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Dynamic responses of a viscous fluid flow introduced under a time dependent pressure gradient in a rigid cylindrical tube subject
to deformable porous surface layer have been investigated. The coupling effect of the fluid movement and the deformation of the
porous medium in Laplace transform space have been studied. Governing equations are simplified for the solid displacement and
the fluid velocity in the porous layer. Using Durbin’s algorithm, in transformed domain analytic solutions are obtained, and time
dependent variables are considered. Interaction between the solid and the fluid phases in the porous layer and its effects on fluid flow
in tube are investigated under steady and unsteady flow conditions when the solid phase is either rigid or deformable. Significant
effects of the porous surface layer on the flow in the tube have been observed.

1. Introduction

Richardson and Power [1] studied the deformation of a
porous material with coupled fluid movements. Barry et al.
[2] derived the analytic solutions for a shear fluid over a thin
deformable porous layer on the walls of a two-dimensional
channel considering the porosity and permeability of the
porous layer as constants; therefore, the coupled equations
are linear. Barry et al. [3] obtained a closed form solution for
deformation of porousmedium due to a source in a poroelas-
tic medium.This solution shows an indication of the amount
of swelling of themedium and subsequent deformation of the
free surface as a function of the location of the point source
and boundary condition. Presently, numerical simulation
for viscous flow in the porous medium is more applicable.
Pozrikidis [4], Wrobel [5], and Dwivedi et al. [6, 7] used
the boundary element method in solving partial differential
equations. However, there is still a lack of closed form analytic
solution for shear flow over a deformable porous medium.

In this paper, the solutions in closed form for viscous fluid
over a deformation porous layer in the cylinder are obtained
in the Laplace transform space. The coupled equations for
deformation and fluid velocity within the porous layer are
shown in Figure 1. In the present work, the porous medium

is isotropic and axially symmetric, and the deformation of
solid is small. Assuming constant permeability of the porous
medium, linear elasticity theory is applied to investigate
the proposed problem. By Durbin’s inversion method, the
displacement of solid phase and the velocity of fluid are
obtained in the time domain, and analytical solutions for
three different situations of the porous layer (i.e., steady
state deformation, rigid porous layer, and deformable porous
layer) are obtained for a step or a sinusoid pressure gradient
in an infinite tube.

2. Governing Equations

In cylindrical coordinate system as shown in Figure 1, the
governing equations for the velocities of fluid phase, for zero
convective, are given by
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The equation of mass conservation of fluid becomes
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In our case, an infinite long tube of radius a with a
rigid wall, which consists a porous layer of thickness 𝜖𝑇 and

a fully developed flow as shown in Figure 1, is considered.
The fluid is initially at rest and subjected to a time dependent
pressure differential 𝑝 = 𝑝0(𝑡) at the ends of the tube. Due
to the assumption of an infinite tube, we assume that the
pressure gradient is constant for each section of the tube; that
is, 𝜕𝑝/𝜕𝑧 = −𝐺0𝑔(𝑡), where 𝑔(𝑡) is nondimensional function
of time and all variables are not 𝑧 dependent. With the
symmetry of the geometry of problem, there are no velocities
along the radial and circumference directions; that is, 𝜐𝑟 =
𝜐𝜃 = 𝑢𝑟 = 𝑢𝜃 = 0 everywhere in the tube. When the flow and
solid start impulsively from rest and without moving bound-
aries, under these conditions, that is, 𝜕𝜐𝑧/𝜕𝑧 = 𝜕𝜐𝑧/𝜕𝜃 =

𝜕𝑢𝑧/𝜕𝑧 = 𝜕𝑢𝑧/𝜕𝜃 = 0 and volume expression Θ = 0, (1),
(2), and (4) are automatically satisfied.
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Figure 1: Schematic diagram shows the tube with a porous medium layer and the cylindrical coordinate.

