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Dynamic responses of a viscous fluid flow introduced under a time dependent pressure gradient in a rigid cylindrical tube subject
to deformable porous surface layer have been investigated. The coupling effect of the fluid movement and the deformation of the
porous medium in Laplace transform space have been studied. Governing equations are simplified for the solid displacement and
the fluid velocity in the porous layer. Using Durbin’s algorithm, in transformed domain analytic solutions are obtained, and time
dependent variables are considered. Interaction between the solid and the fluid phases in the porous layer and its effects on fluid flow
in tube are investigated under steady and unsteady flow conditions when the solid phase is either rigid or deformable. Significant
effects of the porous surface layer on the flow in the tube have been observed.

1. Introduction

Richardson and Power [1] studied the deformation of a
porous material with coupled fluid movements. Barry et al.
[2] derived the analytic solutions for a shear fluid over a thin
deformable porous layer on the walls of a two-dimensional
channel considering the porosity and permeability of the
porous layer as constants; therefore, the coupled equations
are linear. Barry et al. [3] obtained a closed form solution for
deformation of porous medium due to a source in a poroelas-
tic medium. This solution shows an indication of the amount
of swelling of the medium and subsequent deformation of the
free surface as a function of the location of the point source
and boundary condition. Presently, numerical simulation
for viscous flow in the porous medium is more applicable.
Pozrikidis [4], Wrobel [5], and Dwivedi et al. [6, 7] used
the boundary element method in solving partial differential
equations. However, there is still a lack of closed form analytic
solution for shear flow over a deformable porous medium.
In this paper, the solutions in closed form for viscous fluid
over a deformation porous layer in the cylinder are obtained
in the Laplace transform space. The coupled equations for
deformation and fluid velocity within the porous layer are
shown in Figure 1. In the present work, the porous medium

is isotropic and axially symmetric, and the deformation of
solid is small. Assuming constant permeability of the porous
medium, linear elasticity theory is applied to investigate
the proposed problem. By Durbin’s inversion method, the
displacement of solid phase and the velocity of fluid are
obtained in the time domain, and analytical solutions for
three different situations of the porous layer (i.e., steady
state deformation, rigid porous layer, and deformable porous
layer) are obtained for a step or a sinusoid pressure gradient
in an infinite tube.

2. Governing Equations

In cylindrical coordinate system as shown in Figure 1, the
governing equations for the velocities of fluid phase, for zero
convective, are given by
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In our case, an infinite long tube of radius a with a
rigid wall, which consists a porous layer of thickness e and
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a fully developed flow as shown in Figure 1, is considered.
The fluid is initially at rest and subjected to a time dependent
pressure differential p = p,(t) at the ends of the tube. Due
to the assumption of an infinite tube, we assume that the
pressure gradient is constant for each section of the tube; that
is, dp/0z = -G, g(t), where g(t) is nondimensional function
of time and all variables are not z dependent. With the
symmetry of the geometry of problem, there are no velocities
along the radial and circumference directions; that is, v, =
vy = U, = uy = 0 everywhere in the tube. When the flow and
solid start impulsively from rest and without moving bound-
aries, under these conditions, that is, dv,/0z = 0Jv,/d0 =
Oou,/dz = 0u,/00 = 0 and volume expression ® = 0, (1),
(2), and (4) are automatically satisfied.
By (3), we have

(&)&)__ P, (3, 19),
Pi\ar )~ %oz "Ha\or " rar )

VK ( Az )
oo *)°
Also, (5) and (6) are automatically satisfied, and (7) for solid
phase becomes
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Taking Laplace transform of (9) and (10), we have
psst, = Gy + 1, V', + K (sii, - 0,), (12)
pss’ T, = 9,Gy + uV’ii, + K (sii, - 0,), (13)

where V2 = (8?/0r?) + (1/r)(3/0r).
Nondimensional variables are defined, for the convenien-
ce in the following analysis, as
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dimensional parameters arisen from the governing equations
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Porous medium layer

FIGURE 1: Schematic diagram shows the tube with a porous medium layer and the cylindrical coordinate.

