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Abstract

In this paper, we study the generalized problem of split equality variational inclusion problem.
For this purpose, we introduced the problem of finding the zero of a nonnegative lower
semicontinuous function over the common solution set of fixed point problem and monotone
inclusion problem. We proposed and studied the convergence behaviour of different iterative
techniques to solve the generalized problem. Furthermore, we study an inertial form of the
proposed algorithm and compare the convergence speed. Numerical experiments have been
conducted to compare the convergence speed of the proposed algorithm, its inertial form and
already existing algorithms to solve the generalized problem.

Keywords Split equality problem - Variational inclusion problem - Fixed point problem -
Quasi-nonexpansive mapping

Mathematics Subject Classification 47J25 - 47HO5 - 47H09 - 49J53

1 Introduction

In 1994, Censor and Elfving (Censor and Elfving 1994) first introduced the split feasibility
problem (SFP) in finite-dimensional spaces. Such problems arise in signal processing, specif-
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ically in phase retrieval and other image restoration problems. It has been found that the SFP
can also be used in different areas such as computer tomography and intensity-modulated
radiation therapy (Censor et al. 2005, 2006, 2007).

The split feasibility problem (SFP) is

find x* € C such that Ax* € Q, (1.1)

where C and Q are nonempty closed convex subsets of real Hilbert spaces H; and H>,
respectively, and A : H; — H; is a bounded linear operator. Some works on split feasibility
problems in an infinite-dimensional real Hilbert space can be found in Byrne (2002), Censor
et al. (2006) and Xu (2006).

In2012, Censor et al. (2012) introduced the following split variational inequality problem:

find x* € C such that (f(x*),x —x*) > Oforallx € C,
and
y* = Ax* € Q that solves (g(y*),y — y*) > 0forall y € Q,

where C and Q are nonempty closed convex subsets of real Hilbert spaces Hy and H,
respectively, A : Hy — H> is a bounded linear operator and f : Hy — Hi, g : H» — H;
are the given operators.

In 2011, Moudafi (2011) extended the split variational inequality problem (Censor et al.
2012) and proposed the following split monotone variational inclusion problem (SMVIP):

find x* € H; such that f(x*) + Bj(x*) 30,
and
y* = Ax* € H, that solves g(v*) + B2(y™) 3 0, (1.2)

where B; : H; — 2% for i = 1,2, are multi-valued mappings on the real Hilbert spaces,
A : Hi — H, is a bounded linear operator and f : Hy — Hj, g : H» — H, are two
given single-valued operators. Also, an algorithm for finding the solution of SMVIP (1.2)
was introduced and the weak convergence of the proposed algorithm was proved.

In 2014, Kazmi and Rizvi (2014) introduced the split variational inclusion problem
(SVIP):

find x* € Hj such that By (x*) 3 0,
and
y* = Ax* € H, that solves B>(y*) 3 0, (1.3)

where B; : H; — 29 fori = 1, 2, are multi-valued mappings on the real Hilbert spaces and
A : Hy — H, is abounded linear operator. Problem (1.3) is a special case of split monotone
variational inclusion problem. They also proposed strongly convergent iterative method to
find the common solution of split variational inclusion problem and fixed point problem.

In 2013, Moudafi (2013) introduced the following split equality problem (SEP):

find x* € C and y* € Q such that Ax* = By*, (1.4)

where A : Hi — Hi and B : H, — Hsz are two bounded linear operators and C, Q are
nonempty closed convex subsets of real Hilbert spaces H;, H», respectively, and H3 is also
a Hilbert space. Obviously, if B = I and H, = H3, then SEP reduces to SFP.
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In 2014, Moudafi (2014) introduced the following split equality fixed point problem
(SEFP):

find x* € Fix(Ry) and y* € Fix(R;) such that Ax* = By™, (1.5)

where A : Hy — H3, B : H» — Hj3 are two bounded linear operators, and R; : H; — H;
fori = 1,2 are two nonlinear operators such that Fix(R) # ¢ and Fix(Ry) # ¢. Also, he
proposed iterative method for solving SEFP:

Xpe1 = Ri(xp, — VnA*(Axn — Byn)),
Ynt1 = Ro(yn + VnB*(Axn-H — Byy)) Vn > 0,

where {y,} is a positive non-decreasing sequence such that y,, € (e, min (i i) — e)

for small enough € > 0, where 14 and Ap denotes the spectral radius of A*A and B*B,
respectively. In this iterative method, computation of the norm of operators used is required,
which can be tedious task sometimes.

In 2015, to solve the split equality fixed point problem (1.5) for quasi-nonexpansive
mappings, Zhao (2015) proposed the following iteration algorithm which does not require
the computation of the operator norms:

Up = Xp — VnA*(Axn — Byn),
Xn+1 = ity + (1 = Bu) Riuy,
Uy = Yp + ¥aB*(Ax, — Byy),
Y1 = By + (1 = Bu)Rovy, Vn >0,
where the step-size y;, is chosen as follows:
Bn Il Axn — By |l
Yn €| € * 2 * 2
I A*(Axn — Byy) |1 + | B*(Axp — Byy) |l

Otherwise, y,, = y (y being any nonnegative value), where the index set IT = {n € N :
Ax, — By, #0}and o, C (8,1 —6) and B, C (5, 1 — n) for small enough 8, n > 0.

In 2016, Chang et al. (2016) introduced and studied the split equality variational inclusion
problems in the setting of Banach spaces. The split equality variational inclusion problem
(SEVIP) is defined as follows:

find x* € 7,7'(0) and y* € T, '(0) such that Ax* = By*, (1.6)

e), nell.

where 7; : H; — 2% i = 1,2 are maximal monotone operators, A : Hy — X and
B : Hy — X are bounded linear operators. Here, H;, i = 1, 2 are real Hilbert spaces and X
is a real Banach space. If we consider X = H3, where H3 is a real Hilbert space, then the
main result of Chang et al. (2016) will be as follows.

Theorem 1.1 Denote Cy = Hy, Q| = H>. For given x| € Cy and y| € Q\, let the iterative
sequences {x,} and {y,} be generated by

Uy = I (60 — yaA*(Ax, — Byn)),

Uy = J)LTZ()’n + )’nB*(Axn — Byn)),

Cost X Qut = (6, 3) € Co X Qu il —x 17 + [ va = y |17 (7
<l xn—x 17+ 1 ya =y 117

Xnt1 = Pc,, x1,

Yn4+1 = PQn+l‘x1 .
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If the solution set S := {(p,q) € Hl X Hy : (p,q) € Tl_] X Tz_] and Ap = Bq} of SEVIP
(1.6) is nonempty and the following condition is satisfied
2
<—
A2 + 1B
Then the sequence {(xy,, Yn)} converges strongly to some point (x*, y*) € S, where ||A|| and
|| B|| are the norms of the operators A and B, respectively.