For convenience, the tilde (∼) is dropped in the following
analysis as all variables in the Laplace transform space are
nondimensional hereafter. Substituting these expressions
from (14) and (15) into (12) and (13), we obtain momentum
(16) and (17), respectively. Consider

∇
2
𝜐 − (𝜂𝑠 + 𝑘

2
) 𝜐 + 𝛾𝑠𝑢 + 𝜑𝑓 = 0, (16)
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By taking 𝜑𝑓 = 1, 𝐾 = 0, 𝜇𝑎 = 𝜇𝑓, 𝜂 = 1, and 𝜐 = 𝑞 and
using (14) and (15) in (16), in the pure fluid phase outside of
the porous medium, the governing equation of the pure fluid
velocity is obtained in the following form:

(∇
2
− 𝑠) 𝑞 + 1 = 0. (18)

3. Analytical Solutions

3.1. Steady State Deformation. For steady state deformation
of porous medium, the pressure gradient 𝐺(𝑡) is applied
steady, and all variables are time independent. Therefore, the
governing equations can be represented, by letting 𝑠 = 0 in
(16), (17), and (18) as
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Therefore, the general solution of (21) can be obtained as
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When 𝑞1 = 0, themaximumvalue of 𝑞 reduces into 𝑞max = 𝑞0.
The general solutions of (19) and (20) can be obtained as
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respectively, where 𝐼𝑛(𝑧) and 𝐾𝑛(𝑧) are the modified Bessel
functions of the first and second kinds of order 𝑛.

Considering boundary conditions,
(i) 𝑟 = 1 : 𝜐 = 𝑢 = 0,
(ii) 𝑟 = 𝑏 = 1 − 𝜖𝑇, 𝑠 = 0 : 𝑞 = 𝑛𝜑𝑓𝜐,

and solving (23), (24), and (25), we have
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4. Rigid Porous Layer

For rigid porous medium layer, the displacement in the solid
phase is zero, and the velocity in fluid is time dependent. The
governing equations can be represented in the Laplace space,
from (16), (17), and (18), taking 𝑢 = 0, and for convenience,
𝑘
2
1 = 𝑠 and 𝑘

2
2 = 𝑘
2
+ 𝜂𝑠,

∇
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2
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∇
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Also, the general solution of (28) is
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Considering the boundary conditions 𝑟 = 𝑏 : 𝜐 = 0, 𝜕𝑞/𝜕𝑟 =

(1/𝜑𝑓)(𝜕𝜐/𝜕𝑟) and solving (27), (28), (29), and (31), we have
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5. Deformable Porous Layer

For the deformable porous medium, the displacement in the
solid phase can be rewritten, in terms of velocity in the porous
from (16), (17), and (18), as
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) , (35)

where 𝛼1 = 𝛾𝑠 (1 + (𝜂𝛿𝑠/𝑘
2
)), 𝛼0 = 𝛾𝑠𝑘

2. The general
solution of velocity in porous medium can be expressed as

𝜐 = 𝐴𝐼0 (𝜆1𝑟) + 𝐵𝐾0 (𝜆1𝑟) + 𝐶𝐼0 (𝜆12𝑟) + 𝐷𝐾0 (𝜆2𝑟)

+
𝛾𝑠

𝜆21𝜆
2
2

(1 +
𝜂𝛿𝑠𝜑𝑓

𝑘2
) ,

(36)

where𝐴, 𝐵, 𝐶, and𝐷 are unknown coefficients and 𝜆21 and 𝜆
2
2

are two distinct roots of the following quadratic equation

𝜆
4
− (𝛼1 + 𝛼2) 𝜆

2
+ 𝛼1𝛼2 − 𝛼0 = 0. (37)

From (34), the displacement of the solid phase can be written
as

𝑢 = −
𝜑𝑓

𝛾𝑠
−

1

𝛾𝑠
[(𝜆
2
1 − 𝛼2)𝐴𝐼0 (𝜆1𝑟) + (𝜆

2
1 − 𝛼2) 𝐵𝐾0 (𝜆1𝑟)

