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Abstract The problem of propagation of acceleration waves in an unsteady inviscid non-ideal gas

under the influence of magnetic field is investigated. The characteristic solution to the problem in

the neighbourhood of leading characteristics has been determined. An evolution equation govern-

ing the behaviour of acceleration waves has been derived. It is shown that a linear solution in the

characteristic plane exhibits non-linear behaviour in physical plane. The effect of magnetic field on

the formation of shock in non-ideal gas flow with planar and cylindrical symmetry is analysed. It is

noticed that all compressive waves terminate into a shock wave. Further, we also compare/contrast

the nature of solution in ideal and non-ideal magnetogasdynamic regime.
� 2013 Production and hosting by Elsevier B.V. on behalf of Ain Shams University.
1. Introduction

In the unsteady flow of a compressible fluid, a surface may ex-
ist, on which the acceleration of the fluid particle has a discon-
tinuity, this is known as acceleration wave. The analysis of

these waves has been the subject of great interest both from
mathematical and physical point of view due to its applications
in a variety of fields such as astrophysics, nuclear science, geo-

physics, plasma physics and interstellar gas masses where the
temperature of the gas is very high and the density is too
low. The study of jump discontinuities along characteristic

curves has been extensively done during the past decades. Gen-
erally we do not have the luxury of complete exact solution for
nonlinear system of hyperbolic partial differential equations,
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for analytical work we have to rely on some approximate ana-

lytical or numerical techniques which may be useful to set the
view and provide useful information towards our understand-
ing of the complete physical phenomena involved. Since at

high temperatures and low density the assumption that the
gas is ideal is no longer valid, the popular alternative to the
ideal gas is a simplified Van der Waals model. Under these

assumptions the electromagnetic effects may also be signifi-
cant. A complete analysis of such a problem should therefore
consist of study of the non-ideal magnetogasdynamics flow.
The formulation of the problem in non-ideal magnetogasdy-

namics involves greater complexities; several investigations
yielding qualitative description of the flow field have been per-
formed by people with aeronautical interest, using a number of

simplifications concerning the gas properties and the boundary
walls-producing wave like disturbances. A number of prob-
lems relating to weak nonlinear wave propagation in the

non-ideal magnetogasdynamics regime within the context of
nonlinear breaking of wave-fronts and its analysis have been
investigated by Singh et al. [1–3] and Pandey et al. [4].
Singh et al. [5] applied a perturbation method for the

study of propagation of weak shock waves in radiative
in Shams University.
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magnetogasdynamics. Anile [6] used a generalized wavefront
expansion method for dealing with the propagation of weak
shock waves. For moderately weak shock strengths, the com-

plete history of the shock can be determined approximately
by means of a method due to Courant and Friedrichs [7], Jef-
frey and Taniuti [8] and Whitham [9]. Shankar [10], Keller [11]

have used the well known ray theory to study the growth and
propagation of shock and shock strength in radiative magneto-
gasdynamics flow under the assumption that the upstream flow

is uniform but not at rest and without any restriction on the
downstream flow. Ram [12] analysed the influence of radiative
heat transfer on the process of steepening or flattening of accel-
eration waves and determined the shock formation time and

distance. An interesting study of weak non-linear waves in real
gas flows has been carried out by Chu [13], using a perturba-
tion technique. Singh et al. [14] have used the method of Lie

group analysis to determine an approximate analytical solu-
tion for the strong shock wave in a non-ideal gas. Vishwakar-
ma and Nath [15] have determined similarity solutions for the

problem of unsteady flow behind an exponential shock in a
dusty gas.

In the present paper, we have considered the problem of

propagation of a one dimensional unsteady planar and non-
planar flow of an inviscid gas in a non-ideal magnetogasdy-
namics regime. To investigate the problem of propagation of
acceleration waves along the characteristic path, the character-

istics of the governing system are used as the reference coordi-
nate system. An evolution equation governing the behaviour
of acceleration waves has been obtained. It is noticed here that

irrespective of their initial strength, all compressive waves ter-
minate into a shock wave for planar and cylindrically symmet-
ric case. Also, we compare the nature of solution in ideal and

non-ideal magnetogasdynamic flow.

