
Computational and Applied Mathematics (2020) 39:169
https://doi.org/10.1007/s40314-020-01209-4

Application of new strongly convergent iterative methods to
split equality problems

Pankaj Gautam1 · Avinash Dixit1 · D. R. Sahu2 · T. Som1

Received: 18 June 2019 / Revised: 16 May 2020 / Accepted: 23 May 2020 / Published online: 6 June 2020
© SBMAC - Sociedade Brasileira de Matemática Aplicada e Computacional 2020

Abstract
In this paper, we study the generalized problemof split equality variational inclusion problem.
For this purpose, we introduced the problem of finding the zero of a nonnegative lower
semicontinuous function over the common solution set of fixed point problem and monotone
inclusion problem. We proposed and studied the convergence behaviour of different iterative
techniques to solve the generalized problem. Furthermore, we study an inertial form of the
proposed algorithm and compare the convergence speed. Numerical experiments have been
conducted to compare the convergence speed of the proposed algorithm, its inertial form and
already existing algorithms to solve the generalized problem.

Keywords Split equality problem · Variational inclusion problem · Fixed point problem ·
Quasi-nonexpansive mapping

Mathematics Subject Classification 47J25 · 47H05 · 47H09 · 49J53

1 Introduction

In 1994, Censor and Elfving (Censor and Elfving 1994) first introduced the split feasibility
problem (SFP) in finite-dimensional spaces. Such problems arise in signal processing, specif-
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ically in phase retrieval and other image restoration problems. It has been found that the SFP
can also be used in different areas such as computer tomography and intensity-modulated
radiation therapy (Censor et al. 2005, 2006, 2007).

The split feasibility problem (SFP) is

find x∗ ∈ C such that Ax∗ ∈ Q, (1.1)

where C and Q are nonempty closed convex subsets of real Hilbert spaces H1 and H2,
respectively, and A : H1 → H2 is a bounded linear operator. Some works on split feasibility
problems in an infinite-dimensional real Hilbert space can be found in Byrne (2002), Censor
et al. (2006) and Xu (2006).

In 2012, Censor et al. (2012) introduced the following split variational inequality problem:

find x∗ ∈ C such that 〈 f (x∗), x − x∗〉 ≥ 0 for all x ∈ C,

and

y∗ = Ax∗ ∈ Q that solves 〈g(y∗), y − y∗〉 ≥ 0 for all y ∈ Q,

where C and Q are nonempty closed convex subsets of real Hilbert spaces H1 and H2,
respectively, A : H1 → H2 is a bounded linear operator and f : H1 → H1, g : H2 → H2

are the given operators.
In 2011, Moudafi (2011) extended the split variational inequality problem (Censor et al.

2012) and proposed the following split monotone variational inclusion problem (SMVIP):

find x∗ ∈ H1 such that f (x
∗) + B1(x

∗) � 0,

and

y∗ = Ax∗ ∈ H2 that solves g(y
∗) + B2(y

∗) � 0, (1.2)

where Bi : Hi → 2Hi , for i = 1, 2, are multi-valued mappings on the real Hilbert spaces,
A : H1 → H2 is a bounded linear operator and f : H1 → H1, g : H2 → H2 are two
given single-valued operators. Also, an algorithm for finding the solution of SMVIP (1.2)
was introduced and the weak convergence of the proposed algorithm was proved.

In 2014, Kazmi and Rizvi (2014) introduced the split variational inclusion problem
(SVIP):

find x∗ ∈ H1 such that B1(x
∗) � 0,

and

y∗ = Ax∗ ∈ H2 that solves B2(y
∗) � 0, (1.3)

where Bi : Hi → 2Hi , for i = 1, 2, are multi-valued mappings on the real Hilbert spaces and
A : H1 → H2 is a bounded linear operator. Problem (1.3) is a special case of split monotone
variational inclusion problem. They also proposed strongly convergent iterative method to
find the common solution of split variational inclusion problem and fixed point problem.

In 2013, Moudafi (2013) introduced the following split equality problem (SEP):

find x∗ ∈ C and y∗ ∈ Q such that Ax∗ = By∗, (1.4)

where A : H1 → H3 and B : H2 → H3 are two bounded linear operators and C , Q are
nonempty closed convex subsets of real Hilbert spaces H1, H2, respectively, and H3 is also
a Hilbert space. Obviously, if B = I and H2 = H3, then SEP reduces to SFP.

123



Application of new strongly convergent iterative methods. . . Page 3 of 28 169

In 2014, Moudafi (2014) introduced the following split equality fixed point problem
(SEFP):

find x∗ ∈ Fix(R1) and y∗ ∈ Fix(R2) such that Ax
∗ = By∗, (1.5)

where A : H1 → H3, B : H2 → H3 are two bounded linear operators, and Ri : Hi → Hi

for i = 1, 2 are two nonlinear operators such that Fix(R1) 	= ∅ and Fix(R2) 	= ∅. Also, he
proposed iterative method for solving SEFP:{

xn+1 = R1(xn − γn A
∗(Axn − Byn)),

yn+1 = R2(yn + γn B
∗(Axn+1 − Byn)) ∀n > 0,

where {γn} is a positive non-decreasing sequence such that γn ∈
(
ε,min

(
1

λA
, 1

λB

)
− ε

)
for small enough ε > 0, where λA and λB denotes the spectral radius of A∗A and B∗B,
respectively. In this iterative method, computation of the norm of operators used is required,
which can be tedious task sometimes.

In 2015, to solve the split equality fixed point problem (1.5) for quasi-nonexpansive
mappings, Zhao (2015) proposed the following iteration algorithm which does not require
the computation of the operator norms:⎧⎪⎪⎪⎨

⎪⎪⎪⎩

un = xn − γn A
∗(Axn − Byn),

xn+1 = αnun + (1 − βn)R1un,

vn = yn + γn B
∗(Axn − Byn),

yn+1 = βnvn + (1 − βn)R2vn, ∀n ≥ 0,

where the step-size γn is chosen as follows:

γn ∈
(

ε,
βn ‖ Axn − Byn ‖

‖ A∗(Axn − Byn) ‖2 + ‖ B∗(Axn − Byn) ‖2 − ε

)
, n ∈ Π.

Otherwise, γn = γ (γ being any nonnegative value), where the index set Π = {n ∈ N :
Axn − Byn 	= 0} and αn ⊂ (δ, 1 − δ) and βn ⊂ (η, 1 − η) for small enough δ, η ≥ 0.

In 2016, Chang et al. (2016) introduced and studied the split equality variational inclusion
problems in the setting of Banach spaces. The split equality variational inclusion problem
(SEVIP) is defined as follows:

find x∗ ∈ T−1
1 (0) and y∗ ∈ T−1

2 (0) such that Ax∗ = By∗, (1.6)

where Ti : Hi → 2Hi , i = 1, 2 are maximal monotone operators, A : H1 → X and
B : H2 → X are bounded linear operators. Here, Hi , i = 1, 2 are real Hilbert spaces and X
is a real Banach space. If we consider X = H3, where H3 is a real Hilbert space, then the
main result of Chang et al. (2016) will be as follows.

Theorem 1.1 Denote C1 = H1, Q1 = H2. For given x1 ∈ C1 and y1 ∈ Q1, let the iterative
sequences {xn} and {yn} be generated by⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

un = J T1λ (xn − γn A
∗(Axn − Byn)),

vn = J T2λ (yn + γn B
∗(Axn − Byn)),

Cn+1 × Qn+1 = {(x, y) ∈ Cn × Qn :‖ un − x ‖2 + ‖ vn − y ‖2
≤‖ xn − x ‖2 + ‖ yn − y ‖2},

xn+1 = PCn+1x1,

yn+1 = PQn+1x1.

