
Chapter 2

Preliminaries

Safety Critical System (SCS) calls for an understanding of various concepts, termi-

nologies, definitions, and modeling analysis techniques. There are good deals of

discussion available in the literature that are being built upon preliminary under-

standing in the areas of dependability engineering regarding safety related issues.

In this chapter we provide the preliminaries underline definitions, concepts, etcetera

that are needed to critical system and constitutes the fundamental understanding for

developing the further reasoning throughout this thesis. In next section, we give a

brief overview of dependability as safety is one of the attributes. After that, we talk

about Computer Based System (CBS) - A system driven by the embedded software

would always consist of both hardware and software components, and such a system

is popularly known and may also be termed as CBS. There are various types of CBS

deployed in the safety critical and safety related applications that need to be designed

as per safety guides of the related authority for deployment. The classification of

17

Chapter 2. Preliminaries 18

CBS is also described herein. Next, basic dependability mathematics and various

important dependability attribute metrics are discussed. Finally, the studies on state

space models needed to understand different aspects of system safety and related

concepts are summarized.

2.1 Dependability

The migration from analog system to digital systems for instrumentation and control

(I&C) has increased the complexity of the instrumentation day by day. The

I&C systems being developed are computer-based consisting of embedded digital

hardware and software components. These systems are performing many diverse

and highly complex functions that are integral to the safety-critical requirements

of a SCS, and the failure of an I&C system could lead to risk significant events.

To prevent such situations from arising, there is a great need for these systems

to be dependable; i.e., these systems must provide a specified quality of service.

It is the system designer’s responsibility for demonstrating that a given system is

dependable (Carter, 1987). Hence, there is a definite need for dependability analysis

to be performed during the design phase.

A systematic elucidation of the concepts of dependability comprises of three parts:

1) the threats to, 2) the attributes of, and 3) the means by that dependability is

attained, as shown below in Figure 2.1.

Chapter 2. Preliminaries 19

Figure 2.1: The Dependability Tree

Computing systems are characterized by five basic properties: 1) functionality, 2)

usability, 3) performance, 4) cost, and 5) dependability. The ability of a computing

system to deliver service that can justifiably be relied on is known as dependability.

The service provided by a system is its behavior since it is perceived by their user(s);

a user is another system (may be physical or human) that interacts with the prior at

Chapter 2. Preliminaries 20

the service interface. The function of any system is what the system is designed to

do, and is defined by the functional specification. Correct service is provided when

the service outfits the system function. A system failure is an event which happens

when the provided service differs from correct service. A failure is thus a transition

from improper service to inappropriate service, i.e., to not fulfilling the system

function. The delivery of inappropriate service is a system outage. A transition

from inappropriate service to appropriate service is service restoration. Based on

the definition of failure, another definition of dependability which is complement

of the first definition is offering a criterion for adjudicating whether or not the

delivered service can be trusted: is a system ability to avoid frequent failures or

more severe, and outage periods that are longer, than is satisfactory to the user(s).

In the opposite case, the dependability of a system is no longer: it suffers from a

dependability failure, which is a meta-failure.

2.1.1 The Threats: Faults, Errors, and Failures

There is a cause and effect relationship among these terms, and this relationship is

depicted in the three-universe model, as shown in Figure 2.2. In this model, a fault

occurs in the physical universe. The fault itself is a physical defect, inadequacy or

flaw that take place within some hardware or software component (Johnson, 1989).

An example of a fault could be a broken ground connection in a printed circuit

board or an infinite loop in a computer program. The manifestation of a fault is

Chapter 2. Preliminaries 21

Physical
Universe

• Fault

Informational
Universe

• Error

External
Universe

• Failure

Figure 2.2: Three-universe model (Jhonson, 1989; Laprie, 1985)

an error, which occurs in the informational universe. An error is any deviancy from

correctness or accuracy. It can be represented by parity errors or by typographical

mistakes. Finally, the third universe is the external universe that contains failures. A

failure is merely the nonperformance of some expected action. Hence, a failure is the

consequence of both a fault and error. It is the cause and effect relationship among

the components of the three-universe model that implies two important parameters:

fault latency and error latency. Fault latency is merely the duration of time between

the incident of a fault and its resulting error. Similarly, error latency is the duration

of time between the occurrence of an error and its resulting failure.

In explaining the three-universe model, the causes of faults are described as their

differences with errors and failures. To completely understand the characteristics

of faults, which is required for accurate dependability modeling, additional fault

attributes must be examined.

Chapter 2. Preliminaries 22

2.1.2 The Attributes of Dependability

Dependability is an integral concept that comprises the following primary attributes:

Availability: ability to readiness for correct service,

Reliability: ability to steadiness of correct service,

Safety: ability to avoid or suppress catastrophic magnitudes on the user(s)

and the environment,

Confidentiality: absenteeism of unapproved exposé of information,

Integrity: absenteeism of improper system state changes,

Maintainability: ability to undertake repairs and alterations.

2.1.3 The Means to Attain Dependability

A dependable computing system development requires the integrated usage of a set

of four methods:

Fault prevention: how to inhibit the incident or primer of faults,

Fault tolerance: how to provide correct service in the incidence of faults,

Fault removal: how to decrease the number or severity of faults,

Chapter 2. Preliminaries 23

Fault forecasting: how to assess the present number, the future occurrence,

and the possible consequences of faults.

Dependability analysis can be done on hardware and software or hybrid system.

Among its attributes, availability and reliability can be quantified. Availability

is useful for the repairable systems, while reliability is useful; for non-repairable

systems. Traditional reliability concepts (for hardware) can be used for software

reliability analysis and prediction.

2.2 Classification of Computer Based System

CBS can be classified into following [23]:

1. Bespoke Systems- These systems are designed for a specific application.

The software is developed from scratch and runs on raw hardware, which is

configured using required hardware modules. The likely off-the-shelf software

component these systems might employ is the real-time kernel or executive

whose implementation details may not be available due to commercial reasons.