+ (𝜆
2
2 − 𝛼2) 𝐶𝐼0 (𝜆2𝑟) + (𝜆

2
2 − 𝛼2)𝐷𝐾0 (𝜆2𝑟)]

−
𝛼2

𝜆21𝜆
2
2

(1 +
𝜂𝛿𝑠𝜑𝑓

𝑘2
) ,

(38)

and the velocity of pure fluid in the tube is given by

𝑞 = 𝐸𝐼0 (𝑘1𝑟) + 𝐹𝐾0 (𝑘1𝑟) +
1

𝑘21

. (39)

Considering the boundary conditions,

(i) 𝑟 = 1 : 𝑢 = 𝜐 = 0,
(ii) 𝑟 = 𝑏 : (𝑞)𝑏 = 𝜂𝜑𝑓(𝜐)𝑏 + (𝜂𝛾𝑠/𝑘

2
)(𝑢)𝑏 = 0,

(iii) 𝑟 = 𝑏 : (𝜕𝑞/𝜕𝑟)𝑏 = 1/𝜑𝑓(𝜕𝜐/𝜕𝑟)𝑏,
(iv) 𝑟 = 𝑏 : (𝜕𝑞/𝜕𝑟)𝑏 = 1/𝜑𝑠(𝜕𝑢/𝜕𝑟)𝑏,
(v) 𝑟 = 𝑏 : 1/𝜑𝑓(𝜕𝜐/𝜕𝑟)𝑏 = 1/𝜑𝑠(𝜕𝑢/𝜕𝑟)𝑏,

and solving (34)–(39), we have

𝐷 =
𝐼0 (𝑘1𝑏) 𝑒0 + (1/𝑘

2
1) − 𝑑0

𝑑1 − 𝑒1𝐼0 (𝑘1𝑏)
, (40)

where

𝑑0 = 𝛽0𝜐0 −
𝜑𝑠𝜑𝑓𝜂

𝑘2

+ (𝛽0 −
𝜑𝑠𝜂𝜆
2
1

𝑘2
) [𝐼0 (𝜆1𝑏) 𝑎0 + 𝐾0 (𝜆1𝑏) 𝑏0]

+ (𝛽0 −
𝜑𝑠𝜂𝜆
2
2

𝑘2
) 𝐼0 (𝜆2𝑏) 𝑐0,

𝑑1 = (𝛽0 −
𝜑𝑠𝜂𝜆
2
1

𝑘2
) [𝐼0 (𝜆1𝑏) 𝑎1 + 𝐾0 (𝜆1𝑏) 𝑏1]

+ (𝛽0 −
𝜑𝑠𝜂𝜆
2
2

𝑘2
) [𝐼0 (𝜆2𝑏) 𝑐1 + 𝐾0 (𝜆2𝑏)] ,

𝛽0 = 𝜂 (𝜑𝑓 +
𝜑𝑠𝛼2

𝑘2
) ,

𝑒0 =
1

𝜑𝑓𝑘1𝐼1 (𝑘1𝑏)

× [𝜆1𝐼1 (𝜆1𝑏) 𝑎0 − 𝜆1𝐾1 (𝜆1𝑏) 𝑏0 + 𝜆2𝐼1 (𝜆2𝑏) 𝑐0] ,
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𝑒1 =
1

𝜑𝑓𝑘1𝐼1 (𝑘1𝑏)

× [𝜆1𝐼1 (𝜆1𝑏) 𝑎1 − 𝜆1𝐾1 (𝜆1𝑏) 𝑏1

+ 𝜆2𝐼1 (𝜆2𝑏) 𝑐1 − 𝜆2𝐾1 (𝜆2𝑏)] ,

𝑎0 = −
[𝜐0 + 𝑐0𝐼0 (𝜆2)]𝐾1 (𝜆1𝑏) + ℎ𝑐0𝐼1 (𝜆2𝑏)𝐾0 (𝜆1)