(1.7)
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If the solution set S := {(p, q) ∈ H1 × H2 : (p, q) ∈ T−1
1 × T−1

2 and Ap = Bq} of SEVIP
(1.6) is nonempty and the following condition is satisfied

0 < γn <
2

‖A‖2 + ‖B‖2 .

Then the sequence {(xn, yn)} converges strongly to some point (x∗, y∗) ∈ S, where ‖A‖ and
‖B‖ are the norms of the operators A and B, respectively.

The inertial termwas first used to define the heavy ball method proposed by Polyak (1964)
to minimize the convex smooth function f , which is considered as a discretization of time
dynamical system, given by

ẍ(t) + α1 ẋ(t) + α2∇ f (x(t)) = 0,

where α1(> 0) and α2(> 0) are free model parameters of the equation. Inertial term gives
the advantage to use two previous terms to define the next iterate of the algorithm, which in
turn increases the convergence speed of the algorithm. This term was further used by Alvarez
and Attouch (2001) to define the inertial proximal point algorithm for solving the problem
of finding zero of a maximal monotone operator T , which is as follows:

xn+1 = J Tλn (xn + θn(xn − xn−1)),

where J Tλn is the resolvent of T with parameter λn > 0 and the inertia is induced by the term
θn(xn − xn−1), with θn ∈ [0, 1). Since their introduction one can notice an increasing interest
in inertial algorithms having this particularity, see Bot et al. (2016), Dong et al. (2018), and
Moudafi and Oliny (2003).

We consider the following problem:

(P) find z∗ ∈ T−1(0) ∩ (∩m
i=1 Fix(Ri )) such that F(z∗) = 0, (1.8)

where F : H → R is a nonnegative lower semicontinuous (l.s.c.) function defined on H ,
T : H → 2H is a maximal monotone operator and each Ri : H → H , i = 1, 2, . . . ,m
is a quasi-nonexpansive mapping such that ∩m

i=1 Fix(Ri ) 	= ∅. Throughout the paper, we
assume that solution set of the problem (P) is denoted by Ω , i.e., Ω = {z ∈ H : z ∈
T−1(0) ∩ (∩m

i=1 Fix(Ri )) and F(z) = 0}.
One can see that problem (P) is unification of the following three problems:

(i) finding zero of nonnegative function F ;
(ii) finding zero of set-valued operator T ;
(iii) finding common fixed points of operators R1, R2, . . . , Rm .

An important particular case of problem (P) is split equality variational inclusion fixed
point problem which can be expressed as

find x∗ ∈ T−1
1 (0) ∩ (∩m

i=1 Fix(Mi ))

and

y∗ ∈ T−1
2 (0) ∩ (∩m

i=1 Fix(Ni )) such that Ax∗ = By∗, (1.9)

where Ti : Hi → 2Hi , for i = 1, 2 are maximal monotone operators, and A : H1 → H3,
B : H2 → H3 are bounded linear operators. For integers 1 ≤ i ≤ m, Mi : H1 → H1 and
Ni : H2 → H2 are two finite families of quasi-nonexpansive mappings.
If we suppose that Mi = Ni = 0, ∀1 ≤ i ≤ m, then the split equality variational inclusion
fixed point problem get converted to split equality variational inclusion problem, which was
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studied earlier by Chang et al. (2016) and Chuang (2017). Also, if we assume that B = I
and H3 = H2, then the above problem (1.9) gets converted to split variational inclusion fixed
point problem, which was studied by Majee and Nahak (2018).

The main purpose of this paper is to propose three iterative methods for solving problem
(P) and to study the convergence analysis of the proposed iterative methods in a real Hilbert
space setting. Our results unify some known results.

The remaining parts of this paper are organized as follows: some lemmas and definitions
required for proving main results are presented in Sect. 2. Three iterative methods for solving
problem (P) are introduced in Sect. 3. Strong convergence of the proposed iterative methods
are also discussed in Sect. 3. The applications of our results are established in Sect. 3 to the
split equality variational inclusion fixed point problem and split equality equilibrium fixed
point problem are given in Sect. 4. The efficiency of our iterative methods is demonstrated
in Sect. 5.

2 Preliminaries

Let R : H → H be a mapping. An element z ∈ H is said to be a fixed point of R if z = Rz.
We use Fix(R) to denote the set of all fixed points of R.

Definition 2.1 A map R : H → H is called

(i) nonexpansive if

‖Rx − Ry‖ ≤‖ x − y ‖ for allx, y ∈ H ,

(ii) quasi-nonexpansive if

Fix(R) 	= ∅ and ‖Rx − Rp‖ ≤‖ x − p ‖ for all x ∈ H and p ∈ Fix(R).

(iii) demi-closed at zero if

lim
n→∞ ‖zn − Rzn‖ = 0 and zn⇀z∗ imply that z∗ = Rz∗ for any sequence {zn} ∈ H .

Throughout this paper, the symbols N and R stand for the set of all natural numbers and
set of real numbers, respectively. Also, we use the symbol I for the identity operator on H .

Let C be a nonempty closed convex subset of H . Then for any x ∈ H , there exists a
unique nearest point PC (x) of C such that

‖x − PC (x)‖ ≤ ‖x − y‖ for all y ∈ C .

The mapping PC is called the metric projection map from H onto C . It is noticeable that
the metric projection mapping PC is nonexpansive mapping from H onto C (see Agarwal
et al. 2009 for more details of projection mappings).
The following lemmas will be needed to prove our main results.

Lemma 2.1 (Agarwal et al. 2009, Proposition 2.10.15) Let C be a nonempty closed convex
subset of a real Hilbert space H, and PC be the metric projection mapping, then the following
properties hold:

(i) PC (x) ∈ C, ∀x ∈ H;
(ii) 〈x − PC (x), PC (x) − y〉 ≥ 0, ∀x, y ∈ C;
(iii) ‖x − y‖2 ≥ ‖x − PC (x)‖2 + ‖y − PC (x)‖2, ∀x ∈ H and y ∈ C;
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(iv) 〈PC (x) − PC (y), x − y〉 ≥ ‖PC (x) − PC (y)‖2, ∀x, y ∈ H.

Proof(iii) Since for any x ∈ H , y ∈ C , we have

‖x − y‖2 = ‖x − PCx + PCx − y‖2
= ‖x − PCx‖2 + ‖PCx − y‖2 + 2〈x − PCx, PCx − y〉. (2.1)

So, (iii) follows from (ii) and (2.1).
��

Lemma 2.2 (Zegeye and Shahzad 2011, Lemma 1.1) Let H be a real Hilbert space. For each
x1, x2, . . . , xm ∈ H and α1, α2, . . . , αm ∈ [0, 1] with ∑m

i=1 αi = 1, the equality

‖ α1x1 + · · · + αmxm ‖2=
m∑
i=1

αi ‖ xi ‖2 −
∑

1≤i, j≤m

αiα j ‖ xi − x j ‖2

holds.

Lemma 2.3 (Xu 2002, Lemma 2.5) Let {sn} be a sequence of nonnegative real numbers
satisfying

sn+1 ≤ (1 − an)sn + anbn for all n ∈ N,

where {an} is a sequence in (0, 1) and {bn} is a sequence in R such that

(a)
∑∞

n=1 an = ∞ and
(b) either lim supn→∞ bn ≤ 0 or

∑∞
n=1 |anbn | < ∞.