2. Embedded Systems- These are function-modules with embedded software,

which provide limited flexibility to select functional parameters. These

modules may have simple communication, analog, and digital Input/output

(I/O) interfaces (e.g., single loop controllers, smart sensors).

Chapter 2. Preliminaries 24

3. Programmable Controller based Systems- The programmable controllers

are general purpose, programmable process control and information systems

which are available off-the-shelf. The hardware and software of these systems

are designed to be configurable for various types of applications.

4. Systems based on General Purpose Computers- These can be either

stand-alone systems or networked configurations for performing control,

operator information functions, etc.

2.3 Basic Dependability Mathematics

This section will discuss the basics of mathematical theory that is pertinent to the

study of safety analysis. The vital concepts of probability theory are described

firstly. Next, the elements of component hazard rate or function are discussed.

Further, various types of distributions used in safety studies are briefly explained.

2.3.1 Concepts of Probability Theory

Probability can be seen as in what degree of confidence an event will take place.

This event is uncertain and could be exemplified by a failure in a specific hardware

part. However, the event has to be associated with an outcome space, which is the

possible outcome of the event, e.g. an event might have the possible outcome set ψ

= {1; 2; 3; 4; 5}. This outcome set is then associated with a probability distribution

Chapter 2. Preliminaries 25

P, which maps events to real values as

P (ψ) = 1 (2.1)

P (ψ) ≥ 0,∀ψ ∈ ∇ (2.2)

Extensions to Equations 2.1 and 2.2 imply several interesting conditions where

P (∅) = 0 (2.3)

P (ψ1 ∪ ψ2) = P (ψ1) + P (ψ2) − P (ψ1, ψ2) (2.4)

will be of great interest.

Conditional probability is another important aspect. It becomes apparent when

there are two or more events that are dependent upon each other, e.g., one event, δ

denotes hazard and another event, ω denotes failure, hence a failure can be caused

by a hazard.

The conditional probability are formally denoted as

P (ω|δ) = P (ω, δ)/P (δ) (2.5)

Chapter 2. Preliminaries 26

Note that if P (δ)and P (ω) were independent events, P (ω|δ) = P (δ)P (ω) and

hence, P (ω | δ) = P (ω). However, keeping the dependency, further investigation

of Equation 2.5 gives

P (ω, δ) = P (δ)P (ω|δ) (2.6)

which is called the Chain Rule and is written more generally as

P (δ1 . . . δk) = P (δ1)P (ψ2|δ1) . . . P (δk|δ1 . . . , δk−1) (2.7)

where, δ1 . . . δk are events.

Additionally, an important implication of the chain rule is Bayes′Rule, which allows

derivation of conditional probabilities, based on ”inverse” conditional probabilities,

as

P (ω|δ) = (P (δ|ω)P (ω))/P (δ) (2.8)

So far we have considered basic equations in probability theory using any types of

events in a specified set. By introducing random variables, as an extension to the

event notion, probabilities associated with attributes of the outcome of an event

are possible. Here attributes of a hazard (the Random V ariable) might be a single

component failure, two components failure, etcetera. The probability distributions

Chapter 2. Preliminaries 27

over such an attribute are denoted as P (Hazard = Single Component). Fur-

thermore, the random variable can have different properties, e.g., having discrete

sets of possible values or having continuous infinite sets of possible values. There

exists a wide range of distributions, some of them have been discussed in the coming

section.

2.3.2 Time to Failure, Reliability, Hazard rate and their

relations

Time to failure: Let a repairable system is observed until n failure times t1,t2,

. . . , tn occur, where 0 < t1 < t2 < · · · < tn. Let T > 0 be the random variable

representing the time to next failure. Then the time to failure denotes the probability

that the time to failure T is in some interval (t, t+ ∆t) as

P (t ≤ T ≤ t+ ∆t)

Whereas, the PDF f (t) and CDF F (t) are given as,

P (t ≤ T ≤ t+ ∆t) = F (t+ ∆t)− F (t) ∼= f(t)∆t (2.9)

F (t) = P (0 ≤ T ≤ t) =

∫ t

0

f(x)dx (2.10)

Chapter 2. Preliminaries 28

Reliability function: The reliability function is the probability of success at time

t i.e. the probability that the time to failure exceeds t. Mathematically, it is given

by

R (t) = P (T > t) =

∫ ∞
t

f (x) dx (t > 0) (2.11)

Therefore, CDF F (t) of T is given by

F (t) =

∫ t

0

f (x) dx = P (0 ≤ T ≤ t) = 1−R(t) (2.12)

The reliability function is also known as survival function of T . R (t) decreases from

1 to 0, ∀ t ∈ [0,∞). Hence f (t) , F (t) and R(t) are equivalent representatives of

the random variableT .

Hazard Rate: The hazard rate is defined as the limit of the failure rate as the

interval ∆t approaches zero.

h (t) = lim
∆t→0

F (t+ ∆t)− F (t)

(∆t)R(t)
=
f(t)

R(t)
(2.13)

The hazard rate is an instantaneous rate of failure at time t, given that the system

survives up to t. It is known as intensity function also.

Converting,

Chapter 2. Preliminaries 29

h(t) =
f(t)

R(t)
=
dF (t)

dt

1

R(t)

dF (t)

dt
= −R(t)

dt

=⇒ dR(t)

dt
= −h (t) dt

Integrating both sides w.r.t. t,

lnR(t) = −
∫ t

0

h(x)dx+ c

∵ R (0) = 1, c = 0

∴ R (t) = exp[−
∫ t

0

h(x)dx] (2.14)

Differentiating,

f (t) = h(t)exp[−
∫ t

0

h(x)dx] (2.15)

2.3.3 Probability Distributions Used in Safety Studies

We describe some of the popular statistical or probability distributions that are

commonly used for reliability, quality, and safety analysis of CBS [1], [17].