0 <

The inertial term was first used to define the heavy ball method proposed by Polyak (1964)
to minimize the convex smooth function f, which is considered as a discretization of time
dynamical system, given by

X(t) +ax(t) + 2V f(x(1)) =0,

where o1 (> 0) and ax (> 0) are free model parameters of the equation. Inertial term gives
the advantage to use two previous terms to define the next iterate of the algorithm, which in
turn increases the convergence speed of the algorithm. This term was further used by Alvarez
and Attouch (2001) to define the inertial proximal point algorithm for solving the problem
of finding zero of a maximal monotone operator 7', which is as follows:

Xn+1 = J}?; (X + 0 (xy — X4-1)),

where JAT}1 is the resolvent of T with parameter A, > 0 and the inertia is induced by the term
On (X, —xn—1), with 6, € [0, 1). Since their introduction one can notice an increasing interest
in inertial algorithms having this particularity, see Bot et al. (2016), Dong et al. (2018), and
Moudafi and Oliny (2003).

We consider the following problem:

(P) find z* € T71(0) N (N}, Fix(R;)) such that F(z*) =0, (1.8)

where F' : H — R is a nonnegative lower semicontinuous (1.s.c.) function defined on H,
T : H — 2 is a maximal monotone operator andeach R; : H — H,i =1,2,...,m
is a quasi-nonexpansive mapping such that N7’ | Fix(R;) # #. Throughout the paper, we
assume that solution set of the problem (P) is denoted by €2, ie., 2 = {z € H : 7 €
T-1(0) N (N, Fix(R;)) and F (z) = 0}.

One can see that problem (P) is unification of the following three problems:

(i) finding zero of nonnegative function F;
(ii) finding zero of set-valued operator T';
(iii) finding common fixed points of operators Ry, Ra, ..., Ry.

An important particular case of problem (P) is split equality variational inclusion fixed
point problem which can be expressed as

find x* € 7,71 (0) N (NI, Fix(M;))
and

y* e T,71(0) N (N, Fix(N;)) such that Ax* = By*, (1.9)

where T; : H; — 28 fori = 1,2 are maximal monotone operators, and A : Hy — Hj3,
B : Hy — Hj3 are bounded linear operators. For integers 1 <i <m, M; : Hf — Hj and
N; : Hy — H» are two finite families of quasi-nonexpansive mappings.

If we suppose that M; = N; = 0, V1 < i < m, then the split equality variational inclusion
fixed point problem get converted to split equality variational inclusion problem, which was
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studied earlier by Chang et al. (2016) and Chuang (2017). Also, if we assume that B = [
and H3 = H», then the above problem (1.9) gets converted to split variational inclusion fixed
point problem, which was studied by Majee and Nahak (2018).

The main purpose of this paper is to propose three iterative methods for solving problem
(P) and to study the convergence analysis of the proposed iterative methods in a real Hilbert
space setting. Our results unify some known results.

The remaining parts of this paper are organized as follows: some lemmas and definitions
required for proving main results are presented in Sect. 2. Three iterative methods for solving
problem (P) are introduced in Sect. 3. Strong convergence of the proposed iterative methods
are also discussed in Sect. 3. The applications of our results are established in Sect. 3 to the
split equality variational inclusion fixed point problem and split equality equilibrium fixed
point problem are given in Sect. 4. The efficiency of our iterative methods is demonstrated
in Sect. 5.

2 Preliminaries

Let R : H — H be a mapping. An element z € H is said to be a fixed point of R if z = Rz.
We use Fix(R) to denote the set of all fixed points of R.

Definition 2.1 A map R : H — H is called
(i) nonexpansive if
[Rx — Ryl <|lx —y || forallx,y € H,
(ii) quasi-nonexpansive if
Fix(R) # Wand |Rx — Rp|| <|| x — p || forallx € H and p € Fix(R).
(ii1) demi-closed at zero if
nlingo |z — Rz, |l = O0and z,,—z" imply that z* = Rz* for any sequence {z,} € H.

Throughout this paper, the symbols N and R stand for the set of all natural numbers and

set of real numbers, respectively. Also, we use the symbol 7 for the identity operator on H.

Let C be a nonempty closed convex subset of H. Then for any x € H, there exists a
unique nearest point Pc(x) of C such that

lx = Pc(x)|| < |lx —y| forally € C.

The mapping Pc is called the metric projection map from H onto C. It is noticeable that
the metric projection mapping Pc is nonexpansive mapping from H onto C (see Agarwal
et al. 2009 for more details of projection mappings).

The following lemmas will be needed to prove our main results.

Lemma 2.1 (Agarwal et al. 2009, Proposition 2.10.15) Let C be a nonempty closed convex
subset of a real Hilbert space H, and Pc be the metric projection mapping, then the following
properties hold:

(i) Pc(x)e C,Vx € H;
(ii) {(x — Pc(x), Pc(x) —y)>0,Vx,y € C;
(iii) |Ix — y|I> = llx — Pc()|I* + ly — Pcx)|>, Vx e Hand y € C;
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(iv) (Pc(x) — Pc(y).x —y) = [[Pc(x) — Pc()II? ¥x, y € H.
Proof(iii) Since for any x € H, y € C, we have
Ix = yII* = llx = Pex + Pex — y|I?
= |lx = Pex|® + [ Pcx — y|I* + 2(x — Pex, Pex —y).  (2.1)

So, (iii) follows from (ii) and (2.1).
O

Lemma 2.2 (Zegeye and Shahzad 2011, Lemma 1.1) Let H be a real Hilbert space. For each

X1,X2, ..., Xxm € Hand ay, aa, ..., ay € [0, 1] with sz:l o = 1, the equality
m
lonxt 4 Famxm 7= e llx 17— > ey || xi —x; |
i=1 1<i,j<m
holds.

Lemma 2.3 (Xu 2002, Lemma 2.5) Let {s,} be a sequence of nonnegative real numbers
satisfying
Sn+1 < (1 —an)sy + apb, foralln e N,

where {ay} is a sequence in (0, 1) and {b,} is a sequence in R such that

(a) 302, an = coand
(b) either limsup,_, . by < 0o0r Y o2, lanby| < oc.

Then lim, s o0 5, = O.

Definition 2.2 (Bauschke and Combettes 2017, Definition 16.1) Let f : H — (—o00, 0o] be
proper. The subdifferential of f is the set-valued operator

af 1 H— 2" x> (ue H((Vy e H){y —x,u) + f(x) < f()}.

Letx € H.Then f issubdifferentiable atx if 9 f # J; the elements of d f are the subgradients
of f atx.

Let T : H — 2% be an operator. The domain and graph of T are denoted by dom(7') and
gra(T), respectively, where dom(7') = {x € H : Tx # W} and gra(T) = {(x,u) € H x H :
u € Tx}. A set-valued operator is said to be monotone operator on H if (x — y, u — v) > 0,
V(x,u) € gra(T) and V(y, u) € gra(T). A monotone operator 7 on H is said to be maximal
if there exists no monotone operator S : H — 2/ such that gra(S) properly contains gra(7).
The resolvent of T for A > 0 is J)LT = +AT)"': H— H.If T is a maximal monotone
operator then its resolvent is single valued, firmly nonexpansive and maximal monotone
operator. Finally, the set Fix(JAT) ={xe H: JATx = x} of fixed points of J)\T coincides
with 7~1(0) (Bauschke and Combettes 2017; Ryu and Boyd 2016).

Lemma 2.4 (Bauschke and Combettes 2017, Example 20.29) Let T : H — H be a nonex-
pansive map on a Hilbert space H and o € [—1, 1]. Then I + aT is maximal monotone
operator.

