 4.179  - -  - - 41.2 0.21 

NiCo aged 4.180  8.110 19.9  - - - - 

aCalculated by fitting the XRD patterns using MAUD Rietveld refinement program 

Table 1. Lattice parameters (a), crystalline sizes (D), SBET and pore volume values of the catalysts. 

Figure 1. XRD patterns of (a) Co3O4, (b) NiCo 

(1:2), (c) NiCo (1:1), (d) NiCo (2:1), (e) NiCo 

(1:1) aged at 700 ⁰C, and (f) NiO. 
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3.2 BET Characterization Results 

The textural properties, such as: SBET and 

pore volume results of all the samples, are    

given in Table 1. The SBET and pore volumes 

values in case of single oxides (NiO and Co3O4) 

were found to be same, indicating that these 

two single oxides have somewhat identical tex-

tural properties. The SBET and pore volume ex-

hibited by NiCo bimetal oxides is significantly 

higher than their single oxides. The surface ar-

eas and pore volume of the samples found to be 

increased with the increase in Ni content till 

the NiCo (1:1) then again decreased to the val-

ue of single oxide NiO. The NiCo (1:1) catalyst 

has shown the highest SBET (65.5 m2.g-1) and 

the largest pore volume (0.33 cm3.g-1) among 

all the observed catalysts. Previous works 

[15,22,23] on mixed metal oxides has also re-

ported that mixed metal oxides have higher 

specific surface areas than their single oxides. 

 

3.2 FT-IR Characterization Results 

The IR-spectra of all the samples are shown 

in Figure 2. In single NiO (Figure 2e), strong 

band was observed at 420 cm-1 corresponding 

to the vibration of Ni-O bond [13]. In the case 

of cobalt-containing metal oxides (a-d), two 

most intense bands appear in about 518 and 

660 cm-1 region. These two transmittance 

bands correspond to the M-O stretching vibra-

tions from tetrahedral and octahedral sites, re-

spectively, are characteristic of spinel struc-

ture. As can be observed in Figure 2, the peak 

positions were shifted slightly to the lower 

wavelength with the increase in Ni oxide con-

tent [24]. Peak shifting and signal enhance-

ment in Ni-Co based samples can be attributed 

that the interaction between two phases re-

sults in more structure distortions. 

The broad absorption band around 3321  

cm-1 corresponds to the O-H stretching vibra-

tions, indicating that fact that the calcined 

Figure 2. FT-IR spectra of (a) NiCo (2:1), (b) 

NiCo (1:1), (c) NiCo (1:2), (d) Co3O4, and (e) 

NiO. 

Figure 3. SEM micrographs, (a) Co3O4, (b) NiCo (1:2), (C) NiCo (1:1), (d) NiCo (2:1), (e) NiO, and (f) 

NiCo (1:1) aged at 700 ⁰C. 
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samples tend to absorb moisture physically. 

The additional broad bands in the region be-

yond 1100 cm-1 indicates the presence of some 

carbonate species and moisture in the samples 

[25]. 

 

3.3 SEM Characterization Results 

The SEM micrographs of all the samples are 

shown in Figure 3. It is observed that the parti-

cles adopted irregular morphology with differ-

ent sized particle. The particles were spherical 

and highly agglomerated in nature. The ob-

served bigger particles were made out of ag-

glomeration or overlapping of the smallest na-

noparticles. 

 

3.4 H2-TPR Characterization Results 

The H2-TPR results of all the samples are 

given in Figure 4. The temperature and H2 con-

sumption corresponding to  and  peak posi-

tions are summarized in Table 2. The weak re-

duction peak at lower temperature is referred 

to as  peak, and strong reduction peak at 

higher temperature is referred to as  peak. All 

the cobalt-containing catalyst samples exhibit-

ed two conjoined reduction peaks ( and ) in 

the temperature range of 200-400 °C. 