Chapter 2. Preliminaries 30

2.3.3.1 Exponential Distribution

The exponential distribution is most extensively used distribution in safety es-

timation. It is the lone distribution which has constant hazard rate and is used

to model the “useful life” of numerous engineering systems [24]. The PDF of the

exponential distribution is

f (t) = λe−λt,∀ ∈ [0,∞) (2.16)

where, t is time and λ is the distribution parameter.

The exponential CDF can be derived from its PDF as follows:

∴ F (t) =

∫ t

0

f (t) dt = 1− e−λt (2.17)

The reliability function is the complement of the CDF:

R (t) = 1− F (t) = e−λt (2.18)

The hazard function is the ratio of the PDF and its reliability function; for the

exponential distribution it is

H (t) =
f(t)

R(t)
=

λe−λt

e−λt(t)
= λ (2.19)

Chapter 2. Preliminaries 31

Since the exponential hazard function is constant (=λ), hence, it is the cause for

the memoryless property of the exponential distribution. The memory less property

means the probability of failure in a specific time interval is the same regardless of

the starting point of that time interval.

2.3.3.2 Weibull Distribution

In 1933, the Weibull distribution was presented by P. Rosin and E. Rammler [25].

It has a wide-ranging of applications in risk/hazard calculations due to its flexibility

in modeling different distribution shapes. It can be used to model time to failure of

mechanical, electrical, electronics, and software components. In addition to being

the most useful distribution function in safety analysis, it is also useful in classifying

failure types, troubleshooting, scheduling preventive maintenance, and inspection

activities. The Weibull PDF is

f (t) =
β

α

(
t

α

)β−1 (
e−(tα)

β)
, t > 0 (2.20)

where, α and β are scale parameters and distribution shape, respectively. It is

important because of the three reasons: 1) It is most commonly used for the

distribution of lifetimes; 2) It is related to the power law process and is used for

repairable systems; 3) if debugging the system, i.e., bringing it back to a new system,

then the assumption that the times between failures T1, T2, . . . , Tn are independent

identical distribution Weibull random variables may be reasonable.

Chapter 2. Preliminaries 32

The Weibull CDF can be derived from its PDF as follows:

∴ F (t) =

∫ t

0

f (t) dt = 1− e−(tα)
β

, t > 0 (2.21)

The reliability function is the complement of the CDF:

R (t) = 1− F (t) = e−(tα)
β

(2.22)

The hazard function is the ratio of the PDF and its reliability function; for the

exponential distribution it is

H (t) =
f(t)

R(t)
=
β

α

(
t

α

)β−1

(2.23)

2.3.3.3 Rayleigh Distribution

This is another continuous random variable distribution and is named after John

Rayleigh (1842–1919) [26]. The distribution is often used in the theory of sound and

in safety studies. The PDF of Rayleigh Distribution is

f (t) = kte−
kt2

2 , t > 0, k > 0 (2.24)

Where, α is the distribution parameter.

Chapter 2. Preliminaries 33

The Rayleigh CDF can be derived from its PDF as follows:

∴ F (t) =

∫ t

0

f (t) dt = −e−
kt2

2 , t > 0 (2.25)

The reliability function is the complement of the CDF:

R (t) = 1− F (t) = 1 + e−
kt2

2 (2.26)

The hazard function is the ratio of the PDF and its reliability function; for the

Rayleigh distribution it is

H (t) =
f(t)

R(t)
=

kte−
kt2

2

1 + e−
kt2

2

(2.27)

It can be seen as a special case of Weibull distribution for β = 2 and = (k
2
)
1
2 .

2.4 Dependability Attribute Prediction Metrics

Related metrics help in gaining confidence on system dependability attribute which

we are going to discuss in this section. Dependability attribute’s metrics are

derived from the requirements of technology used, customers’ requirements and

consideration of required applications. The important dependability attribute

Chapter 2. Preliminaries 34

metrics include failure rate, meantime to failure (MTTF), and mean time to repair

(MTTR).

2.4.1 Failure Rate

The failure rate of a component is defined as no. of failures per unit time [1].

Generally, failures occur due to undiscovered defects during the process of design,

defects in components, or wrong assembly. Mishandling, shock, unusual environment

stress often causes the useful life failures. We cannot eliminate an effect of such

failures completely even the best design and guard techniques. The failure rate

of hardware is assumed that the failure rate (t) is constant Watson [27] argues

about this assumption. He suggests that instead of a bathtub curve, a curve

representing a decreasing failure rate (roller coaster curve) during useful life may

be more appropriate. Due to wear and tear after the useful life cause increasing

failure rates on the product over time.

Software reliability, however, does not show the same characteristics similar as

hardware. In a case of software, the failure rate is not constant during operational

time due to continuous defect identification and removal process. Further, software

does not wear and tear out and, therefore, software does not have an increasing

failure rate as hardware does after operational phase.

Mathematically, relationship between reliability function R(t), failure function F(t)

and failure rate or hazard rate λ(t) expressed as

Chapter 2. Preliminaries 35

λ (t) = lim
τ→0

1

τ
{R (t)−R (t + τ)

R (t)
}= − 1

R

dR

dt
= − d

dt
[lnR (t)] (2.28)

where,

t: time before which no failure occurs; τ : is the small time interval & τ > 0.

The Reliability function R(t) is calculated from Equation 2.28 as follows:

R (t) = exp[−
∫ t

0

(x) dx] (2.29)

The integral of the failure rate in the exponent is known as cumulative failure rate

or cumulative hazard function, H(t):

H (t) =

∫ t

0

(x) dx (2.30)

For the sake of simplicity many reliability models, assumes that the failure rate is

constant (independent of time, λ(t) =λ). Hence, Equation 2.29 can be rewritten as:

R(t) = exp [−λ t] (2.31)

This metric is highly used in Reliability Engineering to take replacement, repair

actions for the critical components of safety critical systems.

