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ABSTRACT
Linkage learning is employed bymany state-of-the-art evolutionary
methods designed for solving problems in discrete domains. The
effectiveness of these methods is dependent on linkage quality. The
linkage may suffer to two different inaccuracy types. If some of the
gene dependencies are not discovered, then the missing linkage
takes place. Oppositely, if linkage identifies some gene dependen-
cies that do not exist, then the false linkage takes place. To the best
of our knowledge, all linkage learning techniques proposed that
far predict that some genes are dependent and can commit both of
the mistake types. Therefore, we propose a more direct approach.
We disturb the genotype and check how these disturbances have
influenced the effects of local search. We prove that the proposed
Linkage Learning based on Local Optimization (3LO) will never
report any false linkage, although it may still miss some true gene
dependencies. 3LO is fundamentally different from other linkage
learning techniques. Its main disadvantage is a high computational
cost and it is not suitable for already known evolutionary methods
that frequently compute linkage. Therefore, we propose an evolu-
tionary method that employs 3LO. More details considering 3LO,
linkage quality and diversity may be found in the original paper
[5].
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1 LINKAGE LEARNING BASED ON LOCAL
OPTIMIZATION (3LO)

To the best of our knowledge, all linkage learning techniques pro-
posed so far are based on predictions. The base of prediction may
be a probabilistic model [4], a gene position in the genotype [3],
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graphs, or other data structures created with the use of informa-
tion theory [1, 6]. Nevertheless, Prediction-based Linkage Learning
techniques may discover a false linkage. Linkage Learning based
on Local Optimization (3LO) checks the differences in genotypes
resulting from local optimization. First, we optimize the original
genotype. Then, we perturb it and optimize the modified one. Fi-
nally, we compare the differences. Thus, the above procedure may
be interpreted as an empirical check. If 3LO discovers any two
genes as a dependent, the prediction is replaced by certainty. 3LO
was proposed for binary domains, but it may be extended to other
domains as well.

Let us consider a single-objective optimization problem formu-
lated as:

max−→
𝑥 ∈𝑋

{𝑓 (−→𝑥 )} (1)

where solution −→𝑥 = [𝑥1, ..., 𝑥𝑛] is a vector of n binary decision
variables and X is a set of available solutions. We define −→𝑥 (𝑚) :

−→𝑥 (𝑚) = [𝑥1, ..., 𝑥𝑚−1, 𝑥 ′𝑚, 𝑥𝑚+1, ..., 𝑥𝑛] (2)

where 𝑥 ′𝑚 is the negation of 𝑥𝑚 .

Figure 1: The idea of linkage scrap gathering in 3LO

In 3LO, the basic linkage information is denoted as linkage scrap
and is defined as follows:

LScrap(−→𝑥 ,𝑚) =

OR(𝑋𝑂𝑅(−→𝑥 ,−→𝑥 (𝑚) ),XOR(opt (−→𝑥 ), opt (−→𝑥 (𝑚) )))
(3)

where opt (−→𝑥 ) is a vector obtained after the optimization of −→𝑥 with
a local optimizer. For this purpose we use the First Improvement
Hill Climber (FIHC) [1].

The idea of linkage scrap gathering is presented in Fig. 1. First, a
single gene 𝑥𝑚 of an individual is flipped. The linkage scrap informs
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Table 1: Effectiveness comparison for some of the considered test cases
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Dec.
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Bimodal 10 2000 100 567 2.5E+7 0 N/A N/A 83 5 146 9.9E+7 100 13 021 4.0E+8
Bim.10 nois. 2000 100 573 2.5E+7 0 N/A N/A 0 N/A N/A 0 N/A N/A
Dec. 5 2000 100 12 725 7.0E+8 100 158 4.8E+5 100 2 502 1.2E+6 100 126 5.8E+6
St.Dec. 5 2002 100 8 771 1.2E+8 0 N/A N/A 97 16 271 8.1E+8 0 N/A N/A
Discr. Rast. 800 100 1 293 1.4E+8 100 17 2.0E+5 100 323 5.2E+6 100 12 6.9E+5

Over-
lapp.

