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This paper deals with the springback analysis in sheet metal forming using modified Ludwik stress-strain relation. Using the
deformation theory of plasticity, formulation of the problem and spring back ratio is derived using modified Ludwik stress strain
relationship with Tresca and von Mises yielding criteraia. The results have been representing the effect of different value of 𝑌/𝐸 or
𝜎
𝑜
/𝐸 ratio, different values of Strain hardening index (𝑛), Poisson’s ratio (]), and thickness on spring back ratio (𝑅

𝑜
/𝑅
𝑓
). The main

aim of this paper is to study the effects of the thickness, 𝑌/𝐸 ratio, 𝑛 and Poisson’s ratio in spring back ratio.

1. Introduction

In sheet metal working, sheets are deformed to cylindrical
and helical shapes by plastic bending with the help of a punch
and die set. When such bending is properly done, the inside
contour of the section matches the surface contour of the die
during the forming operation. However, after the release of
the applied loads, the contour assumes a different shape than
that of the die because of the release of elastic stresses in the
metal. This elastic distortion is commonly called springback.
Springback complicates tool design in that the die must be
designed to compensate for it. Consequently, it is desirable to
have a method of quantitatively predicting the magnitude of
springback as a function of the properties of the material and
geometry involved in the forming operation.

In bending, the springback is ameasure of elastic recovery
of radius on removal of the applied bending moment or
load after the bending section is beyond elastic limit. While
designing the die set, the springback factor should be taken
into account to avoidmismatch while assembling formed dif-
ferent sections.

Initially, springback studies are with sheet bending oper-
ations. Sachs [1], Schroeder [2], Gardiner [3], Singh and
Johnson [4], and others studied the springback considered
bending of sheets of different shapes and depicted springback
as a function of material thickness, length, and width of the

sheets taken. Their studies were limited to V- and U-shaped
dies for applying bending loads and they predicted the
springback as a measure of change in the curvature dis-
tribution. Huth [5], Nadai [6], and Upadhyay [7] have all
done a number of excellent work on the elasto-plastic torsion
of bars with rectangular sections, but their work has been
limited to monotonically increasing loads only. Dwivedi
et al. [8, 9] analytically predicted the residual angle of twist
and torque relation, and so forth, for bars of elastic strain-
hardening materials with narrow rectangular sections. This
work, however, has the limitation that it is valid for thin
rectangular strips only. Dwivedi et al. [10, 11] dealt with the
torsional springback of square-section bars of linear and
nonlinear work-hardening materials. Dwivedi et al. [12] also
dealt with the torsional springback of L-shaped section bars
of nonlinear work-hardening materials.

An accurate analysis of springback has been made in the
past on sheet bending and tube bending operations through
experiment [13–18]. Torsional springback in thin tubes with
nonlinear work hardening analysis was made by Choubey
et al. [19–21].

In the following, approximation equations are derived in
an attempt to provide a quantitative method with practical
utility for predicting the springback behavior in bent section
of sheet metal as a function of die radius, sheet thickness, and
stress-strain characteristics of the material.
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2. Basic Equations and Formulation

In this paper, springback prediction approach using themod-
ified Ludwik stress-strain relation was studied. The assump-
tion of narrow beam of a wide sheet can significantly alter
themagnitude of the predicted results in sheet metal bending
because this ignorance of the transverse stresses are present
during forming. In this paper, it is assumed that the bend
section is a wide sheet of an elastic plastic strain hardening
material in an effort to obtain more accurate expression for
predicting the springback behavior. In this method, use of
applied moment and curvature relation during the formation
of a wide sheet of metal around a portion of cylindrical
die was done to derive springback relationship. From the
bending equation, we directly relate the bendingmoment and
curvature during the forming as follows:

𝑀

𝐼
=

𝜎

𝑦
=

𝐸

𝑅
,

𝑀

𝐸𝐼
=

1

𝑅
,

𝑀 = 𝐶 ∗
1

𝑅
.

(1)

From this equation, the springback is related to the
applied bending moment and curvature during the forma-
tion. The modified Ludwik stress-strain relation (Figure 2) is
given by

𝜎 =

[
[
[

[

𝐸𝜀 𝜀 ≤
𝑌

𝐸

𝑌(
𝐸𝜀

𝑌
)

𝑛

𝜀 ⩾̇
𝑌

𝐸

]
]
]

]

, (2)

where 𝑌 = 𝜎
𝑜
, 𝜎 = 𝐸𝜀 is the elastic part and 𝜎 = 𝜎

𝑜
(𝐸𝜀/𝜎

𝑜
)
𝑛

is the plastic part, and the equation gives the total stress.

3. Assumption for Derivation of
Springback Behaviour

(1) Pure bending of the sheet to cylindrical surface.
(2) The cross section dimensions of the sheet are such so

that the width to thickness ratio is large.
(3) The stress-strain characteristics of material are the

same in tension and compression.
(4) The natural surface is always in the centre of the sheet,

and plane sections remain plane during bending.
(5) The cross section dimensions of the sheet do not

change significantly in bending.
(6) The radius of bending is large compared to the thick-

ness of the sheet so radial stresses are assumed to be
negligible.

(7) The circumferential strains are sufficiently small so
that the conventional strain and the true strain are
approximately equivalent.

(8) The transverse strain is zero at any point in the sheet.
(9) The circumferential strain for any fiber does not vary

along the bent section.
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Figure 1: Schematic representation of curvature versus applied mo-
ment during bending.
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Figure 2: Empirical stress-strain curve for elastic plastic material in
modified ludwik stress-strain relation.