Then limn→∞ sn = 0.

Definition 2.2 (Bauschke and Combettes 2017, Definition 16.1) Let f : H → (−∞,∞] be
proper. The subdifferential of f is the set-valued operator

∂ f : H → 2H : x �→ {u ∈ H |(∀y ∈ H)〈y − x, u〉 + f (x) ≤ f (y)}.
Let x ∈ H . Then f is subdifferentiable at x if ∂ f 	= ∅; the elements of ∂ f are the subgradients
of f at x .

Let T : H → 2H be an operator. The domain and graph of T are denoted by dom(T ) and
gra(T ), respectively, where dom(T ) = {x ∈ H : T x 	= ∅} and gra(T ) = {(x, u) ∈ H × H :
u ∈ T x}. A set-valued operator is said to be monotone operator on H if 〈x − y, u − v〉 ≥ 0,
∀(x, u) ∈ gra(T ) and ∀(y, u) ∈ gra(T ). A monotone operator T on H is said to be maximal
if there exists no monotone operator S : H → 2H such that gra(S) properly contains gra(T ).
The resolvent of T for λ > 0 is J Tλ = (I + λT )−1 : H → H . If T is a maximal monotone
operator then its resolvent is single valued, firmly nonexpansive and maximal monotone
operator. Finally, the set Fix(J Tλ ) = {x ∈ H : J Tλ x = x} of fixed points of J Tλ coincides
with T−1(0) (Bauschke and Combettes 2017; Ryu and Boyd 2016).

Lemma 2.4 (Bauschke and Combettes 2017, Example 20.29) Let T : H → H be a nonex-
pansive map on a Hilbert space H and α ∈ [−1, 1]. Then I + αT is maximal monotone
operator.

Lemma 2.5 (Bauschke and Combettes 2017, Proposition 20.23) Let T1 : H1 → 2H1 and
T2 : H2 → 2H2 be two maximal monotone operator, where H1 and H2 are real Hilbert
spaces. Set H := H1 × H2 and T : H → 2H : (x, y) �→ T1x × T2y. Then T is maximal
monotone operator.

123



Application of new strongly convergent iterative methods. . . Page 7 of 28 169

3 Main results

In this section, we introduce strongly convergent iterative schemes for finding the solution
of problem (P).

Let H be a real Hilbert space, F : H → R be a nonnegative lower semicontinuous
function and T : H → 2H be a maximal monotone operator. Suppose that, for each i ∈
{1, 2, . . . ,m}, Ri : H → H be a quasi-nonexpansive mapping. Now, we introduce our
iterative algorithms for solving the problem (P) as follows:

Algorithm 3.1 (1) Initialization: denote D1 = H and select z1 ∈ D1 arbitrarily.
(2) Iterative step: select {μn} and {δi,n} as iteration parameters and compute the (n + 1)th

iteration as follows:

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

sn = J Tλ (zn − μndn),

tn = δ0,nsn +
m∑
i=1

δi,n Ri (sn),

Dn+1 = {z ∈ Dn : ‖tn − z‖2 ≤ ‖zn − z‖2},
zn+1 = PDn+1 z1, n ∈ N,

(3.1)

where dn is a search direction, λ > 0 and {δi,n} is a sequence such that δi,n ∈
(0, 1), lim infn δi,n > 0,

∑m
i=0 δi,n = 1. The step size μn is selected as follows:

μn =
⎧⎨
⎩

βn F(zn)

‖dn‖2
, i f dn 	= 0

0, otherwise,
(3.2)

where βn ∈ (0, 2).

Algorithm 3.2 (1) Initialization: denote D1 = H and select z0, z1 ∈ D1 arbitrarily.
(2) Iterative step: select {μn} and {δi,n} as iteration parameters and compute the (n + 1)th

iteration as follows:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

wn = zn + αn(zn − zn−1),

sn = J Tλ (wn − μndn),

tn = δ0,nsn +
m∑
i=1

δi,n Ri (sn),

Dn+1 = {z ∈ Dn : ‖tn − z‖2
≤ ‖zn − z‖2 + α2

n‖zn − zn−1‖2 + 2αn〈zn − z, zn − zn−1〉},
zn+1 = PDn+1 zn, n ∈ N,

(3.3)

where dn is a search direction, λ > 0 and {δi,n} is a sequence such that δi,n ∈ (0, 1),

lim infn δi,n > 0,
m∑
i=0

δi,n = 1. The step size μn is selected as (3.2). Also, αn ∈ [0, α] for
some α ∈ [0, 1) such that

∑∞
n=1 αn‖zn − zn−1‖ < ∞.
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Algorithm 3.3 (1) Initialization: denote D1 = H and select z1 ∈ D1 arbitrarily.
(2) Iterative step: select {μn} and {δi,n} as iteration parameters and compute the (n + 1)th

iteration as follows:⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

sn = J Tλ (zn − μndn),

tn = δ0,nsn +
m∑
i=1

δi,n Ri (sn),

Dn+1 = {z ∈ Dn : ‖tn − z‖2 ≤ ‖zn − z‖2},
zn+1 = PDn+1 zn, n ∈ N,

(3.4)

where dn is a search direction, λ > 0 and {δi,n} is a sequence such that δi,n ∈ (0, 1),

lim infn δi,n > 0,
m∑
i=0

δi,n = 1. The step size μn is selected as (3.2).

Remark 3.1 1. In Algorithm 3.2, we have used two previous terms to define the next iterate
of the algorithm, which in turn increases the convergence speed of the algorithm.

2. In Algorithm 3.3, projection of zn is taken on the set Dn+1 instead of z1 to calculate the
(n + 1)th term of the algorithm.

3. By choosing αn = 0, Algorithm 3.2 get converted to Algorithm 3.3.

To establish the strong convergence of Algorithms 3.1, 3.2 and 3.3, we need the following
assumptions:

(A0) 〈dn, zn − z〉 ≥ F(zn) for all n ∈ N and for all z ∈ Ω;
(A1) 0 < μ ≤ μn < μ̄ for all n ∈ I;
(A2) infn∈I[βn(2 − βn)] > 0.

Here I denotes the index set {n ∈ N : dn 	= 0}.
Remark 3.2 Anyvectordn ∈ ∂F(zn)is an example of direction satisfying (A0). Since, F(z) =
0, we have by definition of the subdifferential of a proper function that

0 ≥ F(zn) + 〈dn, z − zn〉,
and thus (A0) is satisfied. On the other hand, from the definition ofμn and Assumption (A0),
we easily observe if n /∈ I, then dn = 0, F(zn) = 0, μn = 0, and sn = J Tλ zn .

Before presenting our main results, we need the following proposition:

Proposition 3.1 Let H be a real Hilbert space, F : H → R be a nonnegative lower semi-
continuous function and T : H → 2H be a maximal monotone operator. Suppose that for
each i ∈ {1, 2, . . . ,m}, Ri : H → H is a quasi-nonexpansive mapping with I − Ri being
demi-closed at zero and Ω 	= ∅. Assume that (A0) and (A2) hold. Let {zn} be the sequence
generated by Algorithms 3.1 or 3.3. Then Ω ⊆ Dn, for all n ∈ N.