𝐾0 (𝜆1) 𝐼1 (𝜆1𝑏) + 𝐼0 (𝜆1)𝐾1 (𝜆1𝑏)
,

𝑎1 = −
[𝐾0 (𝜆2) + 𝑐1𝐼0 (𝜆2)]𝐾1 (𝜆1𝑏)

𝐾0 (𝜆1) 𝐼1 (𝜆1𝑏) + 𝐼0 (𝜆1)𝐾1 (𝜆1𝑏)

+
ℎ [𝑐1𝐼1 (𝜆2𝑏) − 𝐾1 (𝜆2𝑏)]𝐾0 (𝜆1)

𝐾0 (𝜆1) 𝐼1 (𝜆1𝑏) + 𝐼0 (𝜆1)𝐾1 (𝜆1𝑏)
,

𝑏0 = −
[𝜐0 + 𝑐0𝐼0 (𝜆2)] 𝐼1 (𝜆1𝑏) − ℎ𝑐0𝐼1 (𝜆2𝑏) 𝐼0 (𝜆1)

𝐾0 (𝜆1) 𝐼1 (𝜆1𝑏) + 𝐼0 (𝜆1)𝐾1 (𝜆1𝑏)
,

𝑏1 = −
[𝐾0 (𝜆2) + 𝑐1𝐼0 (𝜆2)] 𝐼1 (𝜆1𝑏)

𝐾0 (𝜆1) 𝐼1 (𝜆1𝑏) + 𝐼0 (𝜆1)𝐾1 (𝜆1𝑏)

−
ℎ [𝑐1𝐼1 (𝜆2𝑏) − 𝐾1 (𝜆2𝑏)] 𝐼0 (𝜆1)

𝐾0 (𝜆1) 𝐼1 (𝜆1𝑏) + 𝐼0 (𝜆1)𝐾1 (𝜆1𝑏)
,

𝑐0 =
1

𝐼0 (𝜆2)

𝜐0𝜆
2
1 − 𝜑𝑓

𝜆22 − 𝜆21

, 𝑐1 = −
𝐾0 (𝜆2)

𝐼0 (𝜆2)
,

ℎ =
𝜆2

𝜆1

[1 + (𝜑𝑓/𝜑𝑠𝛾𝑠) [𝜆
2
2 − 𝛼2]]

[1 + (𝜑𝑓/𝜑𝑠𝛾𝑠) [𝜆
2
1 − 𝛼2]]

,

𝜐0 =
𝛾𝑠

𝜆21𝜆
2
2

(1 +
𝜂𝛿𝑠𝜑𝑓

𝑘2
) .

(41)

Finally all other coefficients are obtained by

𝐹 = 0, 𝐴 = 𝑎0 + 𝑎1𝐷, 𝐵 = 𝑏0 + 𝑏1𝐷,

𝐶 = 𝑐0 + 𝑐1𝐷, 𝐸 = 𝑒0 + 𝑒1𝐷.

(42)

The maximum velocity in the pure fluid occurs at the centre
of the tube and may be expressed, from (39), as

𝑞max = 𝐸 +
1

𝑘21

. (43)

By the help of (36), in particular, the general solutions can be
expressed, for the velocity 𝜐 of fluid phase, when the tube is
occupied completely by porous medium, is given by

𝜐 = 𝐴

𝐼0 (𝜆1𝑟) + 𝐵


𝐾0 (𝜆1𝑟) +

𝛾𝑠

𝜆21𝜆
2
2

(1 +
𝜂𝛿𝑠𝜑𝑓

𝑘2
) , (44)
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Figure 2: Variation of maximum velocity (𝑞max) with 𝜖𝑇 ∈ [0, 1],
when 𝜑𝑓 = 0.6, 𝑘2 = 2.