4. Derivation of Springback Equation for
Tresca Yield Criteria

Figure 1 shows the schematic plot of applied bendingmoment
versus curvature during the formation of awide sheet ofmetal
around a portion of a cylindrical die at point A, the material
yields and plastic deformation continuous until the inside
surface of the material conforms to the inside surface of the
material conforms to die at point Bwhen the appliedmoment
is released elastic springback occurs from B to C.The change
in curvature due to this elastic springback is (1/𝑅

𝑜
) − (1/𝑅

𝑓
)

From Figure 3,

1

𝑅
𝑜

−
1

𝑅
𝑓

=
𝑀max

𝜕𝑀
𝐸
/𝜕 (1/𝑅)

. (3)

Figure 3 shows a section of bent sheet and the coordinate
system adopted.Then calculation ofmaximum applied bend-
ing moment by balancing the external and internal moments
is as follows:

𝑀max = ∫

+𝑡/2

−𝑡/2

𝜎
𝑥
𝑦𝑑𝑦 = 2∫

𝑡/2

0

𝜎
𝑥
𝑦𝑑𝑦. (4)
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Figure 3: Direction of principal stresses and curvature during bend-
ing.

Before proceeding, it is desirable to attempt to character-
ize the stress-strain behaviour of material in a simple tension.
From the modified Ludwik stress-strain relation, we get

𝜎 =

[
[
[
[

[

𝐸𝜀 𝜀 ≤
𝑌

𝐸

𝑌(
𝐸𝜀

𝑌
)

𝑛

𝜀⩾̇
𝑌

𝐸

]
]
]
]

]

. (5)

This is the equation for springback for Modified Ludwik
stress-strain relation.

In elastic region,

𝜎 = 𝐸𝜀. (6)

In plastic region, where 𝑌 = 𝜎
𝑜
,

𝜎 = 𝜎
𝑜
(

𝐸

𝜎
𝑜

)

𝑛

𝜀
𝑛

. (7)

Let

𝜎
𝑜
(

𝐸

𝜎
𝑜

)

𝑛

= 𝐾. (8)

Then

𝜎 = 𝐾𝜀
𝑛

. (9)

At yield point, the stress in elastic and plastic region is equal;
so we can write

𝐸𝜀
𝑜
= 𝐾𝜀
𝑛

𝑜
,

𝜀
𝑜
= (

𝐾

𝐸
)

1/(1−𝑛)

.

(10)

From (10), stress in yield point is

𝜎
𝑜
= 𝐾𝜀
𝑛

𝑜
= 𝐾(

𝐾

𝐸
)

𝑛/(1−𝑛)

. (11)

It will be assumed for stresses less than𝜎
𝑜
that the stress-strain

behaviour of the material in a simple tension test is elastic (6)
and that yielding occurs at 𝜎

𝑜
and (7) is applicable for stresses

greater than 𝜎
𝑜
.

For combined states of stress, the relationship between
principal stresses and strain for the elastic.

By Hooke’s law,

𝜀
𝑥
=

1

𝐸
(𝜎
𝑥
− ] (𝜎

𝑦
+ 𝜎
𝑧
)) ,

𝜀
𝑦
=

1

𝐸
(𝜎
𝑦
− ] (𝜎

𝑥
+ 𝜎
𝑧
)) ,

𝜀
𝑧
=

1

𝐸
(𝜎
𝑧
− ] (𝜎

𝑦
+ 𝜎
𝑥
)) .

(12)

From assumptions that the radius of bending is large
compared to thickness of the sheet so radial stresses can
assume to be negligible, and the transverse strain is zero at
any point in the sheet,

𝜎
𝑦
= 𝜀
𝑧
= 𝛿
𝑧
= 0. (13)

And the circumferential strain for any fiber does not vary
along the bent section.

So,

𝜀
𝑥
= 𝛿
𝑥
. (14)

Then, from putting the value of (12) in (13),

𝜀
𝑧
=

1

𝐸
(𝜎
𝑧
− ] (𝜎

𝑦
+ 𝜎
𝑥
)) ,

0 =
1

𝐸
(𝜎
𝑧
− ] (𝜎

𝑦
+ 𝜎
𝑥
)) ,

1

𝐸
(𝜎
𝑧
− ] (𝜎

𝑥
)) = 0,

𝜎
𝑧
= ]𝜎
𝑥
.

(15)

From maximum shear stress theory of failure (Tresca yield
criteria),

𝜎
𝑜

2
=

𝜎
𝑥
− 𝜎
𝑧

2
,

𝜎
𝑜
= 𝜎
𝑥
− ]𝜎
𝑥
,

𝜎
𝑜
= 𝜎
𝑥
(1 − ]) .

(16)

Substituting (16) in (11),

𝜎
𝑜
= 𝜎
𝑥
(1 − ]) = 𝐾(

𝐾

𝐸
)

𝑛/(1−𝑛)

,

𝜎
𝑥
=

𝐾(𝐾/𝐸)
1/(1−𝑛)

(1 − ])
.

(17)

Then,

𝜀
𝑥
=

1

𝐸
(𝜎
𝑥
− ] (𝜎

𝑦
+ 𝜎
𝑧
)) ,

𝜀
𝑥
=

1

𝐸
(𝜎
𝑥
− ]2𝜎
𝑥
) ,

𝜀
𝑥
= (

1

𝐸
)𝜎
𝑥
(1 − ]2) .

(18)
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So in yield point, the circumferential strain is

𝜀
𝑥𝑜

= (
1

𝐸
)𝜎
𝑜
(1 − ]2) . (19)

Putting yield point stress value from (11), we get

𝜀
𝑥𝑜

=
𝐾(𝐾/𝐸)

𝑛/(1−𝑛)

𝐸 (1 − ])
(1 − ]2) ,

𝜀
𝑥𝑜

= (
𝐾

𝐸
)

1/(1−𝑛)

(1 + ]) .