Chapter 2. Preliminaries 36

2.4.2 Mean Time to Failure

In reliability analysis, MTTF is a mean lifetime of an item. It is average time

during which item will be expected to last in operation [28]. MTTF has a modeling

assumption that failed item cannot be repaired (infinite repair time). The MTTF

can be used to find out whether the redesigned system is better than the earlier item

in demonstration test plans. This metric indicates life distribution of an item but

fail to provide information regarding the behavior failure distribution of the item.

The mathematical relationship between MTTF and reliability function R(t) is as

follows:

MTTF =

∫ ∞
0

R (t) dt (2.32)

If we consider failure rate as constant then λ(t) = λ and Equation 2.32 became:

MTTF =
1

λ
(2.33)

Mean time to failure (MTTF) denotes the expected time to failure for a

non-repairable system, hence this metric helps to take precautionary decisions

to avoid the malfunctioning of SCSs.

Chapter 2. Preliminaries 37

2.4.3 Mean Time to Repair

Mean time to repair (MTTR) is the usual time required to settle a fizzled item and

return it to generation status [29]. The MTTR can be ascertained by separating

the total time required for support by the aggregate number of repairs inside of

a particular time allotment. For basic mission hardware, mean time to repair

can dramatically affect the association’s primary concern. Taking too long to

repair gear can mean item scrap, missed requests and soured business connections.

Mathematically, MTTR is represented as:

MTTR =
Total Maintenance Time

No. of Repairs
(2.34)

The amount of time required to repair a system and bring it back online is the “time

to repair” which is a critical metric to promise the concerned authorities on the time

that will take bring the system back to the normal operating conditions.

2.4.4 Availability and Average Availability

The availability is the likelihood that a system will certainly be operating at an

offered time. The average availability signifies the mean part of the moment the

system is running over an offered time frame. For a repairable system, if it is fixed

to an ”as excellent as brand-new” condition whenever it fails, the average availability

is represented as:

Chapter 2. Preliminaries 38

Aavg=
MTTF

MTTF + MTTR
(2.35)

Therefore, availability enhancement requires raising MTTF and also lowering MTTR.

The major constraint related to the metric of average availability depends on the

fact that it cannot show frequency of failings or maintenances needed. For this

reason, it is just used to analyze the repairable systems where the key issue is

availability as opposed to reliability.

This metric is very important for the SCSs which have to come on demand like

shutdown systems of Nuclear Power Plant, containment isolation to avoid radiation

leak to the public domain, etc.

2.4.5 Some other important metrics

Probability of failure on demand (POFOD): It can be specified as probability

of the system failure when service request comes. This metric is useful for

odd and relatively infrequent services when demanded. Such metric is suitable

and relevant for the safety-critical system where services are rarely demanded,

but it could be a serious threat if the system fails to do so. Therefore,

POFOD= 0.002 implies that there is the chance of 2/1000 times for a failure

when service requested.

Chapter 2. Preliminaries 39

Rate of occurrence of failure (ROCOF): It is the probability of system failures

which are probably to be monitor relative to the no. of system execution or

to a certain time period (e.g., 24 hours). Therefore, in the above example,

the ROCOF= 2/1000. The reciprocal of this metric is nothing but mean

time to failure (MTTF).

Probability of failure for a given output (POFGO): It is the probability of the

specific output of the system, due to software failure.

2.5 State Space Model and Related Concepts

The necessity of early prediction of system safety is discussed in Chapter 1,

Introduction. Some of the advantages of system safety early prediction is mentioned.

Before discussing the existing approaches for system safety early prediction, we

introduce some important state space models along with concepts and notations

which are frequently used in this thesis.

2.5.1 State Machines

There are several means of modeling the behavior of systems, and the utilization of

state machines is one of the oldest and most widely known. State machines permit us

to ruminate about the “state” of a system at a specific point with time and depict

the behavior of the system predicted on that state. The usage of this modeling

Chapter 2. Preliminaries 40

approach is not restricted to the development of systems. Actually, the thought of

state-based behavior can be followed back to the initial things to consider of physical

matter. For instance, H2O can be found in three different states simply visible in

nature shown in Figure 2.3: vapor (steam, fog, clouds), liquid (water), and solid

(ice).

In each one of these states, the behavior of H2O differs. Also, the method of

forcing transitions among the three states is well-defined. Several other natural

and manufactured systems can also be modeled by defining: 1) the probable states

the system can hold, 2) the behavior in each of these states, and 3) the way the

system transitions among the states, including which states are “linked” and which

are not.

Figure 2.3: State machine representation of different physical behavior of H2O

We can use an identical approach to model and design CBS by determining what

states the system can maintain, what inputs or events leads to state transitions,

Chapter 2. Preliminaries 41

and the way the system will respond in each state. In such a model, we view the

execution of the system as a series of transitions that change the system over its

several states.

2.5.1.1 Conceptual Definition of a Finite State Machine

We can recognize various key characteristics of a system which can be modeled with

a finite state machine:

The set of states used to describe system must be finite.

The set of inputs and events that can prompt transitions among states of a

system must be finite.

The system’s behavior at a certain point in time is contingent upon the present

state and the input or event which happened at that time.

For every state the system may be in, behavior is defined for each probable

input or event.

The system has a specific initial state.