Lemma 2.5 (Bauschke and Combettes 2017, Proposition 20.23) Let T1 : H] — 28 apd
T . Hy — 272 pe two maximal monotone operator, where Hy and Hy are real Hilbert
spaces. Set H := Hy x Hy and T : H — 2" : (x,y) — Tix x T»y. Then T is maximal
monotone operator.
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3 Main results

In this section, we introduce strongly convergent iterative schemes for finding the solution
of problem (P).

Let H be a real Hilbert space, F : H — R be a nonnegative lower semicontinuous
function and 7 : H — 2 be a maximal monotone operator. Suppose that, for each i €
{1,2,...,m},R; : H — H be a quasi-nonexpansive mapping. Now, we introduce our
iterative algorithms for solving the problem (P) as follows:

Algorithm 3.1 (1) Initialization: denote D1 = H and select 71 € Dy arbitrarily.
(2) Iterative step: select {ju,} and {5; ,} as iteration parameters and compute the (n + th
iteration as follows:

sn = 5 (20 — tndy),

m
tn = 80.n5n + Y 8 nRi(sn),
i=1

. 2 2
Dpy1={z € Dy : Ity — zlI” < llza — zlI7},

Zn+1 = Pp,, 21, neN,

(3.1)

where d, is a search direction, A > 0 and {5; ,} is a sequence such that §; , €
0, 1), liminf, 8 , > 0, Y7L, 8;.» = 1. The step size w, is selected as follows:

BnF (zn) .
— . ifd 0
tn =1 |d|? fdn# (3.2)
0, otherwise,
where B, € (0, 2).
Algorithm 3.2 (1) Initialization: denote D1 = H and select zg, z1 € Dy arbitrarily.
(2) Iterative step: select {ju,} and {5; ,,} as iteration parameters and compute the (n + 1th

iteration as follows:

Wy = Zn + & (Zn — Zn—1),
Sp = J)\T(wn - Mndn)a
m
thy = SO,nsn + Z(Si,nRi(S}’l)7
i=1

. 2
Dyy1 ={z€ Dy : |ty -zl

(3.3)

2 2 2
< llzn —zll +O[n||zn — Zn—1 17 + 204 {zn — 2, 20 — Zn—1)},

Zny1 = Pp, 20, n €N,

where dy is a search direction, A > 0 and {5; ,,} is a sequence such that §; ,, € (0, 1),
m

liminf, 8; , > 0, Y_ 8i., = 1. The step size u, is selected as (3.2). Also, a,, € [0, o] for
i=0

some a € [0, 1) such that Y oo | oy llzn — za—1l| < 00.

@ Springer f DMAC



169 Page 80f 28 P. Gautam et al.

Algorithm 3.3 (1) Initialization: denote D1 = H and select 7\ € Dy arbitrarily.
(2) Iterative step: select {ju,} and {5; ,,} as iteration parameters and compute the (n + 1th
iteration as follows:

Sp = J)\T(Zn — Mndy),

m
= 80,nsn + ;(Si,nRi(sn)’ (34)
Dut1 =1{z € Dy : Ity — zlI* < llza — 2%},

n+l = PD,,_HZna ne Nv

where d,, is a search direction, .. > 0 and {6; ,} is a sequence such that §; , € (0, 1),

m
liminf, 8; » > 0, Y_ 8;.n = 1. The step size [, is selected as (3.2).
i=0
Remark 3.1 1. In Algorithm 3.2, we have used two previous terms to define the next iterate
of the algorithm, which in turn increases the convergence speed of the algorithm.
2. In Algorithm 3.3, projection of z, is taken on the set D, instead of z; to calculate the
(n + 1) term of the algorithm.
3. By choosing «;, = 0, Algorithm 3.2 get converted to Algorithm 3.3.

To establish the strong convergence of Algorithms 3.1, 3.2 and 3.3, we need the following
assumptions:

(AO) (dyn,zy —z) > F(zy) foralln € Nand forall z € £2;
(A1) O<pu < u, < pforalln e Z;
(A2) infpez[Bn(2 — Bn)] > 0.

Here 7 denotes the index set {n € N : d,, # 0}.

Remark 3.2 Any vectord, € dF (z,)isanexample of direction satisfying (A0). Since, F(z) =
0, we have by definition of the subdifferential of a proper function that

0> F(zn) + (dn. 2 — zu)s

and thus (AO) is satisfied. On the other hand, from the definition of 1, and Assumption (A0),
we easily observe if n ¢ Z, thend, =0, F(z,) =0, u, =0, and s, = J{z,,.

Before presenting our main results, we need the following proposition:

Proposition 3.1 Let H be a real Hilbert space, F : H — R be a nonnegative lower semi-
continuous function and T : H — 27 be a maximal monotone operator. Suppose that for
eachi € {1,2,...,m}, R; : H — H is a quasi-nonexpansive mapping with I — R; being
demi-closed at zero and 2 # (). Assume that (AO) and (A2) hold. Let {z,} be the sequence
generated by Algorithms 3.1 or 3.3. Then 2 C D,, foralln € N.

Proof Let z be any point in §2. Here z € 7-10) = Fix(J{) C H = Dj.Hence, z € D;. If
for some n > 2, z € D,, we show that z € D,y1. From (3.1), assumption (A2), and the fact
that J/\T is firmly nonexpansive, we have

2
Isn = 2l = |97 G = ptada) = 77 @)

2
< llzn — ndy — 2zl
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= llzg — zI* + 2 Ndnll* = 240 (20 — 2, dn) 3.5
5 BAHF(zn)P Bl F(z0)]
= n — —_ =2 n = < 7dn
bon —alo = e T
n F n
= llzg — zlI* — %mzﬂ —2,dy) — BuF (z0)]
n F n
< llzn —zl* - %[mm — BuF (z0)]
F(z))?
= ||z — zlI? —ﬁn(z—m[(;)z] (3.6)
[EA
< llzn —zlI*. 3.7)

From (3.1) and Lemma 2.2, we have

m
e = 2l = Il So.nsn + Y 8inRis) — 2 |17

i=1

m
= S0.n(sn —2) + Y 8in(Rilsn) = 2) II?
i=1

m
< S0 lsn — 21>+ Y 8in I (Ri(sn) — Riz) |1
i=1
— D Sombinllsn — Risn)l?

1<i<m

m
< S0 llsn — 2>+ Y Sin lsu—z 17 = D Sondinlisn — RiCsa)l>

i=1 I<i<m
= llsp — 2> =80 Y Simlisn — RiCs)I? (3.8)
1<i<m
< lIsn — zl? 3.9)
< llza — zlI*. (3.10)
Hence, z € D1 andso 2 € D, 41, Vn > 1. O

Now, we are ready to establish the strong convergence of Algorithm 3.1 for solving
problem (P).

Theorem 3.1 Let H be a real Hilbert space, F : H — R be a nonnegative lower semicon-
tinuous function and T : H — 28 be a maximal monotone operator. Suppose that for each
ief{l,2,...,m},R; : H— H is a quasi-nonexpansive mapping with I — R; being demi-
closed at zero and 2 # (). Assume that (AO)—(A2) hold. Let {z,,} be the sequence generated
by Algorithm 3.1. Then the sequence {z,} converges strongly to some point z* € §2.