(20)

This is the approximate value of circumferential strain at elas-
tic plastic interface.Then in elastic region, the circumferential
stress is

𝜎
𝑥
=

𝐸

(1 − ]2)
𝜀
𝑥
. (21)

Here, 𝜀
𝑥
= 𝑦/𝑅

𝑜
.

Then,

𝜎
𝑥
=

𝐸

(1 − ]2)
(

𝑦

𝑅
𝑜

) , (22)

for 0 ≤ 𝜀
𝑥
≤ (𝐾/𝐸)

1/(1−𝑛)

(1 + ]).
From the deformation theory of plasticity,

𝛿
𝑥
=

1

𝐾1/𝑛
(𝜎
2

𝑥
+ 𝜎
2

𝑦
+ 𝜎
2

𝑧
− 𝜎
𝑥
𝜎
𝑦
− 𝜎
𝑦
𝜎
𝑧
− 𝜎
𝑧
𝜎
𝑥
)
(1−𝑛)/2𝑛

× (𝜎
𝑥
−

𝜎
𝑦

2
−

𝜎
𝑧

2
) ,

𝛿
𝑦
=

1

𝐾1/𝑛
(𝜎
2

𝑥
+ 𝜎
2

𝑦
+ 𝜎
2

𝑧
− 𝜎
𝑥
𝜎
𝑦
− 𝜎
𝑦
𝜎
𝑧
− 𝜎
𝑧
𝜎
𝑥
)
(1−𝑛)/2𝑛

× (𝜎
𝑦
−

𝜎
𝑥

2
−

𝜎
𝑧

2
) ,

𝛿
𝑧
=

1

𝐾1/𝑛
(𝜎
2

𝑥
+ 𝜎
2

𝑦
+ 𝜎
2

𝑧
− 𝜎
𝑥
𝜎
𝑦
− 𝜎
𝑦
𝜎
𝑧
− 𝜎
𝑧
𝜎
𝑥
)
(1−𝑛)/2𝑛

× (𝜎
𝑧
−

𝜎
𝑥

2
−

𝜎
𝑦

2
) .

(23)

From assumptions that the radius of bending is large
compared to thickness of the sheet so radial stresses can
assume to be negligible and the transverse strain is zero at
any point in the sheet, 𝜎

𝑦
= 𝜀
𝑧
= 𝛿
𝑧
= 0.

And the circumferential strain for any fiber does not vary
along the bent section. So, 𝜀

𝑥
= 𝛿
𝑥
.

Put this value in (23). We get

𝛿
𝑧
=

1

𝐾1/𝑛
(𝜎
2

𝑥
+ 𝜎
2

𝑦
+ 𝜎
2

𝑧
− 𝜎
𝑥
𝜎
𝑦
− 𝜎
𝑦
𝜎
𝑧
− 𝜎
𝑧
𝜎
𝑥
)
(1−𝑛)/2𝑛

× (𝜎
𝑧
−

𝜎
𝑥

2
−

𝜎
𝑦

2
) ,

0 =
1

𝐾1/𝑛
(𝜎
2

𝑥
+ 𝜎
2

𝑧
− 𝜎
𝑧
𝜎
𝑥
)
(1−𝑛)/2𝑛

(𝜎
𝑧
−

𝜎
𝑥

2
) .

(24)

So,

0 = (𝜎
𝑧
−

𝜎
𝑥

2
) ,

𝜎
𝑧
=

𝜎
𝑥

2
.

(25)

Putting the value of 𝜎
𝑧
into (23), we found that

𝛿
𝑥
=

1

𝐾1/𝑛
(𝜎
2

𝑥
+ 𝜎
2

𝑦
+ 𝜎
2

𝑧
− 𝜎
𝑥
𝜎
𝑦
− 𝜎
𝑦
𝜎
𝑧
− 𝜎
𝑧
𝜎
𝑥
)
(1−𝑛)/2𝑛

× (𝜎
𝑥
−

𝜎
𝑦

2
−

𝜎
𝑧

2
) ,

𝛿
𝑥
=

1

𝐾1/𝑛
(𝜎
2

𝑥
+

𝜎
2

𝑥

4
−

𝜎
2

𝑥

2
)

(1−𝑛)/2𝑛

(𝜎
𝑥
−

𝜎
𝑥

4
) ,

𝛿
𝑥
=

1

𝐾1/𝑛
(

3𝜎
2

𝑥

4
)

(1−𝑛)/2𝑛

(
3𝜎
𝑥

4
) ,

𝛿
𝑥
=

1

𝐾1/𝑛
(
3

4
)

(1+𝑛)/2𝑛

𝜎
𝑥

1/𝑛

,

𝜎
𝑥
=

𝐾

(3/4)
(1+𝑛)/2

𝛿
𝑛

𝑥
.

(26)

From initial assumption that the circumferential strain
are sufficiently small so that the conventional strain and true
strain are approximately equivalent,

𝜀
𝑥
=

𝑦

𝑅
𝑜

= 𝛿
𝑥
. (27)

Putting the value of 𝛿
𝑥
into (26), we get

𝜎
𝑥
=

𝐾

(3/4)
(1+𝑛)/2

(
𝑦

𝑅
𝑜

)

𝑛

, (28)

where 𝜎
𝑥
is valid for plastic region; that is,

(
𝐾

𝐸
)

1/(1−𝑛)

(1 + ]) ≤ 𝜀
𝑥
≤

𝑡

2
. (29)

From (4), we found maximum bending moment is

𝑀max = 2 [∫

𝑡/2

0

𝜎
𝑥
𝑦𝑑𝑦] , (30)

where we can split the limit into elastic or plastic part, from
0 to 𝑅

𝑜𝑒𝑥
elastic region and 𝑅

𝑜𝑒𝑥
to (𝑡/2) plastic region, where

𝑅
𝑜𝑒𝑥

is calculated by

𝑅
𝑜𝑒𝑥

= 𝑅
𝑜
(
𝐾

𝐸
)