2.5.1.2 Mathematical Definition of a Finite State Machine

As a computer science and engineering student, we frequently need to define systems

in a formal, mathematical way. It permits us to cause about systems both in general

Chapter 2. Preliminaries 42

as well as in particular instances. Formal notation also assistance to eradicate

ambiguity when we communicate with others regarding system designs. An FSM is

defined by a 5-tuple as

M = (Σ , Q, q0, F, δ) (2.36)

where,

Σ : a set of symbols representing input to M ;

Q: a set of states of M ;

q0 ∈ Q : the start state of M ;

F ⊆ Q : the set of final states of M ;

δ : Q × Σ → Q : the transition function;

2.5.2 Unified modeling Language (UML)

The Unified modeling Language (UML) is one of the fascinating and useful tools

in the domain of system engineering. The UML is a visual modeling language

that allows system developer to develop blueprints that capture their versions in a

standard, simple-to-realize way, and offers a mechanism to share and communicate

these visions to other folks properly.

Communicating the vision is utmost significance. Before the advent of the UML,

system development was usually a hit-or-miss proposition. The analyst may have

Chapter 2. Preliminaries 43

misunderstood the consumer. The analyst may have made a document the consumer

could not comprehend. To include to the mess, analyst usually produced wordy,

voluminous requirements documents that had been hard for the other individuals to

work with project staff. Paradoxically, the sheer excess weight of these documents

usually permitted critical requirements (and dependencies between requirements) to

slip via the cracks. As a result, the outcomes of the analysis may not have been

clear to the system developers, who subsequently may have developed a system that

was hard to use and did not resolve the consumer’s original problem. It is why,

several of the prolonged-standing systems in use nowadays are clunky, cumbersome,

and difficult to use.

It is essential to organize the design approach in a way that analyst, customers,

and other concerned system development can comprehend and agree on. The UML

offers such organization. Since UML is the standard for object modeling and contains

diagrams for modeling a variety of components including structural, behavioral, and

interaction [30]. Specifically related to the work here, State-chart Diagrams are

significantly more common than most of other forms of behavior modeling. It is due

both to the ease of representation due to a rich array of descriptive features as well

as inclusion in the UML standard and subsequently a robust set of tool support.

State-charts were developed initially by David Harel as “a broad extension of the

conventional formalism of state machines and state diagrams”. This variant of state

machines, called Harel State-charts. It uses the concept of Venn diagrams and

directed graphs to express hierarchy and connectedness in a way that sought to solve

Chapter 2. Preliminaries 44

the problem of state explosion present in typical state machines [31]. This formalism

has been co-opted into UML State-chart Diagrams (USCD), which now has its

formalisms. Since USCD is similar to Harel State-charts, hence, it is considered

as a variant of Harel State-charts, and is administered by the UML standards body

[30], [32].

2.5.2.1 Types of State-charts

There are two related types of State-charts which were original proposed by David

Harel and defined by UML. While the more commonly used are UML State-chart

Diagrams, it is still useful to compare the two as a basis for the choice to use UML

State-chart Diagrams. Both Harel State-charts and UML State-chart Diagrams

are executed very similarly, although they are represented slightly differently.

Transitions move execution between states. These transitions can be based on an

event, guard, or always actionable (empty). When an event occurs, if the current

state has a transition away from it that uses that event, the transition is taken. If

a guard, which is a Boolean expression, is evaluated to true at any point then that

transition is taken. It is also possible to have transitions away from groups of states,

which are denoted by a parent state away transition. Similarly, transitions can go to

a set of states, denoted by a transition to a parent state where the default sub-state

is then transitioned to.

Harel State-charts

Chapter 2. Preliminaries 45

Harel State-charts were initially described informally, using illustrative diagrams

and describing the behavior of transitions. However, more clarification and a

formalism was necessary and was published shortly after the paper introducing Harel

State-charts [31]. Updates and new ways of formalizing Harel State-charts are often

defined when a new simulation or verification engine or methodology is created, not

always staying entirely in line with the original [33]. Harel State-charts are made

up to states defined as “blobs”, where there is no strict hierarchical requirement

imposed to allow for the blobs to be used as a Venn diagram that shows blobs

containing portions of other blobs [30], [34], [35]. An example that shows this lack

of strict blob subsets are in Figure 2.4. We will see that state D is in C which would

not be possible in UML State-chart Diagrams. A Harel State-chart is a 7-tuple

represented as

C = (s, S, t, p, e, d, E) (2.37)

where,

S: a finite set of states;

s: the start state and s ∈ S;

t: a transition function which maps the set of states, S onto a set was any element

is in S;

Chapter 2. Preliminaries 46

p: a parent function that maps the set of states, S onto a set was any element is in

S;

e: an event function that maps the set of transitions, S × S to a set of events;

d: a default transition function that maps the set of states to their default substate

if it exists, or itself;

E: a finite set of events;

The Harel State-chart in Figure 2.4 can also be described mathematically as a Harel

State-chart,C where:

C = (s, S, t, p, e, d, E)

s = A

S = (A, B, C, D, E, F, G, H, I)

t = (A, B, C, D, E, F, G, H, I)→ (∅, ∅, ∅, ∅, (F) , (E,G) , (H) , (G, I) , ∅)

p = (A, B, C, D, E, F, G, H, I)→ (∅, (A) , (A) , (A,C) , (B) , (D) , (D) , (C) , (C))

d = (A, B, C, D, E, F, G, H, I)→ (B, E, I, D, E, F, G, H, I)

E = (e1, e2, e3, e4, e5, e6)

And the event function e is:

Chapter 2. Preliminaries 47

A B C D E F G H I

A ∅ ∅ ∅ ∅ ∅ ∅ ∅ ∅ ∅

B ∅ ∅ ∅ ∅ ∅ ∅ ∅ ∅ ∅

C ∅ ∅ ∅ ∅ ∅ ∅ ∅ ∅ ∅

D ∅ ∅ ∅ ∅ ∅ ∅ ∅ ∅ ∅

E ∅ ∅ ∅ ∅ ∅ e1 ∅ ∅ ∅

F ∅ ∅ ∅ ∅ e2 ∅ e3 ∅ ∅

G ∅ ∅ ∅ ∅ ∅ ∅ ∅ e4 ∅

H ∅ ∅ ∅ ∅ ∅ ∅ e5 ∅ e6

I ∅ ∅ ∅ ∅ ∅ ∅ ∅ ∅ ∅

UML State-chart Diagrams

UML State-chart Diagrams are a variation of Harel State-charts. One of the

largest differences between Harel State-charts and UML State-chart Diagrams is that

sub-states must be entirely contained within their parent [36]. A UML State-chart

Diagram example is shown in Figure 2.5, which is visibly different from a Harel

State-chart as all states are fully enclosed in a single parent state.