2. Governing equations and characteristics

The governing equations for one dimensional planar and cylin-
drically symmetric motion of a non-ideal gas in the presence of
axial magnetic field with infinite electrical conductivity may be

written in the form [16]

qt þ vqx þ qvx þmqv=x ¼ 0; ð1Þ

vt þ vvx þ q�1ðpx þ hxÞ ¼ 0; ð2Þ

pt þ vpx � a2ðqt þ vqxÞ ¼ 0; ð3Þ

ht þ vhx � e2ðqt þ vqxÞ ¼ 0: ð4Þ

where a ¼ ðcp=qð1� bqÞÞ1=2 is the speed of sound,
e ¼ ð2h=qÞ1=2 is Alfvén speed, h the magnetic pressure defined
as h = lH2/2 with l as the magnetic permeability and H the

transverse magnetic field, p is the pressure, q is the gas density,
v is the velocity along the x-axis, t the time, x is the single spa-
tial co-ordinate being either axial in flows with planar (m = 0)

geometry or radial in cylindrically symmetric (m= 1) flows
and c is the constant specific heat ratio. Here and throughout,
non-numeric subscripts will denote partial differentiation with

respect to the indicated variables unless stated otherwise.
The above equations are supplemented with the Van der

Waals equation of state [17,1]

pð1� bqÞ ¼ qRT; ð5Þ
where R is the gas constant and b is the Van der Waals ex-

cluded volume which is known in terms of the molecular inter-
action potential in high temperature gases.

Eqs. (1)–(4) may be written in the matrix form as follows

ft þ Afx þ B ¼ 0; ð6Þ

where f, B are column vectors and A is matrix of order 4 · 4,
given as

f ¼

q

v

p

h

2
6664

3
7775; A ¼

v q 0 0

0 v 1=q 1=q

0 cp v 0

0 2h 0 v

2
6664

3
7775; B ¼

mqv=x

0

mcpv=x

2mvh=x

2
6664

3
7775:

Eq. (6) is a system of quasilinear hyperbolic partial differen-
tial equations having four real characteristics, along which
acceleration waves are propagated. Thus the function f(x, t)

satisfies (6) everywhere except at a characteristic curve X(t),
where f(x, t) is continuous, but ft and fx undergo finite jump
across X(t), such type of discontinuity is known as ‘‘accelera-

tion wave’’. The jump of f across X(t) is denoted by [f]. Thus,
we have

@

@t
½f� ¼ ½ft� þ

dXðtÞ
dt
½fx�; ð7Þ

where o/ot represents time-derivative as observed from the
wave front.

Taking jump in (6), using (7) and condition of continuity
[f] = 0, yields

A� dX
dt

I

� �
½fx� ¼ 0; ð8Þ

where I4·4 is an identity matrix.
From Eq. (7), we observe that if there exists a finite discon-

tinuity of acceleration along the characteristic curve, the char-

acteristic speed of propagation dX/dt is the characteristic root
of A. Hence the characteristic curves are given as

dx

dt
¼ v� c; where c ¼ ða2 þ e2Þ1=2; ð9Þ

which represent the outgoing and incoming wavelets along the
x-axis with a as the effective speed of sound in non-ideal med-
ium and

dx

dt
¼ v; ð10Þ

is the trajectory of the fluid particle.
3. Characteristic transformation

Now we introduce the characteristic variables / and n as
follows

I. n is a ‘‘particle tag’’ so that n is constant along the
trajectory of the fluid particle dx/dt = v in the (x, t)

plane. The particle and its path will be labelled by
n = t0, if the characteristic wave front traverses a
particle at time t0.

II. / is a wave tag so that / is constant along an outgoing
characteristics dx/dt = v + c in (x, t) plane, which will
be labelled by / = t*, if an outgoing wave is generated
at time t*.
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It is now clear that for each value of (/, n) there is a corre-
sponding pair (x, t) so that x = x(/, n), t= t(/, n). Thus we
have

x/ ¼ vt/; xn ¼ ðvþ cÞtn: ð11Þ

The above transformation yields

ft ¼
fnx/ � f/xn

J
; ð12Þ

fx ¼
f/tn � fnt/

J
; ð13Þ

where J is the Jacobian of transformation given as

J ¼ @ðx; tÞ
@ð/; nÞ ¼ �ct/tn:

It is clear from the above relations that J = 0 if and only if

t/ = 0, when two adjoining characteristics unify into a shock
wave. Since doubling up or overlapping of fluid particles is
prohibited from physical considerations, tn „ 0. Hence J = 0

gives us condition for the formation of shock wave. Using
(12) and (13) in (1)–(4)we get the following relations

ctnq/ � qtnv/ þ qvnt/ þmqvct/tn=x ¼ 0; ð14Þ

qctnv/ � tnp/ þ pnt/ � h/tn þ hnt/ ¼ 0; ð15Þ

ctnp/ � cptnv/ þ cpvnt/ þ cpmvct/tn=x ¼ 0; ð16Þ

ch/tn � 2hðv/tn � t/vnÞ þm2vcht/tn=x ¼ 0: ð17Þ

Using (15)–(17)in (14) we have

pn þ qcvn þ hn ¼ �mqc2vtn=x: ð18Þ
4. Boundary conditions

The boundary conditions at the shock front are

½p� ¼ 0; ½q� ¼ 0; ½v� ¼ 0; ½T� ¼ 0; ½h� ¼ 0;