1/(1−𝑛)

(1 + ]) . (31)



ISRNMechanical Engineering 5

Now,

𝑀max = 2 [∫

𝑅
𝑜𝑒𝑥

0

𝜎
𝑥(elastic)𝑦𝑑𝑦 + ∫

𝑡/2

𝑅
𝑜𝑒𝑥

𝜎
𝑥(plastic)𝑦𝑑𝑦]

= 2 [∫

𝑅
𝑜𝑒𝑥

0

(
𝐸

1 − ]2
)𝑦
2

𝑑𝑦

+∫

𝑡/2

𝑅
𝑜𝑒𝑥

𝐾

(3/4)
(1+𝑛)/2

(
𝑦

𝑅
𝑜

)

𝑛

𝑦𝑑𝑦]

= 2 [∫

𝑅
𝑜𝑒𝑥

0

(
𝐸

1 − ]2
)𝑦
2

𝑑𝑦

+ ∫

𝑡/2

𝑅
𝑜𝑒𝑥

𝐾

(3/4)
(1+𝑛)/2

(
1

𝑅
𝑜

)

𝑛

𝑦
𝑛+1

𝑑𝑦]

= 2(
1

𝑅
𝑜

)[(
𝐸

1 − ]2
)

𝑦
3

3
]

𝑅
𝑜𝑒𝑥

0

+ 2[
𝐾

(3/4)
(1+𝑛)/2

(
1

𝑅
𝑜

)

𝑛

𝑦
𝑛+2

𝑛 + 2
]

𝑡/2

𝑅
𝑜𝑒𝑥

.

(32)

Put the value of 𝑅
𝑜𝑒𝑥

in above equation.
Then

= 2[
𝐸𝑅
2

𝑜
(𝐾/𝐸)

3/(1−𝑛)

3 (1 − ])
(1 + ])2]

+ 2[
𝐾(𝑡/2)

𝑛+2

(3/4)
(1+𝑛)/2

𝑅𝑛
𝑜
(𝑛 + 2)

−
𝐾𝑅
2

𝑜
(𝐾/𝐸)

(𝑛+2)/(1−𝑛)

(1 + ])𝑛+2

(3/4)
(1+𝑛)/2

(𝑛 + 2)

] .

(33)

From elementary plate theory [17] applied moment per
unit width during elastic unloading,

𝑀
𝐸

𝐼
=

𝜎
𝑥

𝑦
,

𝑀
𝐸
=

2 ⋅ 𝐸 ⋅ (𝑡/2)
3

3 (1 − ]2) ⋅ 𝑅
.

(34)

The slope of elastic recovery in elastic unloading is

𝜕𝑀
𝐸

𝜕 (1/𝑅)
=

2 ⋅ 𝐸 ⋅ (𝑡/2)
3

3 (1 − ]2)
. (35)

Putting this into (3), we get

1

𝑅
𝑜

−
1

𝑅
𝑓

=
𝑀max

𝜕𝑀
𝐸
/𝜕 (1/𝑅)

𝑅
𝑜

𝑅
𝑓

= 1 − 𝑅
𝑜
(

𝑀max
𝜕𝑀
𝐸
/𝜕 (1/𝑅)

) ,

𝑅
𝑜

𝑅
𝑓

= 1 − 𝑅
𝑜
{(

2𝑅
𝑜

𝑡
)

3

(
𝐾

𝐸
)

3/(1−𝑛)

(1 + ])3

+

3𝐾 (1 − ]2) (2𝑅
𝑜
/𝑡)
1−𝑛

𝐸(3/4)
(1+𝑛)/2

(𝑛 + 2)

−
3((2𝑅

𝑜
)/𝑡)
3

(𝐾/𝐸)
3/(1−𝑛)

(1 + ])𝑛+3 (1 − ])

(3/4)
(1+𝑛)/2

(𝑛 + 2)

} ,

𝑅
𝑜

𝑅
𝑓

= 1 −

3𝐾 (1 − ]2)

𝐸(3/4)
(1+𝑛)/2

(𝑛 + 2)

(
2𝑅
𝑜

𝑡
)

1−𝑛

+ [(
2𝑅
𝑜

𝑡
) (

𝐾

𝐸
)

1/(1−𝑛)

(1 + ])]
3

× [
3(1 + ])𝑛 (1 − ])

(3/4)
(1+𝑛)/2

(𝑛 + 2)

− 1] ,

𝑅
𝑜

𝑅
𝑓

= 1 −

3 (1 − ]2)

(3/4)
(1+𝑛)/2

(𝑛 + 2)

(
𝐸

𝜎
𝑜

)

𝑛−1

(
2𝑅
𝑜

𝑡
)

1−𝑛

+ [(
2𝑅
𝑜

𝑡
) (

𝜎
𝑜

𝐸
)

1

(1 + ])]
3

× [
3(1 + ])𝑛 (1 − ])

(3/4)
(1+𝑛)/2

(𝑛 + 2)

− 1] .

(36)

This is the equation for springback ratio for modi-
fied Ludwik stress-strain relationship using maximum shear
stress theory.