The UML State-chart in Figure 2.5 can also be described mathematically as a Harel

State-chart,C where:

C = (s, S, t, p, e, d, E)

s = A

Chapter 2. Preliminaries 48

Figure 2.4: Harel State chart example

S = (A,B,C,D,E, F,G,H, I)

t = (A,B,C,D,E, F,G,H, I)→ (∅, ∅, ∅, ∅, (F) , (E,G) , (H), (I) , ∅)

p = (A,B,C,D,E, F,G,H, I)→ (∅, (A) , (A) , (A) , (B) , (D) , (D) , (C) , (C))

d = (A,B,C,D,E, F,G,H, I)→ (B,E, I,D,E, F,G,H, I)

E = (e1, e2, e3, e4, e5)

And the event function e is:

Chapter 2. Preliminaries 49

A B C D E F G H I

A ∅ ∅ ∅ ∅ ∅ ∅ ∅ ∅ ∅

B ∅ ∅ ∅ ∅ ∅ ∅ ∅ ∅ ∅

C ∅ ∅ ∅ ∅ ∅ ∅ ∅ ∅ ∅

D ∅ ∅ ∅ ∅ ∅ ∅ ∅ ∅ ∅

E ∅ ∅ ∅ ∅ ∅ e1 ∅ ∅ ∅

F ∅ ∅ ∅ ∅ e2 ∅ e3 ∅ ∅

G ∅ ∅ ∅ ∅ ∅ ∅ ∅ e4 ∅

H ∅ ∅ ∅ ∅ ∅ ∅ ∅ ∅ e5

I ∅ ∅ ∅ ∅ ∅ ∅ ∅ ∅ ∅

Figure 2.5: UML State chart example

Chapter 2. Preliminaries 50

2.5.3 Markov Model

The basis for the understanding of Markov models is the notion of Markov Chains.

Markov chains are series of random variables in which the future variables are

computed by the current variable only and are independent of how the computation

of the current state from its antecedents has taken place. In result, the “memory

less” property is characterized by them.

A stochastic process {X(t)| t ∈ T} is called a Markov process if for any

t0< t1 <tn<tn+1 , the conditional distribution of X(tn+1) for given values

of X(t0), X(t1),..., X(tn) depends only on X(tn) and not on the previous values. The

values that X(t) can assume are in general called “states,” all of which together

form a “state space”Ω .

Based on the Markov chain, Markov models are seen as a graphical representation

of these chains. These models can be seen as working in conjunction with State

Machines which are diagrams over transitions between different states of a system.

Extending the state machine, Markov models can model entire control systems by

incorporating faults and failures. It is done by assigning probabilities to transitions,

namely the Markov chain probabilities. These transition probabilities are given in

a transition matrix, such as

Chapter 2. Preliminaries 51

P =

P1,1 P1,2 . . . P1,m

P2,1 P2,2 . . . P2,m

.
. . .

...

Pm,1 Pm,2 . . . Pm,m

(2.38)

where,

Pi,j is the probability of transitioning between state i and j.

Furthermore, Markov processes are categorized reliant upon whether T and Ω are

discrete (countable) or continuous (uncountable). Thus, reliant upon state spaces

and associated time, there are four types of Markov processes. We discussed here,

two types of Markov models which are commonly used. The first one is discrete

time Markov chains (models), DTMC and another one is continuous time Markov

chains (models), CTMC.

2.5.3.1 Discrete Time Markov Chains (DTMC)

In DTMC, the state changes at discrete points. Let T ∈ {0, 1, 2, . . . } is the parameter

space and P = [pij] is a transition probability matrix. It is a stochastic matrix since

the sum of all elements in a row of P is 1.

The state probability vector at time step n denoted by π(n) can be iteratively

computed using:

Chapter 2. Preliminaries 52

π (n) = π (n− 1)P (2.39)

In terms of the initial probabilities π (0) [37],

π (n) = π (0)P (n) (2.40)

where, P(n) is called n-step transition probability matrix of DTMC. Let pij(n) is

(i, j)th entry of the matrix P(n), represents the probability of reaching state j at

time step n, starting from state i. Markov Chain can be of two types: (i)Irreducible:

if every state can be reached from every other state. (ii) Absorbing: if there is at

least one state i, from which there is no outgoing transition.

In case of irreducible DTMC, the metric of interest is the probability of being in state

i at time step n and in steady state [38]. The state probability vector at time step

n can be computed using Equation 2.40. To compute the state probability vector

in the steady state, we take limits on both sides of Equation 2.39. This gives us the

following system of equations for computing the probability vector of the system in

the steady state:

π = π.P (2.41)

Chapter 2. Preliminaries 53

π.e = 12.32 where e = (1, 1, .., 1)T

In case of an absorbing DTMC, there are three metrics of interest for state i:

1. the probability of being in state i at time step n.

2. the probability of being in state i in the steady state.

3. expected number of visits to each one of the non-absorbing states i.