and, for the displacement u of solid phase, it is

𝑢 = −
𝜑𝑓

𝛾𝑠

−
1

𝛾𝑠
[ (𝜆
2
1 − 𝛼2)𝐴


𝐼0 (𝜆1𝑟)

+ (𝜆
2
1 − 𝛼2) 𝐵


𝐾0 (𝜆1𝑟) −

𝛼2

𝜆21𝜆
2
2

(1 +
𝜂𝛿𝑠𝜑𝑓

𝑘2
)] ,

(45)

where the constants 𝐴 and 𝐵
 can be determined directly

from the fixed boundary conditions at the rigid wall.
Following Barry et al. [2], in particular, both for steady

and unsteady flows, we can prove that at the interface when
𝜖𝑇 → 0 the velocity has behavior

𝑞 = 𝑘𝑇

𝜕𝑞

𝜕𝑛
, (46)

where 𝑘𝑇 is a constant and 𝑛 is the normal to the interface.

6. Results and Discussions

The results for steady state flows are shown in Figures 2, 3,
and 4. Normalized velocity at the centre of the tube 𝑞max
in (26) is plotted in Figures 2 and 3. Figure 2 shows the
variation of velocity with the porous layer thickness 𝜖𝑇 ∈

[0, 1], when 𝜑𝑓 = 0.6, and Figure 3 shows the variation of
velocity with the volume fraction 𝜑𝑓 ∈ [0, 1], when 𝜖𝑇 = 0.3.
These results indicate that the velocity in the fluid decreases as
the thickness increases for constant porosity of the layer and
the maximum velocity increases when the porosity increases
for constant thickness.

The solutions for the displacement (𝑢) of solid phase and
the velocities of fluid (𝜐, 𝑞) in (23), (24), and (25) are plotted in
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Figure 3: Variation of maximum velocity (𝑞max) with 𝜑𝑓 ∈ [0, 1],
when 𝜖𝑇 = 0.3, 𝑘
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Figure 4: Fluid flux profile in the tube and in the porous medium
with the parameters 𝜖𝑇 = 0.3, 𝜂 = 0.6, and 𝑘

2
= 2.

Figure 4 for the porosity 𝜑𝑓 = 0.6 and 0.9, respectively, where
the parameters are selected as 𝜖𝑇 = 0.3, 𝜂 = 0.6, and 𝑘

2
= 2.

In the case of steady state flow, the velocity profile in the
pure fluid is parabolic plus a uniform flow; the fluid flux
profile 𝜑𝑓𝜐

𝑓
𝑟 in porous medium and the displacement of the

solid phase 𝑢 are almost linear. By increasing the porosity of
the two-phase medium, the velocities of both fluids in the
pure fluid and the porous medium increase as there is less
solid to impede the flow.Therefore, the displacement of solid
decreases, since there is less drag on the solid component.
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Figure 5: Maximum velocity variation with different values of
thickness of porous medium. The parameters are selected as 𝜑𝑓 =

0.6, 𝜂 = 0.6, and 𝑘
2
= 2.
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Figure 6: Velocity profile at five times: 𝑡 = 0.06, 0.12, 0.24, 0.48, and
1 for porosity 𝜑𝑓 = 0.6 and 0.9.

The solutions of maximum velocity in the pure fluid
in time domain are shown in Figure 5, when parameters
𝜑𝑓 = 0.6, 𝜂 = 0.6, and 𝑘

2
= 2 are applied to the system

under the pressure gradient 𝑔(𝑡) = 𝐻(𝑡), where 𝐻(𝑡) is the
Heaviside (step) function. It is apparent that the maximum
velocity decreases when the thickness of the porous medium
𝜖𝑇 increases. As expected, the velocity converges rapidly to
the steady state solutions in (26), that is, immediately after
the normalised time 𝑡 > 1. Figure 6 demonstrates how the
flow develops from a suddenly applied acceleration to the
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parameters 𝜑𝑓 = 0.6, 𝜂 = 0.6, 𝑘