5. Derivation of Springback Equation for
Von Mises Yielding

From maximum shear stress theory of failure (von Mises
yielding criteria),

𝜎
2

𝑜
=

1

2
{(𝜎
𝑥
− 𝜎
𝑦
)
2

+ (𝜎
𝑦
− 𝜎
𝑧
)
2

+ (𝜎
𝑧
− 𝜎
𝑥
)
2

} ,

𝜎
2

𝑜
=

1

2
{𝜎
2

𝑥
+ 𝜎
2

𝑧
+ 𝜎
2

𝑧
− 2𝜎
𝑧
𝜎
𝑥
+ 𝜎
2

𝑥
} ,

𝜎
𝑜
= 𝜎
𝑥
(1 + ]2 − ])

1/2

,

(37)

by using (13) and (14).
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Substituting (15) in (11), at yield point,

𝜎
𝑜
= 𝐾(

𝐾

𝐸
)

𝑛/(1−𝑛)

= 𝜎
𝑜𝑥

(1 + ]2 − ])
1/2

,

𝜎
𝑜𝑥

(1 + ]2 − ])
1/2

= 𝐾(
𝐾

𝐸
)

𝑛/(1−𝑛)

,

𝜎
𝑥𝑜

=
𝐾(𝐾/𝐸)

𝑛/(1−𝑛)

(1 − ] + ]2)
1/2

.

(38)

Now,

𝜀
𝑥
=

1

𝐸
(𝜎
𝑥
− ] (𝜎

𝑦
+ 𝜎
𝑧
)) ,

𝜀
𝑥
=

1

𝐸
(𝜎
𝑥
− ]2𝜎
𝑥
) ,

𝜀
𝑥
=

1

𝐸
𝜎
𝑥
(1 − ]2) .

(39)

So, in yield point, the circumferential strain is

𝜀
𝑥𝑜

=
1

𝐸
𝜎
𝑜𝑥

(1 − ]2) . (40)

Putting yield point stress value from (38) in (40), we get

𝜀
𝑥𝑜

=
𝐾(𝐾/𝐸)

𝑛/(1−𝑛)

𝐸(1 − 𝜗 + 𝜗2)
1/2

(1 − ]2) ,

𝜀
𝑥𝑜

= (
𝐾

𝐸
)

1/(1−𝑛) (1 − ]2)

(1 − ] + ]2)
1/2

.

(41)

This is the approximate value of circumferential strain at
elastic plastic interface.

Then in elastic region, the circumferential stress is

𝜎
𝑥
=

𝐸

(1 − ]2)
𝜀
𝑥
. (42)

Here, 𝜀
𝑥
= 𝑦/𝑅

𝑜
.

Putting value of circumferential strain, we get

𝜎
𝑥
=

𝐸

(1 − ]2)
(

𝑦

𝑅
𝑜

) , (43)

for 0 ≤ 𝜀
𝑥
≤ (𝐾/𝐸)

1/(1−𝑛)

((1 − ]2)/(1 − ] + ]2)
1/2

).
From the deformation theory of plasticity [16],

𝛿
𝑥
=

1

𝐾1/𝑛
(𝜎
2

𝑥
+ 𝜎
2

𝑦
+ 𝜎
2

𝑧
− 𝜎
𝑥
𝜎
𝑦
− 𝜎
𝑦
𝜎
𝑧
− 𝜎
𝑧
𝜎
𝑥
)
(1−𝑛)/2𝑛

× (𝜎
𝑥
−

𝜎
𝑦

2
−

𝜎
𝑧

2
) ,

𝛿
𝑦
=

1

𝐾1/𝑛
(𝜎
2

𝑥
+ 𝜎
2

𝑦
+ 𝜎
2

𝑧
− 𝜎
𝑥
𝜎
𝑦
− 𝜎
𝑦
𝜎
𝑧
− 𝜎
𝑧
𝜎
𝑥
)
(1−𝑛)/2𝑛

× (𝜎
𝑦
−

𝜎
𝑥

2
−

𝜎
𝑧

2
) ,

𝛿
𝑧
=

1

𝐾1/𝑛
(𝜎
2

𝑥
+ 𝜎
2

𝑦
+ 𝜎
2

𝑧
− 𝜎
𝑥
𝜎
𝑦
− 𝜎
𝑦
𝜎
𝑧
− 𝜎
𝑧
𝜎
𝑥
)
(1−𝑛)/2𝑛

× (𝜎
𝑧
−

𝜎
𝑥

2
−

𝜎
𝑦

2
) .

(44)

From assumptions that the radius of bending is large
compared to thickness of the sheet so radial stresses can
assume to be negligible and the transverse strain is zero at any
point in the sheet,

𝜎
𝑦
= 𝜀
𝑧
= 𝛿
𝑧
= 0. (45)

And the circumferential strain for any fiber does not vary
along the bent section.

So,

𝜀
𝑥
= 𝛿
𝑥
. (46)

Put these values in (44). We get

𝛿
𝑧
=

1

𝐾1/𝑛
(𝜎
2

𝑥
+ 𝜎
2

𝑦
+ 𝜎
2

𝑧
− 𝜎
𝑥
𝜎
𝑦
− 𝜎
𝑦
𝜎
𝑧
− 𝜎
𝑧
𝜎
𝑥
)
(1−𝑛)/2𝑛

× (𝜎
𝑧
−

𝜎
𝑥

2
−

𝜎
𝑦

2
) ,

0 =
1

𝐾1/𝑛
(𝜎
2

𝑥
+ 𝜎
2

𝑧
− 𝜎
𝑧
𝜎
𝑥
)
(1−𝑛)/2𝑛

(𝜎
𝑧
−

𝜎
𝑥

2
) .

(47)

So,

0 = (𝜎
𝑧
−

𝜎
𝑥

2
) ,

𝜎
𝑧
=

𝜎
𝑥

2
.