Let P is the transition probability matrix of an absorbing DTMC with A absorbing

states and a total of S states. Let the transient or non-absorbing states are labeled

1,. . . .S-A, and the absorbing states are labeled S-A + 1, . . . , S. The transition

probability matrix P of an absorbing DTMC can be partitioned as:

P =

 Q C

O I

where, Q is an (S − A)× (S−A), I is an identity matrix, O is an A× (S−A) matrix

of zeros, and C is an (S−A)×A matrix. Let F(n) denote the probabilities of being

absorbed in state j starting from the transient state i in n steps. Then F is given by:

F =
n∑
l=0

QlC (2.42)

For steady state probability, l→∞

Chapter 2. Preliminaries 54

F =
∞∑
l=0

QlC = (I −Q)−1C (2.43)

(I −Q)−1 is called fundamental matrix M and is given by:

(I −Q)−1 = I +Q+Q2 + =
∞∑
l=0

Ql (2.44)

It is used to compute the expected number of times the process visits state j before

absorption, given that it started in state i. Let Xij is the corresponding random

variable. Then

E [Xij] = Aij (2.45)

Let Vj is the expected number of times the process visits state j before absorption.

Then, assuming that the DTMC starts in state i, we have:

Vj = Aij (2.46)

2.5.3.2 Continuous Time Markov Chains (CTMC)

Continuous time Markov chains are usable in situations where transitions between

states do not occur at specific time steps as in the discrete case [38]. Here the

transition probabilities, in a time interval of dt, between states i and j are given as

Chapter 2. Preliminaries 55

Pi,j = λi,jdt (2.47)

, where, λi.j ≥ 0 is the constant conditional failure intensity or failure rate, defined

as ”the probability that the component fails per unit time.” Its reciprocal is the

mean time to failure, hence if no transition is possible, the transition rate becomes

zero. Based on this, a transition matrix can be defined as [40]

Chapter 2. Preliminaries 56

P =

P1,1 P1,2 . . . P1,m

P2,1 P2,2 . . . P2,m

.
. . .

...

Pm,1 Pm,2 . . . Pm,m

=

1−
∑m

k = 1

k 6= 1

λ1,kdt λ1,2dt . . . λ1,mdt

λ2,1dt 1−
∑m

k = 1

k 6= 2

λ2,kdt . . . λ2,mdt

.
. . .

...

λm,1dt λm,2dt . . . 1−
∑m

k = 1

k 6= m

λm,kdt

(2.48)

With the transition matrix derived and ready to use, determining probabilities of

being in a specific state after a given time, is done by defining Qj(t + dt), for state

j at time t+ dt.

Consider a two state Markov model as shown in Figure 2.6 with initial

conditionQ1 (0) = 1 & Q2 (0) = 0, it follows that

Chapter 2. Preliminaries 57

Q2 (t + dt) = λ1,2dtQ1 (t) + (1− λ2,1dt)Q2(t) (2.49)

Figure 2.6: Simplex system example

At any time, model has

Q1 (t) +Q2 (t) = 1 (2.50)

From Equation 2.49 and 2.50, we have

Q2 (t + dt) = λ1,2dt(1−Q2 (t)) + (1− λ2,1dt)Q2(t) (2.51)

⇒
(
Q2 (t + dt)−Q2(t)

dt

)
= λ1,2 − (λ1,2 + λ2,1) Q2 (t) (2.52)

⇒ Q2 (t) =

(
λ1,2

λ1,2 + λ2,1

)(
1− e−(λ1,2+λ2,1)dt

)
(2.53)

Chapter 2. Preliminaries 58

Generalize the above two state model into a model with n states, the probability of

being in state i at time t yield

Qi (t) =

(
λincoming edges

λincoming edges+ λoutgoing edges

)
×
(

1− e−(λincoming edges + λoutgoing edges)dt
)

(2.54)

2.5.4 Petri Net

Several analysis methods primarily based on state spaces, e.g., based on some system

model or system log, state spaces are created that can be utilized to verify behavioral

properties like deadlocks, boundness, liveness, etc. State spaces can be inspected

automatically without having any human interpretation. Even so, for an intensive

knowledge of the system’s behavior the analyst demands to examine and interpret

the corresponding state space. State spaces are well-known for the verification and

representation of critical systems [41].

By analyzing state spaces, far more insights can be acquired into the systems. Petri

Nets [42] offer a properly established visual formalism in which the meaning of

different components, this kind of as places, is clear. Further, a Petri Net provides

ambiguity free visualization.

Chapter 2. Preliminaries 59

A PN consist of a set of places (P), transitions (T), and directed arcs (A). PN’s

places are represented by circles and transitions are represented by bars in the

graphical notation. Arcs are connected from transitions to places and from places

to transitions. Places may have tokens, which are represented by a number of black

dots.

2.5.4.1 Standard Petri Net

A PN is a bipartite directed graph. Places (P) are notion by circles or ovals, whereas,

transitions (T) and arc represented by squares or rectangles, and by lines (I or O)

respectively. Mathematically, a PN can be represented by C = (P, T, I, O)

in which P and T are disjoint sets of nodes, and I and are sets of edges, where,

I ⊆ P × T , and O ⊆ T × P [30]. The places in a Petri Net, or P in the definition

above, are represented as circles while the transitions, or T in the definition above,

are represented as rectangles. The I and O represent the connections between the

places and transitions. A visual example of a Petri Net is shown in Figure 2.7.