2
= 2, 𝛿 = 3, and 𝛾 = 0.6.
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Figure 8: The displacement of the solid phase at the interface with
parameters 𝜑𝑓 = 0.6, 𝜂 = 0.6, 𝑘

2
= 2, 𝛿 = 3, and 𝛾 = 0.6.

final steady state when the values of the chosen parameters
are 𝜖𝑇 = 0.3, 𝜂 = 0.6, and 𝑘

2 = 2. The effects of the porosity
and the rigid wall of the tube on the velocity profile in pure
fluid are displayed for different volume fraction 𝜑𝑓= 0.6 and
0.9.

For deformable porous medium, the maximum velocity
in the pure fluid is shown in Figure 7 when the parameters
are chosen as 𝜑𝑓 = 0.6, 𝜂 = 0.6, 𝑘2 = 2, and 𝛾 = 0.6. The effect
of porous layer thickness becomes significant in this case. We
notice that, for large thickness of porous layer (𝜖𝑇 > 0.3),
the velocity at the centre of the tube oscillation occurs at
the position of the steady state flow solution. It is believed
that such oscillation in the fluid is caused by the vibration of
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Figure 9: The maximum velocity in pure fluid under the sinusoid
pressure gradient when parameters 𝜑𝑓 = 0.6, 𝜂 = 0.6, 𝑘

2
= 2, 𝛿 = 3,

and 𝛾 = 0.6 are applied.

solid phase around the equilibrium position under dynamic
pressure gradient. To illustrate such influence, we plot the
variation of displacement of the solid phase at the interface
against the real time in Figure 8. Furthermore, the dynamic
response for themaximumvelocity of the pure fluid subjected
to a sinusoid pressure gradient is shown in Figure 9.

7. Conclusion

General solutions for the displacement of solid phase and
the velocities for both fluids in the porous layer and in
the pure fluid space are obtained. The connection (jump)
conditions at the interface between porous medium and pure
fluid discussed for steady viscous flow are introduced for
unsteady viscous flow. It is considered that for unsteady
flow the volume-average velocity in the tangential direction
is continuous across the porous interface and the stress
distribution is proportional to itsvolume fractions at the
interface. The interaction for the solid and the fluid phases in
the porous medium and the effect on the velocity in the pure
fluid are investigated in detail for three cases with different
solid phases: (i) steady state deformation; (ii) rigid porous
layer; (iii) deformable porous layer. Durbin’s Laplace transfor-
mation inversion algorithm is used to obtain a high accuracy
solution in the real time domain. Sufficient examples are
given for Heaviside and sinuous pressure gradients applied
to the system. The derived analytical solutions can be used
to test some interesting practical problems. These analytical
solutions are derived for axial symmetric problems.

Nomenclature

𝜇𝑓: Fluid viscosity
𝑘: Flow permeability of the porous material
𝐾 = 𝜇𝑓/𝑘: Drag coefficient
(𝑟, 𝜃, 𝑧): Cylindrical polar coordinates
𝜐𝑟, 𝜐𝜃, 𝜐𝑧: Velocity components of fluid phase along

radial, circumferential, and longitudinal
directions, respectively
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𝑢𝑟, 𝑢𝜃, 𝑢𝑧: Displacement components of solid phase
along radial, circumferential, and
longitudinal directions, respectively

𝑡: Time
𝑝: Excess pore water pressure
𝜆, 𝜇: Lame constants of the solid phase
𝜇𝑎: Apparent viscosity in the porous medium
𝜑𝑠: Volume fraction of solid phase
𝜑𝑓: Volume fraction of fluid phase, 𝜑𝑓 = 1 − 𝜑𝑠

𝜌𝑓: Density of fluid
𝜌𝑠: Density of soil grain
𝜂 = 𝜇𝑓/𝜇𝑎: Nondimensional viscosity.
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