(48)

Putting the value of 𝜎
𝑧
into (44), we get

𝛿
𝑥
=

1

𝐾1/𝑛
(𝜎
2

𝑥
+ 𝜎
2

𝑦
+ 𝜎
2

𝑧
− 𝜎
𝑥
𝜎
𝑦
− 𝜎
𝑦
𝜎
𝑧
− 𝜎
𝑧
𝜎
𝑥
)
(1−𝑛)/2𝑛

× (𝜎
𝑥
−

𝜎
𝑦

2
−

𝜎
𝑧

2
) ,

𝛿
𝑥
=

1

𝐾1/𝑛
(𝜎
2

𝑥
+

𝜎
2

𝑥

4
−

𝜎
2

𝑥

2
)

(1−𝑛)/2𝑛

(𝜎
𝑥
−

𝜎
𝑥

4
) ,

𝛿
𝑥
=

1

𝐾1/𝑛
(

3𝜎
2

𝑥

4
)

(1−𝑛)/2𝑛

(
3𝜎
𝑥

4
) ,

𝛿
𝑥
=

1

𝐾1/𝜆
(
3

4
)

(1+𝑛)/2𝑛

𝜎
1/𝑛

𝑥
,

𝜎
𝑥
=

𝐾

(3/4)
(1+𝑛)/𝑛

𝛿
𝑛

𝑥
.

(49)

From initial assumption that the circumferential strain
are sufficiently small so that the conventional strain and true
strain are approximately equivalent,

𝜀
𝑥
=

𝑦

𝑅
𝑜

= 𝛿
𝑥
. (50)

Putting the value of 𝛿
𝑥
into (49), we get

𝜎
𝑥
=

𝐾

(3/4)
(1+𝑛)/𝑛

(
𝑦

𝑅
𝑜

)

𝑛

, (51)
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where 𝜎
𝑥
is valid for plastic region; that is,

for (
𝐾

𝐸
)

1/(1−𝑛) (1 − ]2)

(1 − ] + ]2)
≤ 𝜀
𝑥
≤

𝑡

2
. (52)

From (4), maximum bending moment is

𝑀max = 2 [∫

𝑡/2

0

𝜎
𝑥
𝑦𝑑𝑦] . (53)

We can split the limit into elastic or plastic part from 0 to 𝑡/2

to 0 to 𝑅
𝑜𝑒𝑥

elastic region and 𝑅
𝑜𝑒𝑥

to 𝑡/2 plastic region where
𝑅
𝑜𝑒𝑥

is calculated by

𝑅
𝑜𝑒𝑥

= (
𝐾

𝐸
)

1/(1−𝑛)

𝑅
𝑜

(1 − ]2)

(1 − ] + ]2)
1/2

,

𝑀max = 2 [∫

𝑅
𝑜𝑒𝑥

0

𝜎
𝑥(elastic)𝑦𝑑𝑦 + ∫

𝑡/2

𝑅
𝑜𝑒𝑥

𝜎
𝑥(plastic)𝑦𝑑𝑦]

= 2 [∫

𝑅
𝑜𝑒𝑥

0

𝐸

1 − ]2
𝑦
2

(
1

𝑅
𝑜

)𝑑𝑦

+ ∫

𝑡/2

𝑅
𝑜𝑒𝑥

𝐾

(3/4)
(1+𝑛)/2

(
𝑦

𝑅
𝑜

)

𝑛

𝑦𝑑𝑦]

= 2 [∫

𝑅
𝑜𝑒𝑥

0

(
𝐸

1 − ]2
)𝑦
2

(
1

𝑅
𝑜

)𝑑𝑦

+ ∫

𝑡/2

𝑅
𝑜𝑒𝑥

𝐾

(3/4)
(1+𝑛)/2

(
1

𝑅
𝑜

)

𝑛

𝑦
𝑛+1

𝑑𝑦]

= 2(
1

𝑅
𝑜

)[(
𝐸

1 − ]2
)

𝑦
3

3
]

𝑅
𝑜𝑒𝑥

0

+ 2[
𝐾

(3/4)
(1+𝑛)/2

(
1

𝑅
𝑜

)

𝑛

𝑦
𝑛+2

𝑛 + 2
]

𝑡/2

𝑅
𝑜𝑒𝑥

.

(54)

Putting the value of 𝑅
𝑜𝑒𝑥

, we get

𝑅
𝑜𝑒𝑥

= (
𝐾

𝐸
)

1/(1−𝑛)

𝑅
𝑜

(1 − ]2)

(1 − ] + ]2)
1/2

. (55)

Then

𝑀max = 2
[
[

[

𝐸𝑅
3

𝑜
(𝐾/𝐸)

3/(1−𝑛)

((1 − ]2)
3

/(1 − ] + ]2)
3/2

)

3 (1 − ]2) 𝑅
𝑜

]
]

]

+ 2[
𝐾(𝑡/2)

𝑛+2

(3/4)
(1+𝑛)/2

𝑅𝑛
𝑜
(𝑛 + 2)

−
𝐾𝑅
(𝑛+2)

𝑜
(𝐾/𝐸)

(𝑛+2)/(1−𝑛)

(1 − ]2)
𝑛+2

(3/4)
(1+𝑛)/2

𝑅𝑛
𝑜
(𝑛 + 2) (1 − ] + ]2)

(𝑛+2)/2

] .

(56)

From elementary plate theory [17] applied moment per
unit width during elastic unloading,

𝑀
𝐸
=

2 ⋅ 𝐸 ⋅ (𝑡/2)
3

3 (1 − V2) ⋅ 𝑅
. (57)

Now, the slope of elastic recovery in elastic unloading is

𝜕𝑀
𝐸

𝜕 (1/𝑅)
=

2 ⋅ 𝐸 ⋅ (𝑡/2)
3

3 (1 − ]2)
. (58)

Putting this into (3), we get

1

𝑅
0

−
1

𝑅
𝑓

=
𝑀max

𝜕𝑀
𝐸
/𝜕 (1/𝑅)

,

𝑅
𝑜

𝑅
𝑓

= 1 − 𝑅
𝑜

𝑀max
𝜕𝑀
𝐸
/𝜕 (1/𝑅)

,

𝑅
𝑜

𝑅
𝑓

= 1 −

3𝐾 (1 − ]2)