This PN in Figure 2.7 can also be described mathematically as a PN,C, where:

C = (P, T, I, O)

P = { P1, P2, P3, P4, P5, P6}

T = { t1, t2, t3, t4, t5}

I (t1) = {P1, P2}

I (t2) = {P2, P3}

Chapter 2. Preliminaries 60

I (t3) = {P4, P5}

I (t4) = {P6}

I (t5) = {P6}

O (t1) = {P4}

O (t2) = {P5}

O (t3) = {P6}

O (t4) = {P1}

O (t5) = {P3}

Figure 2.7: Petri Net visual example

Chapter 2. Preliminaries 61

2.5.4.2 Marked Petri Net

However, even though there is executable logic defined in the way the places and

transitions interconnect, there is a need for data that the executable logic acts

on. This gives the extension of marked Petri nets. A marked PN is a 5-tuple

(P, T, I, O,M) in which (P, T, I, O) is a standard PN and M is a finite set of

mappings of places into natural numbers [30]. Places store a number of tokens,

initially defined by markings in M. Transitions are enabled if and only if all input

places have at least one marking per connection of the enabled transitions one is

fired, either randomly or by selection, at which point each input place decreased

by one token per connection and each output place increased by one token per

connection. A visual example of a Marked PN is shown in Figure 2.8.

Figure 2.8: Marked Petri Net visual example

Chapter 2. Preliminaries 62

In the example of Figure 2.8, the initial marking M0= (1, 1, 1, 0, 1, 0). Initially, t1

and t2 are enabled since all its inputs have tokens, whereas, due to unavailability

of required tokens t3, t4, and t5 are not enabled.

If t1 fires then token of P1 and P2 decreased by one and token of P4 increased by one.

Now the new marking would be M1 = (0, 0, 1, 1, 1, 0). Similarly, when t3 enabled

and fired the new marking is M2 = (0, 0, 1, 0, 0, 1). Next, t4 and t5 enabled and

fired, the corresponding marking would beM3= (1, 0, 1, 0, 0, 0), M4= (0, 0, 2, 0, 0, 0)

respectively.

If t2 fires the new marking would be M5= (1, 0, 0, 0, 2, 0). Finally, there is no more

transition enabled for firing. Hence, execution of marked PN is completed.

2.5.4.3 Event Driven Marked Petri Net

It should be noted that the PNs that have been presented thus far are all closed

systems. They do not naturally interact with other systems or the environment

around them. Fortunately, an extension has been created to address interaction

from outside of the closed system: Event-Driven Petri nets, which are defined by

7-tuple (Ein, Eout, P, T, I, O,M) in which (P, T, I, O,M) is a marked Petri net, Ein

and Eoutare set of input events and set of output events respectively.

Events, both in and out, are treated as places with self-loop token which reference

activities outside of the Petri net. A graphical example is shown in Figure 2.9, where

e1 and e2 are input and output events, respectively.

Chapter 2. Preliminaries 63

Figure 2.9: Event Driven Marked Petri Net visual example

Researchers are continuously paying the effort to obtain the properties of the model

to fit their applicability in modeling real systems. Authors have extended and

continue to extend the basic model PN to obtain more useful modeling tool that can

be fitted to model different types of real problems like performance evaluation, and

scheduling problems of dynamic systems.

2.6 Conclusion

This chapter gives foundation related to safety needed to comprehend the further

thinking all through this thesis is presented. It also discusses dependability as safety

attribute. Further, in order to design and evaluate the models, various state space

model has been adopted in the course of action. These state space models: state

Chapter 2. Preliminaries 64

transition machine, Harel state chart, UML state chart diagram, Markov model and

PN are presented and discussed.

After, having explained the preliminaries, concepts, definitions, acronyms, ter-

minology now a literature review for the identify state-of-the-art for reliability and

safety is possible be in Chapter 3, are reporting such a systematic review work

conducted by us is appears in Chapter 3. The full contribution of thesis includes

the review work presented in Chapter 3.

	Certificate
	Declaration by the Candidate
	Copyright Transfer Certificate
	Acknowledgements
	Contents
	List of Figures
	3.6 Limitations of existing approaches
	3.6.1 Modeling Limitations
	3.6.2 Analysis Limitations
	3.6.3 Parameter Estimation Limitations
	3.6.4 Validation Limitations
	3.6.5 Optimization Limitations

	3.7 Conclusion

	4 Problem Formulation and Solution Strategies
	4.2 Problem Formulation
	4.2.1 Difficulty in generalization of the quantitative safety analysis methodology

	4.3 Solution Strategies
	4.3.1 Strategy for dealing with the difficulty in generalization of the quantitative safety analysis methodology
	4.3.2 Strategy for dealing with the uncertainty in State-space safety models

	5 A Probabilistic Hazard Assessment Framework for the Safety Critical and control System
	5.2 Related Work
	5.3 The Proposed Method for Quantification of Hazards with a Case Study Illustration
	5.3.1 Phase 1: Develop State Machine Model of the System
	5.3.6 Phase 6: Convert the State Machine into CTMC Model and Assessment of Hazard Probability

	5.4 Experimental Validation

	6 Transformation of Deterministic Models into State space Models for Safety analysis of safety Critical Systems: A Case Study of Nuclear Power Plant
	6.2 Related Work
	6.3 A Case Study
	6.3.2 RCICS Operation and Operating Modes

	6.4 The Proposed Method For Safety Analysis By Use Of Conversion The UML Model into Petri Net Model with A Case Study Illustration
	6.4.4 Phase 4: Validation of USCD
	6.4.5 Phase 5: Generation of PN Model from USCD
	6.4.6 Phase 6: Analysis Methodology Validation

	7 Conclusion and Future Research
	7.2 Uncertainty in State space Models
	7.3 Future Work

	A Bibliography
	A List of Publications
	2 Preliminaries
	2.4 Dependability Attribute Prediction Metrics
	2.4.1 Failure Rate

	Abbreviations
	Symbols
	Preface
	1 Introduction
	1.1 Need of Safety Analysis for Safety Critical Systems (SCSs)
	1.2 History of Safety
	1.3 Motivation and Objectives of Research
	1.4 Scope of Research
	1.5 Thesis Outline

	2 Preliminaries (1)
	2.1 Dependability
	2.1.1 The Threats: Faults, Errors, and Failures