For convenience, the tilde (7) is dropped in the following
analysis as all variables in the Laplace transform space are
nondimensional hereafter. Substituting these expressions
from (14) and (15) into (12) and (13), we obtain momentum
(16) and (17), respectively. Consider

Vi - (r]5+k2)v+y5u+(pf =0, (16)
0
Vzu—ys<l+%)u+kzv+¢5:0. 17)

By taking ¢, = 1, K = 0, 4, = p4y, n =1, and v = g and
using (14) and (15) in (16), in the pure fluid phase outside of
the porous medium, the governing equation of the pure fluid
velocity is obtained in the following form:

(V2 -s)g+1=0. (18)

3. Analytical Solutions

3.1. Steady State Deformation. For steady state deformation
of porous medium, the pressure gradient G(¢) is applied
steady, and all variables are time independent. Therefore, the
governing equations can be represented, by letting s = 0 in
(16), (17), and (18) as

VZU - kZU + Pr = 0, (19)
Vu+ Kv+g, =0, (20)
Vig+1=0. (21)

In case of steady state deformation, at the interface between
the porous layer and the pure fluid, the nondimensional
boundary conditions and assumptions are as follows:
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Therefore, the general solution of (21) can be obtained as
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When g, = 0, the maximum value of g reduces into g, = qo-
The general solutions of (19) and (20) can be obtained as
Ps
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respectively, where I,(z) and K, (z) are the modified Bessel
functions of the first and second kinds of order .
Considering boundary conditions,
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4. Rigid Porous Layer

For rigid porous medium layer, the displacement in the solid
phase is zero, and the velocity in fluid is time dependent. The
governing equations can be represented in the Laplace space,
from (16), (17), and (18), taking u = 0, and for convenience,
kf =sandk§ =K +1s,
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Considering the boundary conditions ¥ = b : v = 0, dg/or =
(1/(pf)(8v/ar) and solving (27), (28), (29), and (31), we have
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5. Deformable Porous Layer

For the deformable porous medium, the displacement in the
solid phase can be rewritten, in terms of velocity in the porous
from (16), (17), and (18), as

u= —% - % (Vz - ocz)v, (34)

where a, = (s + k). Substituting (34) into (16), (17), and (18)
yields
(V=) (V2 - ) o o= s 1+ 7Y (35)
k?

where a; = ys (1 + (n8s/k*)), &y = ysk®. The general
solution of velocity in porous medium can be expressed as

v = AI, (A7) + BKy (A7) + CI (A1,7) + DKqy (A,7)

s 1185(pf (36)
/\2/\2 L+ 2 ’
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where A, B, C, and D are unknown coefficients and A3 and A}
are two distinct roots of the following quadratic equation
2= (o + ) M + o, — oy = 0. (37)

From (34), the displacement of the solid phase can be written
as

u=——L - —[(X - o) AL, (A7) + (A2 - &) BK, (A7)

+ (/\i - ocz) CI, (A,r) + (Ai - (xz) DK, (Azr)]
o nose
e (“ k2f>’
12

and the velocity of pure fluid in the tube is given by

(38)
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Finally all other coefficients are obtained by
F=0, A=ay+aD, B=b,+bD,
(42)
C=¢+¢D E=¢,+eD.

The maximum velocity in the pure fluid occurs at the centre
of the tube and may be expressed, from (39), as

Imax = E+—. (43)
ki

By the help of (36), in particular, the general solutions can be
expressed, for the velocity v of fluid phase, when the tube is
occupied completely by porous medium, is given by

’755_%‘) (44)
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and, for the displacement u of solid phase, it is
e
ys
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where the constants A’ and B’ can be determined directly
from the fixed boundary conditions at the rigid wall.

Following Barry et al. [2], in particular, both for steady
and unsteady flows, we can prove that at the interface when
er — 0 the velocity has behavior

Jq
= k -, 46
q T3, (46)

where k. is a constant and # is the normal to the interface.

6. Results and Discussions

The results for steady state flows are shown in Figures 2, 3,
and 4. Normalized velocity at the centre of the tube g,
in (26) is plotted in Figures 2 and 3. Figure 2 shows the
variation of velocity with the porous layer thickness e €
[0, 1], when ¢ o= 0.6, and Figure 3 shows the variation of
velocity with the volume fraction ¢ ;€ [0, 1], when e = 0.3.
These results indicate that the velocity in the fluid decreases as
the thickness increases for constant porosity of the layer and
the maximum velocity increases when the porosity increases
for constant thickness.

The solutions for the displacement (1) of solid phase and
the velocities of fluid (v, q) in (23), (24), and (25) are plotted in
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FIGURE 4: Fluid flux profile in the tube and in the porous medium
with the parameters e, = 0.3, 77 = 0.6, and K =2.