Proof Since D,,n > 1 is a nonempty closed convex subset of H, sequence {z,} is well
defined.
We proceed the proof in the following steps:

Step 1: {z,,} is Cauchy sequence.
By Proposition 3.1, we get 2 € D1y, Yn >0, Dyyy € Dy and z,41= Pp,,21-
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Note that for any z € £2,
Izt — z1ll < llz = z1ll-
Hence, {z,} is a bounded sequence. Moreover, it follows from (3.1) that
llzn — 21l < llzns1 — 21ll, Vo = 1.

So, {|l z» — z1 ||} is a convergent sequence.
Note that zx = Pp,z1, Yk > 1. By the definition of projection and by item (iii) of
Lemma 2.1, we have
2 2 2 2
lzo =z I+ lzk—z21 1" =l zo — Poyza I + |l Ppezi —z1 |l
<lz—zl?

and so,

. 2 . 2 : 2
lm fzp—z I < lim |l zo —z1 |7 — lim |l zx — 21 [I”=0,
n,k— o0 n—o0o k— 00

which proves that {z,,} is a Cauchy sequence in H.
Without loss of generality, we can assume that z, — z*.

Step 2: z* € £2.
Since z,+1 € Dy+1, it follows from (3.1) that

It —zn1 I < 1z — zusr Il -

Hence, lim,—~ || &, — zn+1 |= 0 and so, t, — z*.

Since for z € £2, from (3.7) and (3.10), we have [|t, — z||> < llsn — zlI> < llzn — 2l%;
hence, the sequences {||s, — z||}, {ll#» — z||} and {||z, — z||} have same limit. From (3.8), we
have

2 2 2
ltw = 21> < llsw = 21> = 8o D, Sinllsn — Risu)|.

1<i<m
Letv; =inf,ené; 0, Vi € {0, 1, ..., m}. Hence,
2 2 2
vo Y VillRisn) = sall* < llsw — 21> = lltn — 2> — 0, asn — o0, (3.11)
1<i<m

which implies that || R; (s,) — s, || = 0, as n — oo. From (3.6), we have

. [F(z)]? . 2 g 2
lim B,(2 - By)———5— < lim ||z, —z||” — lim [is, —z]" =0. (3.12)
n—00 ”dn“ n—00 n—00
Hence,
F 2
[Fz)P 613

n—o0||dy ||

Also, since 0 < 4 < ptn = Butln) foralln € N, 0 < wylldull = B ﬁ;inu). Hence, from

lldnl?’
(3.13) and (A2), u,|ldn|l = 0. So, ||d,]| = 0as u, > p > 0 and accordingly
F
F(zy) = ”‘(f"”) lldall = 0 asn — oo.
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So, F(z*) = 0, as F is a positive lower semicontinuous function and z,, — z*. Also,
lim [ zp —sp | < lim |z, — ] + lim ||z, —su]l = O. (3.14)
n—00 n—oo n—oo

Now,

T T
Il Zn_J)LZn I <1l zn—sn ||+||5n_J)LZn I
T T
=lzp—sull + 1 Jy (Zn_lindn)_'l)\ Zn |l
<l zn—=snll + Il ndy |l

_ ﬂnF(Zn)
=z —sn |l + I d» ”2 n
BnF (zn)
=l zn—sall + W |
.BnF(Zn)
= za—sn 4+ | =]
o [EA

So, from (3.13) and (3.14), we get that
I zn — J 20 |= 0 asn — oo.
Thus, we have z* = JATz*.

Step 3: Next, we show that z* € Fix(R;). Since lim ||s, — R;(sp)|| = O and s,, — z*. Using
n—oo

the fact that I — R; is demi-closed, we get z* € Fix(R;) (foreachi = 1, 2, ..., m). Hence,
z* € Fix(R;),foreachi =1,2,...,m.
Therefore, we conclude that z* € £2 and z,, — z*. ]

We now study the convergence analysis of Algorithm 3.2 for solving problem (P).

Theorem 3.2 Let H be a real Hilbert space, F : H — R be a nonnegative lower semicon-
tinuous function and T : H — 25 be a maximal monotone operator. Suppose that for each
ief{l,2,...,m},R; : H— H is a quasi-nonexpansive mapping with I — R; being demi-
closed at zero and 2 # (. Assume that (A0)—(A2) hold. Let {z,} be the sequence generated
by Algorithm 3.2. Then the sequence {z,} converges strongly to some point z* € §2.

Proof We proceed the proof in the following steps:

Step 1: 2 € Dy
For any z € £2, we have z € T~1(0) = Fix(J]) C H = D;. Hence, z € Dy. If for some
n> 2, z € D,, we show that z € D, ;. From (3.3), and (3.2), we have
Isn — 20> = 17 (wn — pndn) — I (@)1
< llwy — pndy — zII?
= llzn + & @n — Zn—1) — Bndn — 2|1
= llzn — tndn — 20 + &g lzn — 2n—1 | + 2(2n — Mndn — 2, &n (20 — Zn—1))
= llzn — 2l* + 12 ldnl* — 2420 — 2, ftndn) + &2 lzn — za—1 1
20, (20 — 2, 20 — Zn—1) — 2{ndn, € (2y — 2n—1))
= llzn — 2l + epllzn — 2n—111* + 200 (2n — 2. 20 — Zn1)
12 ld 1> = 2(indn, 20 — 2 + @ (@0 — 20-1)) (3.15)
= llzn — 2l + epllzn — 2n—111* + 2000 (20 — 2, 20 — Zn—1)
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[F(zn)]
_13"72”[2(11% — 2, dn) - 5nF(Zn)]
[EA
< lzn — 2l> 4+ &2llzn — a1 1?4 20020 — 20 20 — Zn—1)- (3.16)

From (3.8), we have

ltn =21 < llsw = 21> = 80 D, SinllRiCsn) — sull® (3.17)
1<i<m
< llsn — 2% (3.18)
From (3.16) and (3.18), we obtain
ltw — 20* < 1z — 2l + &2 20 — 21 1% + 20 (20 — 2, 20 — Zn—1)-

By the definition of D41, we getz € D,y andso 2 € D, 11,Vn > 1.
Since D,,n > 1 is a nonempty closed convex subset of H, therefore sequence {z,} is
well defined sequence.

Step 2: {z,,} is Cauchy sequence.
By Proposition 3.1, we get 2 € D, 41, Vn >0, D41 C D, and, from (3.3), z,41=
PDn+IZ”'
Note that for any z € 2,
lznt1 —z1ll < llz — z1ll.
Hence, {z,} is a bounded sequence. Moreover, it follows from (3.3) that

lzn — z1ll < llzn+1 — 21, VR = 1.

So, {|l z» — z1 |} is a convergent sequence.
Note that zx = Pp, zx—1, Yk > 1. By the definition of projection and by item (iii) of
Lemma 2.1, we have
2 2 2 2
lzo =z 1"+ lze — 21 1" =l 20 — Poyza—1 117 + || Poyze—1 —z1 |l
<lz—z %

and so,

. 2 . 2 . 2
lim [zp—z I” < lim [z —z1 [I” = lim [ zx —z1 [”=0,
n,k— oo n—00 k— o0

which proves that {z,,} is a Cauchy sequence in H.
Without loss of generality, we can assume that z, — z*.