t ¼ n at / ¼ 0: ð19Þ

Since the flow of the fluid ahead of the shock is homoge-
neous and at rest. Hence we have

pn ¼ 0; qn ¼ 0; vn ¼ 0; Tn ¼ 0; hn ¼ 0;

tn ¼ 1; at / ¼ 0: ð20Þ

Now using (19) and (20) in Eqs. (15) and (11) we get

p/ ¼ q0cov/ � ð2h0=c0Þv/; at / ¼ 0; ð21Þ

x/ ¼ 0; xn ¼ c0; at / ¼ 0; ð22Þ

where the subscript ‘‘0’’ denotes flow variables associated with

the undisturbed medium ahead of the wave. Using (20) in Eq.
(13), we get

@v

@x

� �
¼ y ¼ � v/

a0t/
; at / ¼ 0; ð23Þ

where y is the amplitude of acceleration wave.

5. Solution of the problem

Now differentiating (11), (18), and (21) with respect to / and n
yields
v/n

t/
¼ mc0

2n
y at / ¼ 0; ð24Þ

t/n

t/
¼ 3

2
� ð2� cÞ � 3bq0

2eð1� bq0Þ

� �
y; at / ¼ 0: ð25Þ

where e ¼ 1þ e20=a
2
0

� �
.

On differentiating (23) with respect to n and using (24) and

(25) we get

dy

dn
þ m

2n
yþ 1

2
3� ð2� cÞ � 3�b

ð1� �bÞe

� �
y2 ¼ 0; at / ¼ 0: ð26Þ

where �b ¼ bq0.
We introduce the following dimensionless parameters [12]

h ¼ y

y�
; g ¼ n� n�

2n�
; x ¼ y�n�; ð27Þ

where h, g and x represent dimensionless parameter of the
wave amplitude, dimensionless parameter of time and dimen-
sionless parameter of initial acceleration respectively. The

superscript ‘‘*’’ denotes initial wave level.
Now Eq. (26) may be written as

dh
dg
þ m

2ð2gþ 1Þ hþ
x
2

3� ð2� cÞ � 3�b

ð1� �bÞe

� �
h2 ¼ 0: ð28Þ

Eq. (28) may be reduced to a linear form so that its analyt-

ical solution is given as

h ¼ ð1þ 2gÞm=2 1þ xBðgÞ
2

3� ð2� cÞ � 3�b

ð1� �bÞe

� �� �� 	�1
; ð29Þ

where BðgÞ ¼
R g
0

1

ð1þ2gÞm=2
dg.

We conclude from Eqs. (23) and (29) that the shock wave

will form when t/ vanishes, i.e.

1þ xBðgÞ
2

3� ð2� cÞ � 3�b

ð1� �bÞe

� �
¼ 0: ð30Þ

Since B(g) P 0, the condition (30) shows that only com-
pressive wave fronts (x < 0) may grow into shock waves.
6. Results and discussion

Eq. (30) shows that in case of ideal gas flows ð�b ¼ 0Þ at c ¼ 2,

which corresponds to the plasma state, the magnetic field has
no effect on the nature of solution and agrees with the results
presented by Sharma et al.[18]. It may be noted here that the

effect of magnetic field enters into the solution through the
parameter e. Also, e = 1.0 corresponds to non-magnetic case
and e > 1.0 corresponds to magnetic case. The typical values
of parameters are taken as

e ¼ 1:0; 1:5; 1:6; 2:5:

�b ¼ 0:0; 0:2; 0:4; 0:6:

c ¼ 1:67:

For plane case (m= 0), the solution curves corresponding to
Eq. (29) for compressive waves (x < 0) is presented in

Fig. 1. Here, we observe that all compressive waves, irrespec-
tive of their initial strength, terminate into shock waves as in
case of ideal non-magnetic case Schmitt [19]. This is in contrast

with the corresponding case of ideal radiating gas where one
always finds critical amplitude such that any compressive
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ideal magnetogasdynamics with cylindrical symmetry.
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disturbance with initial amplitude greater than the critical one

always terminates into a shock wave, while initial amplitude
less than the critical one always results in a decay of the distur-
bance Ram [12]. In Fig. 1 the dotted, dashed, dot dashed and
thin curves represent the solution in non-ideal, non-ideal mag-

neto, ideal magneto and ideal gas flows respectively and corre-
sponding vertical lines show the position of shock formation.
We conclude that the presence of magnetic field in a non-ideal

gas is to delay shock formation as compared to non-ideal non-
magnetic case but in ideal magnetogasdynamic flow there is an
early shock formation in comparison with the corresponding

ideal gas flow. Further, the effect of non-idealness of the gas
is to accelerate the process of shock formation which is illus-
trated by Fig. 2. In all cases the amplitude of expansive wave
fronts (x > 0) decays and damp out ultimately. The rate of de-

cay in non-ideal (ideal) gas is accelerated as compared to in a
non-ideal magnetogasdynamics (ideal magnetogasdynamics)
flow. This nature is exhibited by Fig. 3. It is also expected as

the non-idealness of the medium has destabilizing effect on
the process of steepening (flattening) of compressive (expan-
sive) waves Wu and Roberts [17].