Figure 4 for the porosity ¢ = 0.6 and 0.9, respectively, where

the parameters are selected as €, = 0.3, # = 0.6, and k* = 2.
In the case of steady state flow, the velocity profile in the
pure fluid is parabolic plus a uniform flow; the fluid flux
profile ¢ fvf in porous medium and the displacement of the
solid phase u are almost linear. By increasing the porosity of
the two-phase medium, the velocities of both fluids in the
pure fluid and the porous medium increase as there is less
solid to impede the flow. Therefore, the displacement of solid
decreases, since there is less drag on the solid component.
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FIGURE 5: Maximum velocity variation with different values of
thickness of porous medium. The parameters are selected as ¢, =

0.6,1 = 0.6, and k* = 2.
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FIGURE 6: Velocity profile at five times: ¢ = 0.06, 0.12, 0.24, 0.48, and
1 for porosity ¢ = 0.6 and 0.9.

The solutions of maximum velocity in the pure fluid
in time domain are shown in Figure 5, when parameters
¢y = 0.6, n = 0.6, and k* = 2 are applied to the system
under the pressure gradient g(t) = H(t), where H(¢) is the
Heaviside (step) function. It is apparent that the maximum
velocity decreases when the thickness of the porous medium
er increases. As expected, the velocity converges rapidly to
the steady state solutions in (26), that is, immediately after
the normalised time ¢t > 1. Figure 6 demonstrates how the
flow develops from a suddenly applied acceleration to the
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FIGURE 7: The velocity at the centre position in pure fluid with
parameters ¢ = 0.6,7 = 0.6, K =2,6=3and y = 0.6.
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FIGURE 8: The displacement of the solid phase at the interface with
parameters ¢, = 0.6, = 0.6, K =2,8=3andy=0.6.

final steady state when the values of the chosen parameters
are e = 0.3, 77 = 0.6, and k* = 2. The effects of the porosity
and the rigid wall of the tube on the velocity profile in pure
fluid are displayed for different volume fraction ¢ ;= 0.6 and
0.9.

For deformable porous medium, the maximum velocity
in the pure fluid is shown in Figure 7 when the parameters
are chosen as ¢ = 0.6, 17 = 0.6, k* =2,and y = 0.6. The effect
of porous layer thickness becomes significant in this case. We
notice that, for large thickness of porous layer (e; > 0.3),
the velocity at the centre of the tube oscillation occurs at
the position of the steady state flow solution. It is believed
that such oscillation in the fluid is caused by the vibration of

0.30
0.24
0.18 |
0.12
0.06 -

ETom

1, 1.

0.00

Qmax

er = 030
\)A
PN\

0J0
-0.06
-0.12
-0.18
-0.24
-0.30

FIGURE 9: The maximum velocity in pure fluid under the sinusoid
pressure gradient when parameters ¢, = 0.6, 77 = 0.6, K =206=3,
and y = 0.6 are applied.

solid phase around the equilibrium position under dynamic
pressure gradient. To illustrate such influence, we plot the
variation of displacement of the solid phase at the interface
against the real time in Figure 8. Furthermore, the dynamic
response for the maximum velocity of the pure fluid subjected
to a sinusoid pressure gradient is shown in Figure 9.

7. Conclusion

General solutions for the displacement of solid phase and
the velocities for both fluids in the porous layer and in
the pure fluid space are obtained. The connection (jump)
conditions at the interface between porous medium and pure
fluid discussed for steady viscous flow are introduced for
unsteady viscous flow. It is considered that for unsteady
flow the volume-average velocity in the tangential direction
is continuous across the porous interface and the stress
distribution is proportional to itsvolume fractions at the
interface. The interaction for the solid and the fluid phases in
the porous medium and the effect on the velocity in the pure
fluid are investigated in detail for three cases with different
solid phases: (i) steady state deformation; (i) rigid porous
layer; (iii) deformable porous layer. Durbin’s Laplace transfor-
mation inversion algorithm is used to obtain a high accuracy
solution in the real time domain. Sufficient examples are
given for Heaviside and sinuous pressure gradients applied
to the system. The derived analytical solutions can be used
to test some interesting practical problems. These analytical
solutions are derived for axial symmetric problems.

Nomenclature
py Fluid viscosity
k: Flow permeability of the porous material

K = pg/k: Drag coefficient

(r,0,z):  Cylindrical polar coordinates

v,, Ug, U,:  Velocity components of fluid phase along
radial, circumferential, and longitudinal
directions, respectively



u,, ug, u,: Displacement components of solid phase
along radial, circumferential, and
longitudinal directions, respectively

t: Time

p: Excess pore water pressure

A, e Lame constants of the solid phase

Uyt Apparent viscosity in the porous medium
@ Volume fraction of solid phase

% Volume fraction of fluid phase, ¢ = 1 - ¢,
Py Density of fluid

Pyt Density of soil grain

1 = p¢/u,: Nondimensional viscosity.
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