Step 3: z* € £2.
Since {z,} is a Cauchy sequence, we have
lwa — znll = anllzn — zp—1ll = 0, asn — oo. (3.19)
From (3.19), we get
lwn = Zpt1ll < lwn — 2nll + 2041 — 20l = 0, asn — oo. (3.20)

From (3.16), we have

lIsn — 20> = llzn — zlI* < 0@2llzn — zu—t1 I + 20 (20 — 2,20 — 2u—1) = 0, asn — o0.
(3.21)
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From (3.15) and (3.3), we deduce
lsn = 2l* < llza — 2lI* + e llzn — Zn1I” + 20 (20 — 2. 20 — Zn1)
+ M%”dnnz — 2{pndn, 2n — 2+ @u(2n — Z0-1))

2 2 2
< llzn —zll +O‘n||zn — Zn—1 1" + 204 {zn — 2, 20 — 2Zn—1)

[F(zn)]?
+ B = 2 F(zn)
lid
< llza — zl* + &2llzn — za—1 1> + 20 (20 — 2, 20 — Zn—1)
[F (zn)]?
— Bn2 = B) =5, (3.22)
[EA
which implies that
[F(z0)]?
Bn(2 — ﬁmw < llzn — zl* = llsn — zI* + &Zllzn — zu—1l?
n

+ 205 (2n — 2, 2n — Zn—1)
— 0, asn — 0. (3.23)
2
Hence, lim, o0 U0~ = 0. Also, since 0 < 1 < pn = Bujy s, forall n. So, 0 <
walldall = B ﬁ[(li”u) which implies that w,||d,|| — 0. So, ||d,| — 0as u, = u > 0 and
accordingly

F(z,)
lldn I

F(zp) = .|| = 0, asn — oo.

Since F is a positive lower semicontinuous function and z, — z*, it follows that F(z*) = 0.
Also,

m
ltn = sul = 180080 + ) _ 8i.nRin(sn) — sn

i=1
m
< S0.nllsw = sull + D 8l Rin(sa) = sull.
i=1
So, lim,,— ||ty — sn|| = 0. Since z,+1 € Dy+1 C Dy, from (3.20), we obtain

lwp = sull < lwp — Zu+1ll + 1w — sull + 16w — Zu+1 |l

< lwp = zpt1ll + 1w — snl

+ \/”Zn — Zn+1 ”2 + a;%”Zn — Zn—1 ”2 + 204 {20 — Znt1> Zn — Zn—1)

< lwn = zZat1ll + ltn — sall

120 =z 12 4 0211z — a2 + 2020 — Zagi 20 — 201

— 0, asn — oo. (3.24)
From (3.19) and (3.24), we have

T T
| zo — J5 20 | < Nz — sull + lIsp — J5, zall

= llzn — sull+ | I (n — ptndn) — I 20 |l
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< Mz — wall + lwn = sull + lletn(zn — Zo—D | + | ndn |l

BnF(z,)
= |lzn — wpll + llwp — spll + o (20 — zu—D Il + ’ de
n
BnF (zn)
< lzn — wall + llwy — Spll + lltn(zn — 2D + ‘ —
lldn
— 0, asn — oo.
So, we have z* = J{z*. As in Theorem 3.1, we can see that z* € Fix(R;), for each
i =1,2,...,m. Therefore, we conclude that z* € £2 and z,, — z*. O

Now with o, = 0, we obtain the following result by Theorem 3.2.

Theorem 3.3 Let H be a real Hilbert space, F : H — R be a nonnegative lower semicon-
tinuous function and T : H — 2H be a maximal monotone operator. Suppose that for each
i ef{l,2,...,m},R; : H — H is a quasi-nonexpansive mapping with I — R; is demi-
closed at zero and 2 # (). Assume that (AO)—(A2) hold. Let {z,,} be the sequence generated
by Algorithm 3.3. Then the sequence {z,} converges strongly to some point z* € §2.

Remark 3.3 The value of ||z, — z,—1 || is known before the value of «,,. Indeed, the parameters

oy can be chosen such that 0 < o, < o, where
. ©n .
o, =M {7”@—%1"’“] if 2n # 2n-1, (3.25)
o otherwise,

where {w,} is a positive sequence such that ) oo | @, < oo.

4 Applications
4.1 Split equality variational inclusion fixed point problem

Here, we investigate the split equality variational inclusion fixed point problems as an appli-
cation.

Let H{, Hy and H3 be Hilbert spaces. In particular, take H = H x H; and for any (x, y) €
H; x Hj, the operators T, F and R; are defined by

T(x,y) :=Ti(x) x Ta(y),
1
F(x,y) = ]| Ax — By, (4.1)

Ri(x,y) := M;(x) x Nij(y), foreachi =1,2,...,m,

where T; : Hi — 2fi fori = 1,2 are maximal monotone operators and A : Hy — Ha,
B : Hy — Hj3 are bounded linear operators. For integers 1 <i < m, M; : Hl — Hj and
N; : Hy — H, are two finite families of set-valued quasi-nonexpansive operators such that

(\Fix(M:) # 9 and [ \Fix(N;) # 0.

i=1 i=1
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With the above setting, Problem (P) becomes

(SEVIFP)  find x € () Fix(M;) ) 77'(0) and y € () Fix(N)) N7,
i=1 i=1

such that Ax = By.

We assume that the search direction d,, coincides with the gradient V F(z,,) of the function
F. So, we have the following result:

Theorem 4.1 Let Hy, Hy and H3 be real Hilbert spaces, T; : H; — 2H: fori = 1,2 be
maximal monotone operators, A : H — Hz and B : Hy — H3 be bounded linear operators
and for positive integers 1 <i <m, M; : Hl — Hjand N; : Hy — Hj be two finite families
of quasi-nonexpansive operators with I — M; and I — N; are demi-close at zero. Let A*, B*
be the adjoint of A, B, respectively. Denote C1 = H{, Q1 = Hj. For a given x; € C| and
y1 € Q1, let the iterative sequences {x,} and {y,} be generated by

Un = J)\Tl (xn — ,UvnA*(Axn — Byu)),

m
DPn = 80,nltn + Z 8i nMi(uy),

i=1

Un = I, (yn + 10 B* (Ax, — Byp)),

m
qn = 50,nvn + Zéi,nNi(vn)v 4.2)

i=1
Cn+1 X QrH—l
={(, ) €Co X Quill pu—x IF+ 1 gn =y IP<I X0 —x 17 + 1l ya — ¥ I},

Xn+1 = PCrH»lel!

Ynt+1 = P, Yn,

foralln € N, where {5; ,,} is a sequence such that §; ,, € (0, 1), Z;"ZO 8i.n = L. The step size
Un is chosen in such a way that

Bn F(xy, )’n) R
e if VF(Xn, yn) # 0
tn = IVF G, yu)lI?

0, otherwise,

4.3)

where B, € (0,2) and inf,en[B, (2 — Br)] > 0.