NK-land. 600 100 4 658 8.7E+7 100 769 8.2E+6 7 41 666 7.5E+8 100 806 1.6E+7
ISG 784 100 1 113 8.9E+7 100 86 6.3E+5 100 132 2.3E+6 100 55 4.2E+6

HIFF Dec. 2 (l.10) 2048 100 1 131 4.2E+7 100 3 395 6.0E+5 100 2 529 4.9E+6 100 225 5.5E+6
Bim.10 (l.3) 1000 100 329 2.0E+7 0 N/A N/A 0 N/A N/A 100 10 067 5.6E+8
St.Dec. 3 (l.4) 2401 100 2 473 7.5E+7 20 35 074 2.6E+7 100 17 113 1.3E+8 100 1 854 4.4E+7

how this mutation has influenced the FIHC result. All genes with
different values are considered to be dependent on one another, and
the gene 𝑥𝑚 even if the original value of 𝑥𝑚 is restored after FIHC.
Each time the linkage scrap gathering procedure is triggered, the
optimization order is randomly chosen (the same for −→𝑥 and −→𝑥 (𝑚) ).
The requirement that the optimization order is the same for −→𝑥 and
−→𝑥 (𝑚) is crucial. Otherwise, 3LO may produce a false linkage.

3LO never reports false linkage, but it may still miss some of
the gene dependencies. To overcome this issue, linkage scraps are
produced from many different genotypes and are used to construct
the linkage trees in the way similar to the Linkage Tree Genetic
Algorithm (LTGA) [6] and Parameter-less Population Pyramid (P3)
[1]. First, the gene dependencies matrix, equivalent to the Depen-
dency Structure Matrix (DSM) [1, 6], is constructed. For each gene
pair, the number of occurrences in a single linkage scrap is counted.
This simple measure replaces statistical-based measures. The main
difference is that LTGA and P3 always build a single tree, which
incorporates all of the genes. 3LO may produce many trees if there
are no dependencies found between the genes that were assigned
to two different trees.

The basic 3LO procedure described above is sufficient for solving
problems built from fully-separable blocks or to gather linkage for
overlapping problems (eg., Ising Spin Glass and NK landscapes).
To properly discover linkage when solving problems with many
levels of dependency, 3LO checks inter-block dependencies. Since
the number of available values for a block of genes is large, they are
filtered using the best-found individual. The details may be found
in [5].

Based on the research an detailed analysis presented in [5], to
effectively solve overlapping problems, it is not enough to have
a precise linkage. A method must also use a diverse linkage. To
achieve this requirement, the method employing 3LO, namely the
3LO Algotihm (3LOa), employs many populations, each of them
maintaining separate linkage information (in the form of a linkage
tree). To the best of our knowledge, 3LOa is the first method that

employs the multi-population scheme to increase linkage diversity,
instead of increasing the population diversity.
2 THE RESULTS AND FUTUREWORK
3LOa was tested against a wide range of problems, including de-
ceptive functions, overlapping problems, and problems with a high
level of hierarchy. Its performance was compared with LT-GOMEA,
P3, and the population-sizing DSMGA-II (psDSMGA-II) [2]. 3LOa
was the only method that has found an optimal result for every
considered test case in all runs. Partial results for some of the consid-
ered test cases are presented in Table 1. Complete results, including
the scalability analysis, may be found in [5].

Although the concept of 3LO is in its initial stage, it may lead to
excellent results. 3LOa is competitive with other state-of-the-art
methods. Due to the fundamental differences between 3LO and
other linkage learning techniques, 3LO will never support a false
linkage. The main future work objectives are to limit the cost of
3LO and make it usable for other evolutionary methods (eg., LTGA,
DSMGA-II, and P3) and hybridize 3LO with DSM-using methods.
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