The Co3O4 exhibits both low-temperature 

weak reduction peak () and high - tempera-

ture strong reduction peak () at 272 and 382 

°C, respectively, indicating the successive re-

duction of Co3O4 from Co3+ to Co2+ and from 

Co2+ to Co0 [26]. Whereas, the other single ox-

ide NiO has shown only a single high-

temperature strong reduction peak () at 357 

°C, attributed to the reduction of Ni2+ to NiO 

[27]. The actual H2 consumption by these sin-

gle oxides is very close to the theoretically cal-

culated H2 consumption for the same. It fur-

ther substantiated the fact that the complete 

reduction of both the single oxides took place. 

With the increase in Ni oxide content, the de-

crease in area under α peak (the portion to the 

left of the dashed line in the Figure 4) as well 

as the shift in α peak towards the low tempera-

ture was observed, especially seen in case of 

NiCo (1:1) and NiCo (1:2) catalyst. The lower 

the reduction temperature, lower the peak ar-

ea; the higher the reducibility of the catalyst. 

Peak position (⁰C)   H2 consumption (mmol.g-1) 
Catalyst 

     Α  Β  +   +  (theoretical) 

Co3O4 270 381   3.4 12.1 15.5 16.5 

NiCo(1:2) 246 370   2.2 11.8 14.0 15.4 

NiCo(1:1) 230 353   2. 11.9 14.0 15.0 

NiCo(2:1) 250 367   1.0 12.1   14.4 

NiO - 355     12.25   13.1 

Table 2. Summary of quantitative H2-TPR results of catalysts. 

Figure 4. H2-TPR profiles of (a) Co3O4, (b) Ni-

Co (1:2), (C) NiCo (1:1), (d) NiCo (2:1), and (e) 

NiO. 

Figure 5. The catalytic activities of Ni-Co bi-

metal oxides with varying Ni/Co ratios for CO-

CH4 mixture oxidation as the function of tem-

perature. 
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As expected, the reducibility order according to 

the H2 consumption at a lower temperature (T 

< 300 °C) was found to comply with the catalyt-

ic performance order exhibited by the catalysts. 

 

3.5 Catalytic Activity 

Figure 5 shows the light off curves for CH4 

oxidation over all samples along with their cor-

responding Arrhenius plots for the reaction ki-

netics. The temperature, T90 is the temperature 

where conversion of the reactants reached 90%, 

was set as the standard of assessing the activi-

ty of the catalysts. The descending order of ac-

tivity for all the catalysts was as follows: NiCo 

(1:1) > NiCo (1:2) > NiCo (2:1)> NiO > Co3O4. 

Arrhenius plots (Figure 5b) also revealed that 

the NiCo (1:1) catalyst has the lowest calculat-

ed apparent activation energy for CH4 combus-

tion. The catalytic activity increased with the 

increasing Ni content up to the level of molar 

ratio of NiCo (1:1). 

Similarly, Figure 6 showing the light off 

curves for simultaneous oxidation of CO-CH4 

mixture over all the samples shows the same 

trend as observed in CH4 oxidation. For single 

oxide catalysts, such as: NiO and Co3O4, the 

T90 were 434 and 459 °C, respectively. Where-

as, T90 for most NiCo bimetal oxides was lower 

than 400 °C. Thus, catalytic activity exhibited 

by NiCo bimetal oxides was much better than 

that of single metal oxides. The NiCo (1:1) and 

NiCo (1:2) catalyst achieved the complete con-

version of the mixture at 390 and 402 °C,       

respectively. As clearly indicated in Figure 6 

and summarized in Table 3, T90 for CO-CH4 

mixture is significantly lower in comparison 

CH4 oxidation over all the studied catalysts. 

The complete oxidation of CH4 over NiCo (1:1) 

catalyst took place at 422 °C whereas the com-

plete oxidation of CO-CH4 mixture over NiCo 

(1:1) catalyst occurred at significantly low tem-

perature of 390 °C. This promoting effect of CO 

could be possibly due to the highly exothermic 

nature of the CO oxidation reaction (ΔHr = -282 

kJ.mol-1). The CO gets completely oxidized over 

NiCo (1:1) catalyst even before the initiation 

temperature of methane oxidation reaction. 