𝐸 (𝑛 + 2) (3/4)
(𝑛+1)/2

(
2𝑅
𝑜

𝑡
)

1−𝑛

+ [(
2𝑅
𝑜

𝑡
) (

𝐾

𝐸
)

1/(1−𝑛)

]

3

× [

[

3(1 − ]2)
𝑛+3

(3/4)
(𝑛+1)/2

(𝑛 + 2) (1 − ] + ]2)
(𝑛+2)/2

−

(1 − ]2)
3

(1 − ] + ]2)
3/2

]

]

,

𝑅
𝑜

𝑅
𝑓

= 1 −

3 (1 − ]2)

(𝑛 + 2) (3/4)
(𝑛+1)/2

(
𝜎
𝑜

𝐸
)

1−𝑛

(
2𝑅
𝑜

𝑡
)

1−𝑛

+ [(
2𝑅
𝑜

𝑡
) (

𝜎
𝑜

𝐸
)]

3

× [

[

3(1 − ]2)
𝑛+3

(3/4)
(𝑛+1)/2

(𝑛 + 2) (1 − ] + ]2)
(𝑛+2)/2

−

(1 − ]2)
3

(1 − ] + ]2)
3/2

]

]

.

(59)

This is the equation for springback ratio for modified Ludwik
stress-strain relationship using von Mises yield criteria.
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Figure 4: Springback ratio with 𝑅
𝑜
/𝑡 with different values of 𝜎

𝑜
/𝐸

or 𝑌/𝐸 at 𝑛 = 0.1, ] = 0.33.
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Figure 5: Springback ratio with 𝑅
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/𝑡 with different values of 𝜎
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or 𝑌/𝐸 at 𝑛 = 0.2, ] = 0.33.

6. Results and Discussion

For the sheet metal bending, the springback is calculated
from derived equation (using modified Ludwik stress-strain
relationship with Tresca and von Mises yield criteria).

𝑅
𝑜

𝑅
𝑓

= 1 −

3 (1 − ]2)

(3/4)
(1+𝑛)/2

(𝑛 + 2)

(
𝐸

𝜎
𝑜

)

𝑛−1

(
2𝑅
𝑜

𝑡
)

1−𝑛

+ [(
2𝑅
𝑜

𝑡
) (

𝜎
𝑜

𝐸
)

1

(1 + ])]
3

× [
3(1 + ])𝑛 (1 − ])

(3/4)
(1+𝑛)/2

(𝑛 + 2)

− 1] ,

𝑅
𝑜

𝑅
𝑓

= 1 −

3 (1 − ]2)

(𝑛 + 2) (3/4)
(𝑛+1)/2

(
𝜎
𝑜

𝐸
)

1−𝑛

(
2𝑅
𝑜

𝑡
)

1−𝑛

+ [(
2𝑅
𝑜

𝑡
) (

𝜎
𝑜

𝐸
)]

3

20 30 40 50 60 70 80
Ro/t

1

0.9

0.8

0.7

0.6

0.5

0.4

0.3

0.2

R
o
/R

f

For n = 0.3

Y/E = 5.5 × 10−4

Y/E = 1.5 × 10−3

Y/E = 2.4 × 10−3

Figure 6: Springback ratio with 𝑅
𝑜
/𝑡 with different values of 𝜎

𝑜
/𝐸

or 𝑌/𝐸 at 𝑛 = 0.2, ] = 0.33.
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Figure 7: Springback ratio with 𝑅
𝑜
/𝑡 with different values of 𝜎

𝑜
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or 𝑌/𝐸 at 𝑛 = 0.4, ] = 0.33.

× [
3(1 − ]2)

𝑛+3

(3/4)
(𝑛+1)/2

(𝑛 + 2) (1 − ] + ]2)
(𝑛+2)/2

−

(1 − ]2)
3

(1 − ] + ]2)
3/2

]

]

.

(60)

Here, from (8),

𝐾 = [𝐸(
𝐸

𝜎
𝑜

)

𝑛−1

] . (61)

Then, 𝐾/𝐸 = (𝜎
𝑜
/𝐸)
1−𝑛.

We can see that both equations have a last term that is
very negligible because the 𝜎

𝑜
/𝐸 or 𝑌/𝐸 = 5.5 × 10

−4 and its
three times will be 10

−12; therefore, we have to neglect the last
term of both equations.

Then we write,

𝑅
𝑜

𝑅
𝑓

= 1 −

3 (1 − ]2)

(3/4)
(1+𝑛)/2

(𝑛 + 2)

(
𝐸

𝑌
)

𝑛−1

(
2𝑅
𝑜

𝑡
)

1−𝑛

, (62)

𝑅
𝑜

𝑅
𝑓

= 1 −

3 (1 − ]2)

(𝑛 + 2) (3/4)
(𝑛+1)/2

(
𝑌

𝐸
)

1−𝑛

(
2𝑅
𝑜

𝑡
)

1−𝑛

. (63)
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Figure 9: Springback ratio with 𝑅
𝑜
/𝑡 with different values of 𝑛 at

𝑌/𝐸 = 1.5 × 10
−3, ] = 0.33.

Here, we can see that both (62) and (63) are the same if we can
apply Tresca or vonMises, getting same result but last term is
different. The values of last term are much less; therefore, we
neglect this term.