Proof Let z be any point in Ω . Here z ∈ T−1(0) = Fix(J Tλ ) ⊂ H = D1. Hence, z ∈ D1. If
for some n ≥ 2, z ∈ Dn , we show that z ∈ Dn+1. From (3.1), assumption (A2), and the fact
that J Tλ is firmly nonexpansive, we have

‖sn − z‖2 =
∥∥∥J Tλ (zn − μndn) − J Tλ (z)

∥∥∥2
≤ ‖zn − μndn − z‖2
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= ‖zn − z‖2 + μ2
n ‖dn‖2 − 2μn〈 zn − z, dn〉 (3.5)

= ‖zn − z‖2 + β2
n [F(zn)]2
‖dn‖2

− 2〈 zn − z,
βn[F(zn)]

‖dn‖2
dn〉

= ‖zn − z‖2 − βn[F(zn)]
‖dn‖2

[2〈 zn − z, dn〉 − βn F(zn)]

≤ ‖zn − z‖2 − βn[F(zn)]
‖dn‖2

[2F(zn) − βn F(zn)]

= ‖zn − z‖2 − βn(2 − βn)
[F(zn)]2
‖dn‖2

(3.6)

≤ ‖zn − z‖2 . (3.7)

From (3.1) and Lemma 2.2, we have

‖tn − z‖2 = ‖ δ0,nsn +
m∑
i=1

δi,n Ri (sn) − z ‖2

= ‖ δ0,n(sn − z) +
m∑
i=1

δi,n(Ri (sn) − z) ‖2

≤ δ0,n ‖sn − z‖2 +
m∑
i=1

δi,n ‖ (Ri (sn) − Ri z) ‖2

−
∑

1≤i≤m

δ0,nδi,n‖sn − Ri (sn)‖2

≤ δ0,n ‖sn − z‖2 +
m∑
i=1

δi,n ‖ sn − z ‖2 −
∑

1≤i≤m

δ0,nδi,n‖sn − Ri (sn)‖2

= ‖sn − z‖2 − δ0,n
∑

1≤i≤m

δi,n‖sn − Ri (sn)‖2 (3.8)

≤ ‖sn − z‖2 (3.9)

≤ ‖zn − z‖2. (3.10)

Hence, z ∈ Dn+1 and so Ω ⊆ Dn+1,∀n ≥ 1. ��
Now, we are ready to establish the strong convergence of Algorithm 3.1 for solving

problem (P).

Theorem 3.1 Let H be a real Hilbert space, F : H → R be a nonnegative lower semicon-
tinuous function and T : H → 2H be a maximal monotone operator. Suppose that for each
i ∈ {1, 2, . . . ,m}, Ri : H → H is a quasi-nonexpansive mapping with I − Ri being demi-
closed at zero and Ω 	= ∅. Assume that (A0)–(A2) hold. Let {zn} be the sequence generated
by Algorithm 3.1. Then the sequence {zn} converges strongly to some point z∗ ∈ Ω .

Proof Since Dn, n ≥ 1 is a nonempty closed convex subset of H , sequence {zn} is well
defined.

We proceed the proof in the following steps:

Step 1: {zn} is Cauchy sequence.
By Proposition 3.1, we get Ω ⊆ Dn+1, ∀n ≥ 0, Dn+1 ⊆ Dn and zn+1= PDn+1 z1.
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Note that for any z ∈ Ω ,

‖zn+1 − z1‖ ≤ ‖z − z1‖.
Hence, {zn} is a bounded sequence. Moreover, it follows from (3.1) that

‖zn − z1‖ ≤ ‖zn+1 − z1‖, ∀n ≥ 1.

So, {‖ zn − z1 ‖} is a convergent sequence.
Note that zk = PDk z1,∀k ≥ 1. By the definition of projection and by item (iii) of

Lemma 2.1, we have

‖ zn − zk ‖2 + ‖ zk − z1 ‖2 = ‖ zn − PDk z1 ‖2 + ‖ PDk z1 − z1 ‖2
≤ ‖ zn − z1 ‖2,

and so,

lim
n,k→∞ ‖ zn − zk ‖2 ≤ lim

n→∞ ‖ zn − z1 ‖2 − lim
k→∞ ‖ zk − z1 ‖2= 0,

which proves that {zn} is a Cauchy sequence in H .
Without loss of generality, we can assume that zn → z∗.

Step 2: z∗ ∈ Ω .
Since zn+1 ∈ Dn+1, it follows from (3.1) that

‖ tn − zn+1 ‖ ≤ ‖ zn − zn+1 ‖ .

Hence, limn→∞ ‖ tn − zn+1 ‖= 0 and so, tn → z∗.
Since for z ∈ Ω , from (3.7) and (3.10), we have ‖tn − z‖2 ≤ ‖sn − z‖2 ≤ ‖zn − z‖2;

hence, the sequences {‖sn − z‖}, {‖tn − z‖} and {‖zn − z‖} have same limit. From (3.8), we
have

‖tn − z‖2 ≤ ‖sn − z‖2 − δ0,n
∑

1≤i≤m

δi,n‖sn − Ri (sn)‖2.

Let νi = infn∈N δi,n, ∀i ∈ {0, 1, . . . ,m}. Hence,
ν0

∑
1≤i≤m

νi‖Ri (sn) − sn‖2 ≤ ‖sn − z‖2 − ‖tn − z‖2 → 0, as n → ∞, (3.11)

which implies that ‖Ri (sn) − sn‖ → 0, as n → ∞. From (3.6), we have

lim
n→∞ βn(2 − βn)

[F(zn)]2
‖dn‖2 ≤ lim

n→∞ ‖zn − z‖2 − lim
n→∞ ‖sn − z‖2 = 0. (3.12)

Hence,

lim
n→∞

[F(zn)]2
‖dn‖2 = 0. (3.13)

Also, since 0 < μ ≤ μn = βn
F(zn)
‖dn‖2 , for all n ∈ N, 0 ≤ μn‖dn‖ = βn

F(zn)‖dn‖ . Hence, from
(3.13) and (A2), μn‖dn‖ → 0. So, ‖dn‖ → 0 as μn ≥ μ > 0 and accordingly

F(zn) = F(zn)

‖dn‖ ‖dn‖ → 0 as n → ∞.
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So, F(z∗) = 0, as F is a positive lower semicontinuous function and zn → z∗. Also,

lim
n→∞ ‖ zn − sn ‖ ≤ lim

n→∞ ‖zn − tn‖ + lim
n→∞ ‖tn − sn‖ = 0. (3.14)

Now,

‖ zn − J Tλ zn ‖ ≤ ‖ zn − sn ‖ + ‖ sn − J Tλ zn ‖
= ‖ zn − sn ‖ + ‖ J Tλ (zn − μndn) − J Tλ zn ‖
≤ ‖ zn − sn ‖ + ‖ μndn ‖
= ‖ zn − sn ‖ +

∥∥∥∥βn F(zn)

‖ dn ‖2 dn

∥∥∥∥
= ‖ zn − sn ‖ +

∥∥∥∥βn F(zn)

‖dn‖2
∥∥∥∥ ‖dn‖

= ‖ zn − sn ‖ +
∥∥∥∥βn F(zn)

‖dn‖
∥∥∥∥ .

So, from (3.13) and (3.14), we get that

‖ zn − J Tλ zn ‖→ 0 as n → ∞.

Thus, we have z∗ = J Tλ z∗.