The heat released due to CO oxidation locally 

increases the local temperature, which possibly 

helps in activating the methane oxidation reac-

tion. 

Figure 6. a) The catalytic activities of Ni-Co bimetal oxides with various Ni/Co ratios for CH4 oxidation 

as the function of temperature; b) the corresponding Arrhenius plots for the reaction kinetics. 

Catalyst 
T90 (CO+CH4) Mixture 

(⁰C) 

T90 CH4 Only 

(⁰C) 

Ea 

(kJ mol-1) 

Co3O4 459 478 124 

NiCo (1:2) 382 418 80.6 

NiCo (1:1) 380 405 69.4 

NiCo (2:1) 428 472 111.7 

NiO 434 475 118.3 

Table 3. Summary of characteristic reaction temperatures (T90), and apparent activation energy of 

samples. 



 

Bulletin of Chemical Reaction Engineering & Catalysis, 15 (2), 2020, 498 

Copyright © 2020, BCREC, ISSN 1978-2993 

3.6 Catalyst Stability Test Results 

The best performed NiCo (1:1) catalyst was 

evaluated for its stability under two different 

methods, as described under section 2.5. The 

results obtained are as follows: 

Time on stream run test: As evident from Fig-

ure 7, the catalyst practically exhibited no de-

activation and maintained its catalytic perfor-

mance for a long run of 50 h under the reaction 

conditions studied, thereby, showing excellent 

long term stability. 

Thermal ageing test: Figure 8 compares the ac-

tivities of the fresh and aged samples. The cat-

alyst deactivation was practically negligible un-

til the ageing temperature of 600 °C. However, 

it showed a deactivation after ageing at 700 °C. 

The conversion dropped to 83% in case of sam-

ple aged at 700 °C. This decrease in activity is 

possibly due to two reasons. Firstly, the ther-

mal decomposition of NiCo2O4 spinel phase on 

ageing at 700 °C. Secondly, the increase in 

crystallite size due to the agglomeration of par-

ticles or sintering at high temperatures [28]. As 

indicated in Figure 1e, in case of sample aged 

at 700 °C, changes in the diffraction pattern be-

come visible, and high-intensity diffractive 

peaks of NiO appear. Moreover, the significant 

agglomeration is observed in the aged sample 

as compared to the fresh sample in SEM micro-

graphs (Figure 3f), showing increased crystal-

lite sizes. This observation regarding increased 

crystallite size was also found to comply with 

the crystalline size calculated from XRD results 

using Equation (1) (Table 1). 

4. Conclusions 

The effect of Ni/Co ratio with various nickel 

content on CO-CH4 mixture oxidation is ex-

plained by catalytic activity test and various 

characterizations like N2 adsorption-desorption 

with BET method, XRD, FT-IR, SEM, and H2-

TPR. As per catalytic activity test results, NiCo 

(1:1) catalyst exhibits the best catalytic perfor-

mance among all the other observed catalysts. 

The light-off temperature is shifted towards 

lower temperatures in the presence of CO. 

XRD patterns demonstrate that the spinel lat-

tice in the case of NiCo (1:1) is largely distorted 

compared to other catalysts. The insertion of 

Ni inappropriate amount causes the disorders 

in the spinel lattice of cobalt oxides; thereby, 

enhancing the activity of the reactive ions in 

the octahedral sites and probably facilitate the 

dehydroxylation steps, and thus enhancing the 

catalytic activity of the NiCo bimetal mixed ox-

ides. Further, as evidenced by H2-TPR results, 

enhancement in the reducibility of NiCo2O4 is 

reported with the structural disorder. Thus, it 

is concluded that structural disorder in nickel 

cobaltite spinel phase plays a significant role 

for the CO-CH4 mixture oxidation. 
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