Therefore, we can say that if we apply Tresca or vonMises
yield criteria, then we are getting same result. This equation
is dependent on the 𝑅

𝑜
/𝑡, 𝜎
𝑜
/𝐸, strain hardening coefficient

𝑛, and ] is Possion’s ratio.
Figure 4 (𝑛 = 0.1), Figure 5 (𝑛 = 0.2), Figure 6 (𝑛 = 0.3),

and Figure 7 (𝑛 = 0.4) show the variation in springback
ratio along with change in 𝑅

𝑜
/𝑡 with different 𝜎

𝑜
/𝐸 ratio. The

higher value of 𝑛 (strain hardening coefficient) material to
closer to elasto-ideal plastic material, and thickness is one
mm, and 𝜎

𝑜
/𝐸 value is 5.5×10

−4

, 1.522×10
−3, and 2.4×10

−3

(for different material c10100 copper, 1100al, and 1065steel).
From the figure, we come to know that as the with increasing
ratio of 𝑅

𝑜
/𝑡 is decrease the springback ratio and with

decreasing 𝜎
𝑜
/𝐸 springback ratio is increases.

Figures 8, 9, and 10 show the variation in springback ratio
along with 𝑅

𝑜
/𝑡 with the different value of 𝑛 with fixed value
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Figure 10: Springback ratio with 𝑅
𝑜
/𝑡 with different values of 𝑛 at

𝑌/𝐸 = 2.4 × 10
−3, ] = 0.33.

20 30 40 50 60 70 80
Ro/t

0.9

0.8

0.85

0.7

0.75

0.65

R
o
/R

f

� = 0.25

� = 0.35

� = 0.45

n = 0.3 and Y/E == 5.5 × 10−4

Figure 11: Springback ratio with 𝑅
𝑜
/𝑡 with different values of ] at

𝑌/𝐸 = 5.5 × 10
−4.

of 𝜎
𝑜
/𝐸 = 5.5 × 10

−4, 𝜎
𝑜
/𝐸 = 1.522 × 10

−3, and 𝜎
𝑜
/𝐸 = 2.4 ×

10
−3, here we take the values of 𝑛 = 0.1, 0.2, 0.3, and 0.4. From

the figure, we come to know that with increasing value of 𝑛,
springback ratio is decreasing.

Figures 11, 12, and 13 show the variation in springback
alongwith𝑅

𝑜
/𝑡with different value of Possion’s ratio ] = 0.25,

] = 0.35, and ] = 0.45 with fixed 𝜎
𝑜
/𝐸 = 5.5 × 10

−4,
𝜎
𝑜
/𝐸 = 1.522 × 10

−3, 𝜎
𝑜
/𝐸 = 2.4 × 10

−3, and 𝑛 = 0.3. From
the figure, we come to know that with increasing value of ],
springback ratio is increasing.

Figures 14, 15, and 16 show the variation in springback
along with 𝑡 with different value of 𝑛 = 0.1, 0.2, 0.3, and
0.4 and where 𝜎

𝑜
/𝐸 = 5.5 × 10

−4, 𝜎
𝑜
/𝐸 = 1.522 × 10

−3,
𝜎
𝑜
/𝐸 = 2.4 × 10

−3, ] = 0.33, and 𝑅
𝑜

= 40 is fixed. From
the figure, we come to know that the springback ratio rapidly
increases in range of 0 to 2mm thickness, then the increase
in springback ratio is stable.

7. Conclusions

Based on the results presented in chapter of results and dis-
cussion, following conclusions about the springback analysis
in sheet metal forming using nonlinear constitutive equation,
the following applies.
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Figure 12: Springback ratio with 𝑅
𝑜
/𝑡 with different values of ] at

𝑌/𝐸 = 1.5 × 10
−3.
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Figure 13: Springback ratio with 𝑅
𝑜
/𝑡 with different values of ] at

𝑌/𝐸 = 2.4 × 10
−3.

0 0.5 1 1.5 2 2.5 3 3.5 4 54.5
t

0.9

0.95

1

0.8

0.85

0.7

0.75

R
o
/R

f

n = 0.4

n = 0.3

n = 0.2

n = 0.1

� = 0.33 and Y/E = 5.5 × 10−4

Figure 14: Springback ratio with 𝑡 for different values of 𝑛 at 𝑌/𝐸 =

5.5 × 10
−4.

(i) The theoretical analysis for the sheetmetal under pure
bending has been done, and it was found that the
prediction of springback is quite successfull.

(ii) As expected, elastic recovery is found to be more with
decreasing values of work hardening coefficient. At

0 0.5 1 1.5 2 2.5 3 3.5 4 54.5
t

0.9
0.95

1

0.8
0.85

0.5

0.7
0.75

0.6
0.65

0.55

R
o
/R

f

n = 0.4

n = 0.3

n = 0.2

n = 0.1

� = 0.33 and Y/E = 1.5 × 10−3

Figure 15: Springback ratio with 𝑡 for different values of 𝑛 at 𝑌/𝐸 =

1.5 × 10
−3.
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Figure 16: Springback ratio with 𝑡 for different values of 𝑛 at 𝑌/𝐸 =

2.4 × 10
−3.

lower values of n, the material will approach to an
elasto-ideally plastic behavior.

(iii) Springback ratio increases with increasing thickness.
(iv) Springback ratio increases with decreasing ratio of

yield point stress to Young’s modulus of elasticity
(v) Springback ratio is increasing with increasing Pos-

sion’s ratio.
(vi) Springback ratio for Tresca and von Mises yield cri-

teria, we say that 𝑅
𝑜
/𝑡 is less than 20, there will be

slightly change in that is negligible and for high value
of 𝑅
𝑜
/𝑡 or more than 20, differences in springback

ratio is increases.

Nomenclature

𝑅
𝑜
: Radius of die

𝑅
𝑓
: Radius of final product after removing load

𝑀max: Maximum applied bending moment per unit width
𝑦: Distance from midsection
𝑡: Thickness
𝜎: True stress
𝜀: True strain
𝐸: Modulus of elasticity
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]: Poisson’s ratio
𝑛: Strain hardening index
𝛼: Empirical constant
𝐾: Constant
𝑌, 𝜎
𝑜
: Yield point stress

𝜀
𝑜
: Strain at yield point

𝛿: Strain in plastic region.
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