Step 3: Next, we show that z∗ ∈ Fix(Ri ). Since lim
n→∞ ‖sn − Ri (sn)‖ = 0 and sn → z∗. Using

the fact that I − Ri is demi-closed, we get z∗ ∈ Fix(Ri ) (for each i = 1, 2, . . . ,m). Hence,
z∗ ∈ Fix(Ri ), for each i = 1, 2, . . . ,m.
Therefore, we conclude that z∗ ∈ Ω and zn → z∗. ��

We now study the convergence analysis of Algorithm 3.2 for solving problem (P).

Theorem 3.2 Let H be a real Hilbert space, F : H → R be a nonnegative lower semicon-
tinuous function and T : H → 2H be a maximal monotone operator. Suppose that for each
i ∈ {1, 2, . . . ,m}, Ri : H → H is a quasi-nonexpansive mapping with I − Ri being demi-
closed at zero and Ω 	= ∅. Assume that (A0)–(A2) hold. Let {zn} be the sequence generated
by Algorithm 3.2. Then the sequence {zn} converges strongly to some point z∗ ∈ Ω .

Proof We proceed the proof in the following steps:

Step 1: Ω ⊆ Dn+1

For any z ∈ Ω , we have z ∈ T−1(0) = Fix(J Tλ ) ⊂ H = D1. Hence, z ∈ D1. If for some
n ≥ 2, z ∈ Dn , we show that z ∈ Dn+1. From (3.3), and (3.2), we have

‖sn − z‖2 = ‖J Tλ (wn − μndn) − J Tλ (z)‖2
≤ ‖wn − μndn − z‖2
= ‖zn + αn(zn − zn−1) − μndn − z‖2
= ‖zn − μndn − z‖2 + α2

n‖zn − zn−1‖ + 2〈zn − μndn − z, αn(zn − zn−1)〉
= ‖zn − z‖2 + μ2

n‖dn‖2 − 2〈zn − z, μndn〉 + α2
n‖zn − zn−1‖2

+2αn〈zn − z, zn − zn−1〉 − 2〈μndn, αn(zn − zn−1)〉
= ‖zn − z‖2 + α2

n‖zn − zn−1‖2 + 2αn〈zn − z, zn − zn−1〉
+μ2

n‖dn‖2 − 2〈μndn, zn − z + αn(zn − zn−1)〉 (3.15)

= ‖zn − z‖2 + α2
n‖zn − zn−1‖2 + 2αn〈zn − z, zn − zn−1〉
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−βn[F(zn)]
‖dn‖2 [2〈wn − z, dn〉 − βn F(zn)]

≤ ‖zn − z‖2 + α2
n‖zn − zn−1‖2 + 2αn〈zn − z, zn − zn−1〉. (3.16)

From (3.8), we have

‖tn − z‖2 ≤ ‖sn − z‖2 − δ0,n
∑

1≤i≤m

δi,n‖Ri (sn) − sn‖2 (3.17)

≤ ‖sn − z‖2. (3.18)

From (3.16) and (3.18), we obtain

‖tn − z‖2 ≤ ‖zn − z‖2 + α2
n‖zn − zn−1‖2 + 2αn〈zn − z, zn − zn−1〉.

By the definition of Dn+1, we get z ∈ Dn+1 and so Ω ⊆ Dn+1,∀n ≥ 1.
Since Dn, n ≥ 1 is a nonempty closed convex subset of H , therefore sequence {zn} is

well defined sequence.

Step 2: {zn} is Cauchy sequence.
By Proposition 3.1, we get Ω ⊆ Dn+1, ∀n ≥ 0, Dn+1 ⊆ Dn and, from (3.3), zn+1=
PDn+1 zn .

Note that for any z ∈ Ω ,

‖zn+1 − z1‖ ≤ ‖z − z1‖.
Hence, {zn} is a bounded sequence. Moreover, it follows from (3.3) that

‖zn − z1‖ ≤ ‖zn+1 − z1‖, ∀n ≥ 1.

So, {‖ zn − z1 ‖} is a convergent sequence.
Note that zk = PDk zk−1,∀k ≥ 1. By the definition of projection and by item (iii) of

Lemma 2.1, we have

‖ zn − zk ‖2 + ‖ zk − z1 ‖2 = ‖ zn − PDk zk−1 ‖2 + ‖ PDk zk−1 − z1 ‖2
≤ ‖ zn − z1 ‖2,

and so,

lim
n,k→∞ ‖ zn − zk ‖2 ≤ lim

n→∞ ‖ zn − z1 ‖2 − lim
k→∞ ‖ zk − z1 ‖2= 0,

which proves that {zn} is a Cauchy sequence in H .
Without loss of generality, we can assume that zn → z∗.

Step 3: z∗ ∈ Ω .
Since {zn} is a Cauchy sequence, we have

‖wn − zn‖ = αn‖zn − zn−1‖ → 0, as n → ∞. (3.19)

From (3.19), we get

‖wn − zn+1‖ ≤ ‖wn − zn‖ + ‖zn+1 − zn‖ → 0, as n → ∞. (3.20)

From (3.16), we have

‖sn − z‖2 − ‖zn − z‖2 ≤ α2
n‖zn − zn−1‖2 + 2αn〈zn − z, zn − zn−1〉 → 0, as n → ∞.

(3.21)
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From (3.15) and (3.3), we deduce

‖sn − z‖2 ≤ ‖zn − z‖2 + α2
n‖zn − zn−1‖2 + 2αn〈zn − z, zn − zn−1〉

+ μ2
n‖dn‖2 − 2〈μndn, zn − z + αn(zn − zn−1)〉

≤ ‖zn − z‖2 + α2
n‖zn − zn−1‖2 + 2αn〈zn − z, zn − zn−1〉

+ β2
n
[F(zn)]2
‖dn‖2 − 2μn F(zn)

≤ ‖zn − z‖2 + α2
n‖zn − zn−1‖2 + 2αn〈zn − z, zn − zn−1〉

− βn(2 − βn)
[F(zn)]2
‖dn‖2 , (3.22)

which implies that

βn(2 − βn)
[F(zn)]2
‖dn‖2 ≤ ‖zn − z‖2 − ‖sn − z‖2 + α2

n‖zn − zn−1‖2

+ 2αn〈zn − z, zn − zn−1〉
→ 0, as n → ∞. (3.23)

Hence, limn→∞ [F(zn)]2
‖dn‖2 = 0. Also, since 0 < μ ≤ μn = βn

F(zn)
‖dn‖2 , for all n. So, 0 ≤

μn‖dn‖ = βn
F(zn)‖dn‖ which implies that μn‖dn‖ → 0. So, ‖dn‖ → 0 as μn ≥ μ > 0 and

accordingly

F(zn) = F(zn)

‖dn‖ ‖dn‖ → 0, as n → ∞.

Since F is a positive lower semicontinuous function and zn → z∗, it follows that F(z∗) = 0.
Also,

‖tn − sn‖ = ‖δ0,nsn +
m∑
i=1

δi,n Ri,n(sn) − sn‖

≤ δ0,n‖sn − sn‖ +
m∑
i=1

δi,n‖Ri,n(sn) − sn‖.