If the solution set 21 = {(p,q) € Hi x Hy : p € (L, Fix(M;)N Tfl(O),q €
ML, Fix(N) N Tz_l(O)and Ap = Bq} is nonempty, then there exists (x*, y*) € §21 such
that x, — x* and y, — y*.

Proof Let the operators T, F and R; be defined by (4.1). From Lemma 2.5, T is a maximal
monotone operator. Here, function F is of class C 'and for every (x,y) € Hy x Hy, we have
VF(x,y) = (A*(Ax — By), —B*(Ax — By)). Here, R; is a quasi-nonexpansive mapping
such that / — R; is demiclosed at O, foreachi = 1,2, ..., m.

Conditions (A0O) and (A1) follow from Definition 2.2 and the fact that d,, = VF(x,y) =
(A*(Ax — By), —B*(Ax — By)). Hence, from Theorem 3.3, we conclude the proof. m}
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4.2 Split equality equilibrium fixed point problem

Let C be a nonempty closed and convex subset of a real Hilbert space H and f : C x C — R
be a bifunction. The equilibrium problem for f is to find x* € C such that

f(x*,y) >0, VyeC. (4.4)

The solution set of equilibrium problem is denoted by EP(f).

Recently, many authors (see, e.g. Colao et al. 2011; Eslamian 2013; Takahashi and Taka-
hashi 2007) have studied strong convergence of iterative schemes for finding a common
solution of an equilibrium problem and fixed point problem for a nonlinear mapping.

Let us assume that the bifunction f satisfies the following conditions:

(Bl) f(x,x)=0, VxeC,

(B2) f is monotone, i.e., f(x,y)+ f(y,x) <0,Vx,y € C,

(B3) lim;o f(tz+ (1 —1t)x,y) < f(x,y), foreachx, y,z € C,

(B4) foreachx € C, y — f(x,y) is convex and lower semicontinuous.

Further, we quote the following lemma:

Lemma 4.1 (Takahashi et al. 2010, Theorem 4.2) Let C be a nonempty closed and convex
subset of a Hilbert space H and let f : C x C — R be a bifunction satisfying (B1) — (B4).
Let @y be a set-valued mapping of H into itself defined by

4.5)

. 1
(Df(x):{ézec.f(z,y)-f—x(y—z,z—x) ZO}, Vx e C

Vx ¢ C.

Then EP(f) = cD;l(O) and @y is a maximal monotone operator with dom @y C C.

Furthermore, for any x € H and A > 0, the resolvent G{ of f coincides with the resolvent
of @y, where

1
G{x:{zeC:f(z,y)-i—X(y—z,z—x) >0 VyeC}.

The so-called Split equality equilibrium fixed point problem with respect to bifunc-
tion f and g isto find x € C and y € Q such that

(SEEFP) find x € ('L, Fix(M;) EP(f) and y € /L, Fix(N;) (" EP(g)
such that Ax = By.

Using Lemma 4.1 and Theorem 4.1, we have the following result.

Theorem 4.2 Let Hy, H, and Hs be real Hilbert spaces, C and Q be two nonempty closed
convex subset of Hy and Hj, respectively, and A : Hy — H3 and B : Hy — H3 be bounded
linear operators. Let f : C x C — Rand g : Q x Q — R be two bifunctions satisfying
(B1) — (B4). Suppose that for eachi € {1,2,...,m}, M; : HL — Hyand N; : H, — H;
be quasi-nonexpansive operators with I — M; and I — N; are demi-close at zero. For a given
x1 € Cy and y1 € Q1, let the iterative sequences {x,} and {y,} be generated by

@ Springer f bMA



Application of new strongly convergent iterative methods. . . Page 17 0f28 169

tn = G (xn — n A" (Axy — Byn)),
m

Pn = BO,nun + Z(Si,nMi (un)7

i=1

Up = Gi()’n + wn B* (Ax, — Byn)),

m
qn = 80,nvn + Z si,nN[(vn)v (4.6)

i=1
Chus1 X Ony1
={(, ) €Co X Quill pn—x 17+ 1 gn =y IP<I 0 —x 12 + 1l yu — ¥ I},
Ant+1 = PCnJrl‘x’l’

Yn+1 = PQ,,+1}’n,

for all n € N. Let the sequences {5; ,} and {ju,} satisfy the condition of Theorem 4.1.
If the solution set 2, := {(p,q) € Hi x Hy : p € (L, Fix(M{))(EP(f),q €
N/L, Fix(N;) (" EP(g) and Ap = Bq} is nonempty, then there exists (x*, y*) € §2, such
that x,, — x* and y, — y*.

5 Numerical experiments
In this section, we discuss some examples in support of Theorems 3.1, 3.2, 3.3, 4.1 and 4.2.

We have implemented our code in Python 2.7 (Anaconda) on a personal Dell computer with
Intel(R)Core(TM) i5-7200U CPU 2.50 GHz and RAM 8.00 GB.

5.1 Test problem for problem (P)

Example 5.1 Let H = RV, N € N, be a real Hilbert space. Let z = (x1, x2, ..., xy) and
F : H — R be a function defined by F(z) = lzI>. Let L : H — H be an operator defined
by

2L 0 .- X1
Llxi,...,xy] = S0 :
0 0 5] [xw

Note that L is a nonexpansive operator. Hence, by Lemma 2.4, T = (I + %L) is a maximal
monotone operator.
Fori =1,2,...,m, R; : H— H is defined by

Ri(x1,x2,...,xn) = (Ri; (x1), Ri (x2), ..., Riyy (xn)),

where
M@ﬂ:{%. . Y=o (5.1)
msmx—j, if xj #0,
for j = 1,2,..., N. Here, each R,'J. is quasi-nonexpansive operator with Fix(R,'j) = {0}.
Also suppose that A = 2.5, « = 0.3, w, = ”iz Bn = n"? Sin = ﬁ,\ﬁ =0,1,2,...,m

and search direction d, = V F(z,). Observe that all the assumptions of Theorems 3.1, 3.2
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— forz=(12..9,.7,.3,18,.13,.56) — forz=(1.2,.9,.7,.3,18,.13,.56)
104 -=- forz=(12,.5,.8,.7,.8,.3,.6) 104 -=- forz=(12,5,.8,.7,.8,.3,.6)
081 08
= =
N N
| 0.6 | 064
¥ ¥
I N
=041 =041
\
024+ 02
0.01 0.0
0 2 40 60 80 100 120 140 160 0 5 10 15 20 25 30 35
iteration(n) iteration(n)
(a) For Algorithm 3.1 (b) For Algorithm 3.3
— forz=(12.9,7,318,13.%) | g4
101 === forz=(1.2,.5,.8,.7,.8,.3,.6)
051
081
= =04
< <
N N
| 0.6 I
! 703
< <
204 3
' 0.2
0.21 014
0.01 0.04
0 2 4 6 8 10 12 14 16 0 2 4 6 8 10 12
iteration(n) iteration(n)
(C) For Algorithm 3.2 (d) For Algorithm 3.2 for different values of

Fig. 1 Convergence of sequence {||z,+1 — zx ||} for Example 5.1 for z| € R’

and 3.3 are satisfied. Consequently, we conclude that sequence {z,} converges strongly to
¥ =1(0,0) € 2.