The solution curves corresponding to cylindrical symmetry
(m = 1) are shown in Figs. 4–6. The behaviour of solution
curves is similar to as in case of plane wave fronts however

there is a slight variation in the sense that the process of
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steepening (flattening) of compressive (expansive) waves is
accelerated as compared to plane case. These results are also
in close agreement with the results presented by the various
authors Ram [12] and Schmitt [19].
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7. Conclusion

The growth and decay behaviour of acceleration waves propa-

gating in a plane and cylindrically symmetric motion of a non-
ideal magnetogasdynamics regime is examined. It is shown that
a linear solution in the characteristics plane may exhibit non-

linear behaviour in the physical plane. Transport equations
are derived which lead to determination of the first point of
breaking into a shock. It is observed that all compressive waves,

irrespective of their initial strength, terminate into shock waves.
It is also noticed that the presence of magnetic field in a non-
ideal gas is to delay shock formation as compared to non-ideal
flow but in ideal magnetogasdynamics flow there is an early

shock formation in comparison with ideal gas flow. In all cases
the amplitude of expansive wave fronts (x > 0) decays and
damp out ultimately. The rate of decay in non-ideal (ideal)

gas is accelerated as compared to in a non-ideal magnetogasdy-
namics (ideal magnetogasdynamics) flow.
Acknowledgment

The first author acknowledges the financial support from the

UGC, New Delhi, India, under the SRF scheme.

References

[1] Singh LP, Husain Akmal, Singh M. A self-similar solution of

exponential shock waves in non-ideal magnetogasdynamics.

Meccanica 2011;46:437–45.

[2] Singh LP, Singh DB, Ram SD. Propagation of weak shock waves

in a non-ideal gas. Cen Eur J Eng 2011;1:287–94.

[3] Singh LP, Singh DB, Ram SD. Flow pattern induced by the plane

piston moving in a non-ideal gas with weak gravitational field.

Ain Shams Eng J 2011;2:125–31.

[4] Pandey Manoj, Radha R, Sharma VD. Symmetry analysis and

exact solutions of magnetogasdynamic equations. Quart J Mech

Appl Math 2008;61:291–310.

[5] Singh LP, Singh DB, Ram SD. Propagation of weak shock waves

in non-uniform radiative magnetogasdynamics. Acta Astronaut

2011;68:700–6.

[6] Anile AM. Propagation of weak shock waves. Wave Motion

1984;6:571–8.

[7] Courant R, Friedrichs KO. Supersonic flow and shock wave. New

York: Wiley-Interscience; 1948.
[8] Jeffrey A, Taniuti T. Nonlinear wave propagation. New York:

Academic Press; 1964.

[9] Whitham GB. Linear and nonlinear waves. New York: Wiley-

Interscience; 1974.

[10] Shankar Rama. On the growth and propagation of shock waves in

radiation magneto gas-dynamics. Int J Eng Sci 1989;27:1315–23.

[11] Keller JB. Geometrical acoustics. I. The theory of weak shock

waves. J Appl Phys 1954;25:938–47.

[12] Ram R. Effect of radiative heat transfer on the growth and decay

of acceleration waves. Appl Sci Res 1978;34:93–103.

[13] Chu BT. In: Wegner PP, editor. Weak nonlinear waves in

nonequilibrium flows. New York: Marcel Dekker; 1970, Pt. II.

[14] Singh LP, Husain Akmal, Singh M. An approximate analytical

solution of imploding strong shocks in a non-ideal gas through

Lie group analysis. Chin Phys Lett 2010;27:1–4.

[15] Vishwakarma JP, Nath G. Similarity solutions for unsteady flow

behind an exponential shock in a dusty gas. Phys Scr

2006;74:493–8.

[16] Korobeinikov VP. In: Problems in the theory of point explosion in

gases. Rhode Island: American Mathematical Society; 1976.

[17] Wu CC, Roberts PH. Structure and stability of a spherical shock

wave in a Van der Waals gas. Quart J Mech Appl Math

1996;49:501–43.

[18] Sharma VD, Singh LP, Ram R. The progressive wave approach

analyzing the decay of a saw-tooth profile in magnetogasdynam-

ics. Phys Fluids 1987;30:1572–4.

[19] Schmitt H. Entstehung von Verdichtungsstößen in strahlenden
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