So, limn→∞ ‖tn − sn‖ → 0. Since zn+1 ∈ Dn+1 ⊂ Dn , from (3.20), we obtain

‖wn − sn‖ ≤ ‖wn − zn+1‖ + ‖tn − sn‖ + ‖tn − zn+1‖
≤ ‖wn − zn+1‖ + ‖tn − sn‖

+
√

‖zn − zn+1‖2 + α2
n‖zn − zn−1‖2 + 2αn〈zn − zn+1, zn − zn−1〉

≤ ‖wn − zn+1‖ + ‖tn − sn‖
+

√
‖zn − zn+1‖2 + α2

n‖zn − zn−1‖2 + 2αn‖zn − zn+1‖‖zn − zn−1‖
→ 0, as n → ∞. (3.24)

From (3.19) and (3.24), we have

‖ zn − J Tλ zn ‖ ≤ ‖zn − sn‖ + ‖sn − J Tλ zn‖
= ‖zn − sn‖+ ‖ J Tλ (wn − μndn) − J Tλ zn ‖
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≤ ‖zn − wn‖ + ‖wn − sn‖ + ‖αn(zn − zn−1)‖ + ‖μndn‖
= ‖zn − wn‖ + ‖wn − sn‖ + ‖αn(zn − zn−1)‖ +

∥∥∥∥βn F(zn)

‖dn‖2 dn

∥∥∥∥
≤ ‖zn − wn‖ + ‖wn − sn‖ + ‖αn(zn − zn−1)‖ +

∥∥∥∥βn F(zn)

‖dn‖
∥∥∥∥

→ 0, as n → ∞.

So, we have z∗ = J Tλ z∗. As in Theorem 3.1, we can see that z∗ ∈ Fix(Ri ), for each
i = 1, 2, . . . ,m. Therefore, we conclude that z∗ ∈ Ω and zn → z∗. ��

Now with αn = 0, we obtain the following result by Theorem 3.2.

Theorem 3.3 Let H be a real Hilbert space, F : H → R be a nonnegative lower semicon-
tinuous function and T : H → 2H be a maximal monotone operator. Suppose that for each
i ∈ {1, 2, . . . ,m}, Ri : H → H is a quasi-nonexpansive mapping with I − Ri is demi-
closed at zero and Ω 	= ∅. Assume that (A0)–(A2) hold. Let {zn} be the sequence generated
by Algorithm 3.3. Then the sequence {zn} converges strongly to some point z∗ ∈ Ω .

Remark 3.3 The value of ‖zn−zn−1‖ is known before the value of αn . Indeed, the parameters
αn can be chosen such that 0 ≤ αn ≤ α′

n , where

α′
n =

{
min

{
ωn‖zn−zn−1‖ , α

}
i f zn 	= zn−1,

α otherwise,
(3.25)

where {ωn} is a positive sequence such that
∑∞

n=1 ωn < ∞.

4 Applications

4.1 Split equality variational inclusion fixed point problem

Here, we investigate the split equality variational inclusion fixed point problems as an appli-
cation.
Let H1, H2 and H3 be Hilbert spaces. In particular, take H = H1 × H2 and for any (x, y) ∈
H1 × H2, the operators T , F and Ri are defined by⎧⎪⎪⎪⎨

⎪⎪⎪⎩
T (x, y) := T1(x) × T2(y),

F(x, y) := 1

2
‖Ax − By‖2,

Ri (x, y) := Mi (x) × Ni (y), for each i = 1, 2, . . . ,m,

(4.1)

where Ti : Hi → 2Hi , for i = 1, 2 are maximal monotone operators and A : H1 → H3,
B : H2 → H3 are bounded linear operators. For integers 1 ≤ i ≤ m, Mi : H1 → H1 and
Ni : H2 → H2 are two finite families of set-valued quasi-nonexpansive operators such that

m⋂
i=1

Fix(Mi ) 	= ∅ and
m⋂
i=1

Fix(Ni ) 	= ∅.
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With the above setting, Problem (P) becomes

(SEVIFP) find x ∈
m⋂
i=1

Fix(Mi )
⋂

T−1
1 (0) and y ∈

m⋂
i=1

Fix(Ni )
⋂

T−1
2 (0)

such that Ax = By.

We assume that the search direction dn coincides with the gradient ∇F(zn) of the function
F . So, we have the following result:

Theorem 4.1 Let H1, H2 and H3 be real Hilbert spaces, Ti : Hi → 2Hi , for i = 1, 2 be
maximal monotone operators, A : H1 → H3 and B : H2 → H3 be bounded linear operators
and for positive integers 1 ≤ i ≤ m, Mi : H1 → H1 and Ni : H2 → H2 be two finite families
of quasi-nonexpansive operators with I − Mi and I − Ni are demi-close at zero. Let A∗, B∗
be the adjoint of A, B, respectively. Denote C1 = H1, Q1 = H2. For a given x1 ∈ C1 and
y1 ∈ Q1, let the iterative sequences {xn} and {yn} be generated by

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

un = J T1λ (xn − μn A
∗(Axn − Byn)),

pn = δ0,nun +
m∑
i=1

δi,nMi (un),

vn = J T2λ (yn + μn B
∗(Axn − Byn)),

qn = δ0,nvn +
m∑
i=1

δi,nNi (vn),

Cn+1 × Qn+1

= {(x, y) ∈ Cn × Qn :‖ pn − x ‖2 + ‖ qn − y ‖2≤‖ xn − x ‖2 + ‖ yn − y ‖2},
xn+1 = PCn+1xn,

yn+1 = PQn+1 yn,

(4.2)

for all n ∈ N, where {δi,n} is a sequence such that δi,n ∈ (0, 1),
∑m

i=0 δi,n = 1. The step size
μn is chosen in such a way that

μn =
⎧⎨
⎩

βn F(xn, yn)

‖∇F(xn, yn)‖2
, i f ∇F(xn, yn) 	= 0

0, otherwise,
(4.3)

where βn ∈ (0, 2) and infn∈N[βn(2 − βn)] > 0.
If the solution set Ω1 := {(p, q) ∈ H1 × H2 : p ∈ ⋂m

i=1 Fix(Mi )
⋂

T−1
1 (0), q ∈⋂m

i=1 Fix(Ni )
⋂

T−1
2 (0)and Ap = Bq} is nonempty, then there exists (x∗, y∗) ∈ Ω1 such

that xn → x∗ and yn → y∗.

Proof Let the operators T , F and Ri be defined by (4.1). From Lemma 2.5, T is a maximal
monotone operator. Here, function F is of class C1 and for every (x, y) ∈ H1 × H2, we have
∇F(x, y) = (A∗(Ax − By),−B∗(Ax − By)). Here, Ri is a quasi-nonexpansive mapping
such that I − Ri is demiclosed at 0, for each i = 1, 2, . . . ,m.
Conditions (A0) and (A1) follow from Definition 2.2 and the fact that dn = ∇F(x, y) =
(A∗(Ax − By),−B∗(Ax − By)). Hence, from Theorem 3.3, we conclude the proof. ��
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4.2 Split equality equilibrium fixed point problem

LetC be a nonempty closed and convex subset of a real Hilbert space H and f : C×C → R

be a bifunction. The equilibrium problem for f is to find x∗ ∈ C such that

f (x∗, y) ≥ 0, ∀y ∈ C . (4.4)

The solution set of equilibrium problem is denoted by EP( f ).
Recently, many authors (see, e.g. Colao et al. 2011; Eslamian 2013; Takahashi and Taka-

hashi 2007) have studied strong convergence of iterative schemes for finding a common
solution of an equilibrium problem and fixed point problem for a nonlinear mapping.