For stopping criteria ||z,4+1 — znll < € = 107*, Figures la—c and 2a—c show the con-
vergence of sequence {||z,+1 — z,||} for different values of z; € R7 and z; € R? using
Algorithms 3.1, 3.3, and 3.2, respectively. Figure 1d shows the convergence of sequence
{llzn+1 — zx ||} for different values of @ € [0, 1) and zg = z; = (.23, .4, .6,.52,.7,.8,.7) €
R7 using Algorithm 3.2. From Table 1, we observe the following:

(i) For z; = u; = (1.2,.9,.7,.3,1.8,.13,.56) € R, Algorithms 3.1, 3.2, and 3.3
approximate the solution after 181, 19, 35 iterations, respectively.

(i) Forz; =v; =(.2,.5,.8,.7,.8,.3,.6) € R7,Alg0rithms3.1,3.2, and 3.3 approximate
the solution after 180, 17, 47 iterations, respectively.
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1751 — 2=12,9,...,.3.5,.6,.7,9,5] 16 — 2=(12,.8,...,.6,.5,.8,.4,.7,.3)
Lo ---2=12,.8,...,.6,.5,.8,.4,.7,.3 14 === 21=(12,5,...,.4,.3,.6,.7,.1,.4)
1251 121
= =10
rf 100 f
- - 0.8
+ +
¢ 0751 ¢
3 3064
0.501 04
0.25 1 i 0.2
0,001 0.0
0 200 400 600 800 1000 0 20 40 60 80
iteration(n) iteration(n)
(3) For Algorithm 3.1 (b) For Algorithm 3.3
161 — 2=(12,.8,...,.6,.5..8,.4,.7,.3)
14 —ee 2=(12,.5,004.3,.6,.7,.1,.4)
1.2
=101
N
L 08
T
N
=061
0.44
0.24
0.04
0 5 10 15 20
iteration(n)

(C) For Algorithm 3.2

Fig.2 Convergence of sequence {||z,+] — z» ||} for Example 5.1 for z; = u/1 € R?5 and 71 = v/l e R

Remark 5.1 (i) We observe from Example 5.1 that Algorithm 3.2 has better performance
than Algorithms 3.1 and 3.3.

(i) From Figs. 1 and 2, we observe that, when we increase the dimension of the Euclidean
space, Algorithm 3.2 is stable (approximate the solution after same number of iterations),
but Algorithms 3.1 and 3.3 are not stable (Tables 2, 3).

5.2 Test problem for split equality variational inclusion fixed point problem

Example 5.2 In Theorem 4.1, set H| = H, = H3 = RN, N € N. Let Ax = x, By =4y,
where x = (x1,x2,...,xy) and y = (y1, ¥2,..., yn). Let L1 : H — H be an operator
defined by
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Table2 CPU time and number of iterations for Algorithms 3.1, 3.2, 3.3 using Example 5.1 forz; = u; € R’
and z1 = vy € R7

Alg 3.1 Alg3.2 Alg3.3 Alg 3.1 Alg3.2 Alg3.3

1 =ul 0 =21 =Uujp 1 =u 71 =0 0=21=V 71 =0
CPU time (in s) 11.254 0.565 0.798 11.093 0.372 1.227
Number of iterations 181 19 35 180 17 47

Table 3 CPU time and number of iterations for Algorithms 3.1, 3.2, 3.3 using Example 5.1 for 71 = "’/1
(1.2,.8,.6,.9,.7,1,.8,.4,.8,.6,2, 3, .4, 33,612, 35 47,.8,6,5 .8 4,73 cR¥ andz = 1/l
(12,5,8,.7,.8,.3,.6,2,.7,.3,.1,2, 3,23, 2, .1,.15, .17, 5, 4, 3,.6,.7,.1, 4 ¢ R®

Alg 3.1 Alg 3.2 Alg33  Alg3.l Alg 3.2 Alg 33
21 =u} w=z1=u] z1=u] z1="0 0=z21=v] 21 =0
CPU time (s) 3011.928 4.731 36.224 2873.379 3.186 46.752
Number of iterations 1071 22 85 1021 27 106
1
3 0 - X1
Li[xt,...,xn] = 0
00 % ||lxn
and L, : H — H be an operator defined by
% 0 X1
Lo[xy, ..., xn]1 = 0 ,
1

00 5 XN

which are nonexpansive operators. Hence, by Lemma 2.4, 7; = (I + %Li), fori =1, 2 are
maximal monotone operators. Let M; : H — H,fori = 1,2, ..., m be defined by

Mi(x1,x2,...,xn) = (M;, (x1), Mi,(x2), ..., My (xN)),

where
Iy 0, if x; =0, -
GO = Asin L i xg #0, (5:2)
for j = 1,2,..., N. Also, suppose that A = 2.5, B, = n”? and &;, = m%‘_l,\ﬁ =
0,1,2,...,m.
LetN; : H— H,fori =1,2,..., mbe defined by
Ni(xl,xz, ey )CN) = (Nil(xl)v Niz(xz)v cee NiN(xN))v
where
, if lxjli=1,
N;. (x;) = . 5.3
i (%) {(1 - z,-+1§ux7” o f x> (5-3)
forj =1,2,..., N.Here, each M;; and N;, are quasi-nonexpansive mappings. Observe that

all the assumptions of Theorem 4.1 are satisfied. So, we conclude that sequence {(x,, y,)}
converges strongly to (x*, y*) = (0, 0) € £2;.
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0.7
L —8— x_values
-H- y values
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061 %
i
A
0.5 114
i
)
041\t
1
0.3

0.2 1

|1Xn+1—Xnl| @and ||yn+1 —yall

0.1 1

0.0 1

iteration(n)

Fig.3 Convergence of sequences {||x,+1 — x|} and {[|y,4+1 — yn I} for Example 5.2

For stopping criteria ||x,+1 — x,|| < € = 10~* and lyus1 — yull < € = 1074, Fig. 3
and Table 4 show the convergence of sequences {||x,+1 — x, ||} and {||yys4+1 — yull} using
Theorem 4.1. Table 5 and Fig. 4 show the comparison between the convergence of algorithm
of Theorem 4.1 and algorithm of Theorem 1.1 (Chang et al. 2016).

5.3 Test problem for split equality equilibrium fixed point problem

Example 5.3 Let HH = H, = H; = Rand C = Q = [0, 00), and define the bifunctions
f:CxC—Randg: Q0 x Q — Rby

fGoy) =y +xy—2x2  glx,y) =x(y —x).

We observe that the functions f and g satisfying the conditions (B1) — (B4). Also, we
have G{x = ﬁ and Gfx = )\xﬁ Let Ax = x,By = 4y. Let M; : H — H, for
i =1,2,...,mbe defined by

0, if x=0,
Mi(x) = { 7 sin g Loifx#o0. 54
Also, suppose that A = 1, 8, = n+1 and §; , = m+1,\7’z =0,1,2,.
LetN; : H— H,fori =1,2,..., mbe defined by
N () if x| <1, 5.5)
(x) = . .
! (1 (z+l)|x\)x if x| >1.