Let us assume that the bifunction f satisfies the following conditions:

(B1) f (x, x) = 0, ∀x ∈ C ,
(B2) f is monotone, i.e., f (x, y) + f (y, x) ≤ 0, ∀x, y ∈ C ,
(B3) limt→0 f (t z + (1 − t)x, y) ≤ f (x, y), for each x, y, z ∈ C ,
(B4) for each x ∈ C , y �→ f (x, y) is convex and lower semicontinuous.

Further, we quote the following lemma:

Lemma 4.1 (Takahashi et al. 2010, Theorem 4.2) Let C be a nonempty closed and convex
subset of a Hilbert space H and let f : C ×C → R be a bifunction satisfying (B1) − (B4).
Let Φ f be a set-valued mapping of H into itself defined by

Φ f (x) =
{{

z ∈ C : f (z, y) + 1
λ
〈 y − z, z − x〉 ≥ 0

}
, ∀x ∈ C

∅, ∀x /∈ C .
(4.5)

Then E P( f ) = Φ−1
f (0) and Φ f is a maximal monotone operator with domΦ f ⊂ C.

Furthermore, for any x ∈ H and λ > 0, the resolvent G f
λ of f coincides with the resolvent

of Φ f , where

G f
λ x =

{
z ∈ C : f (z, y) + 1

λ
〈 y − z, z − x〉 ≥ 0 ∀y ∈ C

}
.

The so-called Spli t equali t y equilibrium f i xed point problem with respect to bifunc-
tion f and g is to find x ∈ C and y ∈ Q such that

(SEEFP) find x ∈ ⋂m
i=1 Fix(Mi )

⋂
EP( f ) and y ∈ ⋂m

i=1 Fix(Ni )
⋂

EP(g)
such that Ax = By.

Using Lemma 4.1 and Theorem 4.1, we have the following result.

Theorem 4.2 Let H1, H2 and H3 be real Hilbert spaces, C and Q be two nonempty closed
convex subset of H1 and H2, respectively, and A : H1 → H3 and B : H2 → H3 be bounded
linear operators. Let f : C × C → R and g : Q × Q → R be two bifunctions satisfying
(B1) − (B4). Suppose that for each i ∈ {1, 2, . . . ,m}, Mi : H1 → H1 and Ni : H2 → H2

be quasi-nonexpansive operators with I −Mi and I − Ni are demi-close at zero. For a given
x1 ∈ C1 and y1 ∈ Q1, let the iterative sequences {xn} and {yn} be generated by
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⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

un = G f
λ (xn − μn A

∗(Axn − Byn)),

pn = δ0,nun +
m∑
i=1

δi,nMi (un),

vn = Gg
λ(yn + μn B

∗(Axn − Byn)),

qn = δ0,nvn +
m∑
i=1

δi,nNi (vn),

Cn+1 × Qn+1

= {(x, y) ∈ Cn × Qn :‖ pn − x ‖2 + ‖ qn − y ‖2≤‖ xn − x ‖2 + ‖ yn − y ‖2},
xn+1 = PCn+1xn,

yn+1 = PQn+1 yn,

(4.6)

for all n ∈ N. Let the sequences {δi,n} and {μn} satisfy the condition of Theorem 4.1.
If the solution set Ω2 := {(p, q) ∈ H1 × H2 : p ∈ ⋂m

i=1 Fix(Mi )
⋂

EP( f ), q ∈⋂m
i=1 Fix(Ni )

⋂
EP(g) and Ap = Bq} is nonempty, then there exists (x∗, y∗) ∈ Ω2 such

that xn → x∗ and yn → y∗.

5 Numerical experiments

In this section, we discuss some examples in support of Theorems 3.1, 3.2, 3.3, 4.1 and 4.2.
We have implemented our code in Python 2.7 (Anaconda) on a personal Dell computer with
Intel(R)Core(TM) i5-7200U CPU 2.50 GHz and RAM 8.00 GB.

5.1 Test problem for problem (P)

Example 5.1 Let H = R
N , N ∈ N, be a real Hilbert space. Let z = (x1, x2, . . . , xN ) and

F : H → R be a function defined by F(z) = ‖z‖2. Let L : H → H be an operator defined
by

L[x1, . . . , xN ] =
⎡
⎢⎣

1
2N 0 · · ·
...

. . . 0
0 0 1

2N

⎤
⎥⎦

⎡
⎢⎣
x1
...

xN

⎤
⎥⎦ .

Note that L is a nonexpansive operator. Hence, by Lemma 2.4, T = (I + 1
2 L) is a maximal

monotone operator.
For i = 1, 2, . . . ,m, Ri : H → H is defined by

Ri (x1, x2, . . . , xN ) = (Ri1(x1), Ri2(x2), . . . , RiN (xN )),

where

Ri j (x j ) =
{
0, i f x j = 0,
x j
i+1 sin

1
x j

, i f x j 	= 0, (5.1)

for j = 1, 2, . . . , N . Here, each Ri j is quasi-nonexpansive operator with Fix(Ri j ) = {0}.
Also suppose that λ = 2.5, α = 0.3, ωn = 1

n2
, βn = n

n+1 , δi,n = 1
m+1 ,∀i = 0, 1, 2, . . . ,m

and search direction dn = ∇F(zn). Observe that all the assumptions of Theorems 3.1, 3.2
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Fig. 1 Convergence of sequence {‖zn+1 − zn‖} for Example 5.1 for z1 ∈ R
7

and 3.3 are satisfied. Consequently, we conclude that sequence {zn} converges strongly to
z∗ = (0, 0) ∈ Ω .

For stopping criteria ‖zn+1 − zn‖ < ε = 10−4, Figures 1a–c and 2a–c show the con-
vergence of sequence {‖zn+1 − zn‖} for different values of z1 ∈ R

7 and z1 ∈ R
25 using

Algorithms 3.1, 3.3, and 3.2, respectively. Figure 1d shows the convergence of sequence
{‖zn+1 − zn‖} for different values of α ∈ [0, 1) and z0 = z1 = (.23, .4, .6, .52, .7, .8, .7) ∈
R
7 using Algorithm 3.2. From Table 1, we observe the following:

(i) For z1 = u1 = (1.2, .9, .7, .3, 1.8, .13, .56) ∈ R
7, Algorithms 3.1, 3.2, and 3.3

approximate the solution after 181, 19, 35 iterations, respectively.
(ii) For z1 = v1 = (1.2, .5, .8, .7, .8, .3, .6) ∈ R

7,Algorithms3.1, 3.2, and3.3 approximate
the solution after 180, 17, 47 iterations, respectively.
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Fig. 2 Convergence of sequence {‖zn+1 − zn‖} for Example 5.1 for z1 = u′
1 ∈ R

25 and z1 = v′
1 ∈ R

25

Remark 5.1 (i) We observe from Example 5.1 that Algorithm 3.2 has better performance
than Algorithms 3.1 and 3.3.

(ii) From Figs. 1 and 2, we observe that, when we increase the dimension of the Euclidean
space, Algorithm 3.2 is stable (approximate the solution after same number of iterations),
but Algorithms 3.1 and 3.3 are not stable (Tables 2, 3).