Here, each M; and N; are quasi-nonexpansive mappings. Observe that all the assumptions
of Theorem 4.2 are satisfied. So, we conclude that sequence {(x,, y,)} converges strongly
to (x*, y*) = (0,0) € £2;.

For stopping criteria [|x,41 — x|l < € = 107* and ||y,+1 — yull < € = 107*, Fig. 5 and

Table 6 show the convergence of sequences {||x,+1 —x, ||} and {|| y,+1 — y» ||} using Theorem
4.2. The CPU time is 0.0920000076294.

@ Springer f DMAC



P. Gautam et al.

169 Page 24 of 28

1028L000081€°0
80-2859866C1EV6'1
L6LTLETBCSTC0000
66C861S9¥C81000°0
LY8T9LY8186¥000°0
1L8¢12020518000°0
1700891¥851200°0
6CY10¥8879€00°0
LO8ETTSS6L9L00°0
P1€8STE6L1910°0
TO81L9TETOTE0'0
120TC8¥19¢1LO°0
£6C9Y9C8E6S1°0
Yer9S66visee0
17L00C9ELOLY O

1028L000081¢€°0
80-999¢€801¢tC88°C
Y6€SS0CISLSLO000
§€0C0609191100°0
LOY¥968¢SYL100°0
£€€£TE80566C00°0
6£CCSSL80S00°0
TrP9ECL8SYYLO00
1€677£6988€10°0
8LCE0T19L0S6C0°0
6C€88€S1€9650°0
1€980€C61CCI'0
$6951€789661°0
VLYS8LSISYIE 0
60599¢6SY 170

(puodas) awm NdD
14!
€l
cl
Il
01

[=)}

— N N < v O >~ ®

(TOY0°6°0°90°C0°S0‘T0O) = 4108
[| #C — 1HuL]|

(80°¥'0°€0°S0 10 +'0 '€0) = x 105
|| o — T

U UOTJRI] JO JoquInN

7' o[dwexq pue [ waioay [, Sursn || U — 1+UC|| pue || “x — I+¥x|| 10j sonfeA [eoLIoWNN § d|qel

@ Springer f bMA



Page 250f28 169

Application of new strongly convergent iterative methods. . .

£€L6666¢S0'8 £€L6666¢S0'8 8¥6966661£9°0 8¥6966661£9°0 (puodss) aum NdD
S0-2LOT¥LE00S90' | S0-9GSCTreEETTE Y €C
1180€05¥60CC°0 TOYLI¥195C86°0 [44
YSLIPPELLOY'T LT8SS656811°E 1
80v6¥STSELERD 8LSTI0SLIBS I 0T
¥996£076L98"1 S¥8010881659°0 61
L60¥866LETST CTLTSS9E8IES6'0 81
L008TOESES'T €ET18YCIT08S0 Ll
9679579C80¢€C YSLISOIEI8OT0 91
C08192090LT € €90LS00v911°¢ Sl
Y16S656¥L85C 89688€CSSTY'| 4!
8985009¢£6£€°C YECETLI0LITS'0 80-9818ETCTCEESY'S 80-9CCSY6111S61°9 €l
SLLSS8E6001'E YO8YELCIS09'T §TTLBISLEI6C000°0 ¥SL9610LCCI100°0 4!
600686£1987°¢€ G8LOTEE0LBT ] 6v6LYESTYEE9000°0 S608LYrLETI6100°0 I
LOEOOYSSOST ¥ Y8I91LEYYI6'C 69079£C8810200°0 60968£5£86C£00°0 ol
800V 11€9799°S ¥86918¥S88Y'C 610€LZ91910£00°0 66918L99CLS900°0 6
S61816598C8'C £€v6876¢606'C 1299088%L02900°0 801SE1€TyCTIO0 8
16CL8SLO6LOET O £50818868585°0 StrS169€L8C10°0 S8S969LS5LTT00 L
90¥1980¥6£6£°0 9891 TPECILYTO 6L620£06989¢0°0 966€8L901CTy0°0 9
EVLELTISLLOTO 9LTO9LSE]SETO S9ETIBSITEISO0 61C6C09¢018L0°0 S
Cl6T6191877°0 £01008¢5885€°0 Y¥LOT6COI8IT°0 79668S181v¥1°0 14
€0L09208SETT0 9TC00EETOLYS 0 6v7LOI¥9TI0LYT O SEIVOTYELSITO €
90895 T€88S19°0 $81696L60ct0 9CI8ISSLO60S 0 [6116856006%°0 [4
LETOEVOLETO'T SL600YLI9LO6'0 80cLII61010°T 962609659016°0 I
|| ug — 1ug]| || e — Ly || ug — 1ug]| || e — L] u
'] woIoay], '] woIoay], € ¢ wyuosy ¢'¢ wpuosy UOTIBIA) JO JoqUINN

Ix 1oy 7' o[dwrexg uo paseq ['] WAIOAY], pue (7 yowd 10y ‘0 = ‘N

Oﬁg w Av. »N‘. nm. »N..o »v. »@. no. nw. »m. »o.v = —\A. ﬂuﬁ—.mw O~% w A@. n‘vv »o. »w. r‘v. nw. »m. »N‘. n‘v. »m.v
= W pim) 1 warody], Suisn |44 — IFU(|| pue ||Ux — I+¥yx|| J0J sonfeA [eoownN § d|qel

JBINAC

pringer

&Hs



169 Page 26 of 28 P. Gautam et al.
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(a) For Theorem 4.1 with M; = N; = 0, for each 7 (b) For Theorem 1.1

Fig.4 Convergence of sequences {||x;41 — x, I} and {||y,41 — y|l} based on Example 5.2
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Fig.5 Convergence of sequences {||x,41 — xx I} and {||y;,4+-1 — ynll} for Example 5.3

6 Conclusion

In this paper, the minimization of a nonnegative lower semicontinuous function over the
intersection of a finite number of fixed point sets and a zero set has been studied. The
generalized version of the algorithm given by Chang et al. (2016) is obtained and new
algorithms with some modifications are presented. The comparison through example is made
for the three algorithms, which further suggests that the rate of convergence of the third and
second algorithms are faster than that of the generalized version. Also, we have obtained a
common solution of three problems so that a single solution can be used for three different
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Table 6 Numerical values for ||x,41 — x|l and ||y,+1 — yn | using Theorem 4.2 and Example 5.3

Number of iteration n [1xp41 — Xn || Hyn4+1 = yn ll
forx; =1.5 fory; =1.3

1 0.5 0.918007096641

2 0.330035960122 0.161488666253

3 0.20922616607 0.08583619912

4 0.153955532019 0.0510805504004

5 0.138720172321 0.0314529235324

6 0.080385051789 0.0196247393265

7 0.0484058981149 0.0122275565211

8 0.0155829454539 0.00762143353299

9 0.0132753732442 0.00472982657387

10 0.00326142540624 0.00300107406444

11 0.00222545130171 0.00186115299614

12 0.00158178377996 0.00115021857958

13 0.00171855240509 0.000649649786976

14 0.00084490137982 0.000450952075506

15 0.000419623863243 0.000313142969688

16 0.000166003354156 0.000222866067994

17 5.81580335432¢-05 0.000129818654887

purposes. The work to prove the convergence of these algorithms without considering the
assumptions could hold the scope for future research.
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