5.2 Test problem for split equality variational inclusion fixed point problem

Example 5.2 In Theorem 4.1, set H1 = H2 = H3 = R
N , N ∈ N. Let Ax = x, By = 4y,

where x = (x1, x2, . . . , xN ) and y = (y1, y2, . . . , yN ). Let L1 : H → H be an operator
defined by
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Table 2 CPU time and number of iterations for Algorithms 3.1, 3.2, 3.3 using Example 5.1 for z1 = u1 ∈ R
7

and z1 = v1 ∈ R
7

Alg 3.1 Alg 3.2 Alg 3.3 Alg 3.1 Alg 3.2 Alg 3.3
z1 = u1 z0 = z1 = u1 z1 = u1 z1 = v1 z0 = z1 = v1 z1 = v1

CPU time (in s) 11.254 0.565 0.798 11.093 0.372 1.227

Number of iterations 181 19 35 180 17 47

Table 3 CPU time and number of iterations for Algorithms 3.1, 3.2, 3.3 using Example 5.1 for z1 = u′
1 =

(1.2, .8, .6, .9, .7, 1, .8, .4, .8, .6, .2, .3, .4, .33, .6, 1.2, .35, .47, .8, .6, .5, .8, .4, .7, .3) ∈ R
25 and z1 = v′

1 =
(1.2, .5, .8, .7, .8, .3, .6, .2, .7, .3, .1, .2, .3, .23, .2, .1, .15, .17, .5, .4, .3, .6, .7, .1, .4) ∈ R

25

Alg 3.1 Alg 3.2 Alg 3.3 Alg 3.1 Alg 3.2 Alg 3.3
z1 = u′

1 z0 = z1 = u′
1 z1 = u′

1 z1 = v′
1 z0 = z1 = v′

1 z1 = v′
1

CPU time (s) 3011.928 4.731 36.224 2873.379 3.186 46.752

Number of iterations 1071 22 85 1021 27 106

L1[x1, . . . , xN ] =
⎡
⎢⎣

1
2 0 · · ·
...

. . . 0
0 0 1

2

⎤
⎥⎦

⎡
⎢⎣
x1
...

xN

⎤
⎥⎦

and L2 : H → H be an operator defined by

L2[x1, . . . , xN ] =
⎡
⎢⎣

1
3 0 · · ·
...

. . . 0
0 0 1

3

⎤
⎥⎦

⎡
⎢⎣
x1
...

xN

⎤
⎥⎦ ,

which are nonexpansive operators. Hence, by Lemma 2.4, Ti = (I + 1
2 Li ), for i = 1, 2 are

maximal monotone operators. Let Mi : H → H , for i = 1, 2, . . . ,m be defined by

Mi (x1, x2, . . . , xN ) = (Mi1(x1), Mi2(x2), . . . , MiN (xN )),

where

Mi j (x j ) =
{
0, i f x j = 0,
x j
i+1 sin

1
x j

, i f x j 	= 0, (5.2)

for j = 1, 2, . . . , N . Also, suppose that λ = 2.5, βn = n
n+1 and δi,n = 1

m+1 ,∀i =
0, 1, 2, . . . ,m.
Let Ni : H → H , for i = 1, 2, . . . ,m be defined by

Ni (x1, x2, . . . , xN ) = (Ni1(x1), Ni2(x2), . . . , NiN (xN )),

where

Ni j (x j ) =
{
0, i f ‖ x j ‖≤ 1,
(1 − 1

(i+1)‖x j‖ )x j , i f ‖ x j ‖> 1, (5.3)

for j = 1, 2, . . . , N .Here, each Mi j and Ni j are quasi-nonexpansive mappings. Observe that
all the assumptions of Theorem 4.1 are satisfied. So, we conclude that sequence {(xn, yn)}
converges strongly to (x∗, y∗) = (0, 0) ∈ Ω1.
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Fig. 3 Convergence of sequences {‖xn+1 − xn‖} and {‖yn+1 − yn‖} for Example 5.2

For stopping criteria ‖xn+1 − xn‖ < ε = 10−4 and ‖yn+1 − yn‖ < ε = 10−4, Fig. 3
and Table 4 show the convergence of sequences {‖xn+1 − xn‖} and {‖yn+1 − yn‖} using
Theorem 4.1. Table 5 and Fig. 4 show the comparison between the convergence of algorithm
of Theorem 4.1 and algorithm of Theorem 1.1 (Chang et al. 2016).

5.3 Test problem for split equality equilibrium fixed point problem

Example 5.3 Let H1 = H2 = H3 = R and C = Q = [0,∞), and define the bifunctions
f : C × C → R and g : Q × Q → R by

f (x, y) = y2 + xy − 2x2, g(x, y) = x(y − x).

We observe that the functions f and g satisfying the conditions (B1) − (B4). Also, we
have G f

λ x = x
3λ+1 and Gg

λx = x
λ+1 . Let Ax = x, By = 4y. Let Mi : H → H , for

i = 1, 2, . . . ,m be defined by

Mi (x) =
{
0, i f x = 0,
x

i+1 sin
1
x , i f x 	= 0.

(5.4)

Also, suppose that λ = 1, βn = n
n+1 and δi,n = 1

m+1 ,∀i = 0, 1, 2, . . . ,m.
Let Ni : H → H , for i = 1, 2, . . . ,m be defined by

Ni (x) =
{
0, i f |x | ≤ 1,
(1 − 1

(i+1)|x | )x, i f |x | > 1.
(5.5)

Here, each Mi and Ni are quasi-nonexpansive mappings. Observe that all the assumptions
of Theorem 4.2 are satisfied. So, we conclude that sequence {(xn, yn)} converges strongly
to (x∗, y∗) = (0, 0) ∈ Ω1.

For stopping criteria ‖xn+1 − xn‖ < ε = 10−4 and ‖yn+1 − yn‖ < ε = 10−4, Fig. 5 and
Table 6 show the convergence of sequences {‖xn+1− xn‖} and {‖yn+1− yn‖} using Theorem
4.2. The CPU time is 0.0920000076294.
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4.1 with Mi = Ni = 0, for each i(a) For Theorem (b) For Theorem 1.1

Fig. 4 Convergence of sequences {‖xn+1 − xn‖} and {‖yn+1 − yn‖} based on Example 5.2

Fig. 5 Convergence of sequences {‖xn+1 − xn‖} and {‖yn+1 − yn‖} for Example 5.3

6 Conclusion

In this paper, the minimization of a nonnegative lower semicontinuous function over the
intersection of a finite number of fixed point sets and a zero set has been studied. The
generalized version of the algorithm given by Chang et al. (2016) is obtained and new
algorithms with somemodifications are presented. The comparison through example is made
for the three algorithms, which further suggests that the rate of convergence of the third and
second algorithms are faster than that of the generalized version. Also, we have obtained a
common solution of three problems so that a single solution can be used for three different
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Table 6 Numerical values for ‖xn+1 − xn‖ and ‖yn+1 − yn‖ using Theorem 4.2 and Example 5.3

Number of iteration n ||xn+1 − xn || ||yn+1 − yn ||
for x1 = 1.5 for y1 = 1.3

1 0.5 0.918007096641

2 0.330035960122 0.161488666253

3 0.20922616607 0.08583619912

4 0.153955532019 0.0510805504004

5 0.138720172321 0.0314529235324

6 0.080385051789 0.0196247393265

7 0.0484058981149 0.0122275565211

8 0.0155829454539 0.00762143353299

9 0.0132753732442 0.00472982657387

10 0.00326142540624 0.00300107406444

11 0.00222545130171 0.00186115299614

12 0.00158178377996 0.00115021857958

13 0.00171855240509 0.000649649786976

14 0.00084490137982 0.000450952075506

15 0.000419623863243 0.000313142969688

16 0.000166003354156 0.000222866067994

17 5.81580335432e-05 0.000129818654887

purposes. The work to prove the convergence of these algorithms without considering the
assumptions could hold the scope for future research.
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