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Abstract: 

Today, most of the electricity generated comes from fossil fuels (coal, oil, and natural gas). These fossil fuels have finite reserves and 
will run out in the future. The negative effect of these fossil fuels is that they produce pollutant gases when they are burned in the 
process to generate electricity. Fossil fuels are a non-renewable energy source. However, renewable energy resources (solar, wind, 
hydro, biomass, geothermal and ocean) are constantly replaced, hence will not run out, and are usually less polluting. Due to an 
increase in greenhouse gas emissions more attention is being given to renewable energy. As wind is a renewable energy it is a clean 
and abundant resource that can produce electricity with virtually no pollutant gas emission. Induction generators are widely used for 
wind powered electric generation, especially in remote and isolated areas, because they do not need an external power supply to 
produce the excitation magnetic field. Furthermore, induction generators have more advantages such as cost, reduced maintenance, 
rugged and simple construction, brushless rotor (squirrel cage) and so on. This paper presents the detailed survey on performance of 
wind farms situated at Jamgodrani hills and Nagda hill, near Dewas city in Madhya Pradesh, India. Variation of various performance 
indices such as total yearly generation, total availability of grid, total availability of wind generator, total generating units per wind 
generator and capacity utilization factor is discussed for wind farm on Jamgodrani hills and Nagda hill respectively.Latter, it 
introduces a simple and direct formula based on complex impedance matrix method to calculate the minimum excitation capacitance 

 and corresponding maximum frequency required for successful voltage build up across the terminal of three phase dual 
winding induction generator when operating on 225kW rating, used as wind generator in wind farm and variation of minimum 
excitation capacitance as well as corresponding maximum frequency is also being plotted for various conditions of load and speed. 
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1. Wind Farm: Case Study 

 
In this section of our case study, we plotted the variation of various performance indices (fig. 3 to fig. 11) of wind farm 
situated at Jamgodrani Hills and Nagda hill (shown in fig.1 & fig.2), near Dewas city, Madhya Pradesh. The data for 
plotting the yearly variation of various performance indices is shown in table 1 and table2. These performance indices 
actually represent the performance of wind generator annually. In terms of capacity factor, Wind power plants differ in a 
variety of ways from power plants that burn fuel. In spite of the downtime in a year, a coal plant can be run day and 
night at almost its rated capacity during any season of the year. In contrast, that wind speed varies with the time of the 
day and with the season.  
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Fig. 1 Wind farm at Jamgodrani hills near Dewas City (M.P)                              Fig. 2 Power factor correction capacitor for wind generator 

 

          Table 1 Performance Indices of wind farm at Nagda hill, 15.00 MW (25 × 0.600 MW) 

Year Annual average generation per 
wind electric generator (lac-units) 

% capacity 
utilization 
factor  

Annual average % grid availability Annual average  % wind 
generator availability  

2008-09 9.55 18.38 98.69 99.81 

2009-10 9.19 17.55 99.32 99.24 

2010-11 8.56 16.18 99.09 99.28 

2011-12 8.31 15.93 99.08 97.33 

 
Table 2 Performance Indices of wind farm at Jamgodrani hills, 13.05 MW (58× 0.225 MW) 

 
Year Annual average generation per 

wind electric generator (lac-
units) 

% capacity 
utilization 
factor 

Annual average % grid availability Annual average  % wind 
generator availability 

2002-03 2.68 13.59 94.74 95.56 

2003-04 2.16 10.97 98.25 95.36 

2004-05 2.45 12.46 98.51 93.65 

2005-06 1.99 10.13 99.05 96.54 

2006-07 2.32 11.79 98.72 96.16 

2007-08 1.95 9.92 97.86 93.62 

2008-09 1.86 9.43 96.49 88.53 

2009-10 1.96 9.94 96.98 93.36 

2010-11 1.76 8.91 97.60 88.75 

2011-12 1.74 8.84 96.97 88.61 

 
At times the wind speed may even be insufficient to drive the turbine. Consequently, a wind turbine cannot operate 24 
hours a day, 365 days a year at full power. A wind farm generally runs 65-80% of the time in a year with variation in 
output power. Because wind farms get paid for the total energy production, the annual energy output is a more relevant 
measure for evaluating a wind turbine that it’s rated power at certain speed. In terms of percent availability of machine, 
one refers that availability of any particular wind farm is low for short-term operation. For any individual generator 
there is an 80% coincidental that wind output will change less than 10% in an hour and a 40% chance that it will change 
10% or more in 5 hours. However, studies propose that, in practice, the deviations in thousands of wind turbines, blow-
out out over numerous diverse sites and wind systems, are flattened. As the distance between sites increases, the 
correspondence between wind speeds restrained at those sites, drops. Thus, while the output from a single turbine can 
vary significantly and quickly as local wind speeds vary, as additional turbines are associated above bigger and larger 
areas the ordinary power output becomes less mutable and more expectable. Wind speeds can be correctly estimated 
over large areas, and hence wind is a anticipated source of power for nurturing into an electrical grid. However, due to 
the inconsistency, although predictable, wind energy accessibility must be schedule. 
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In terms of percent availability of grid, we analyze that many wind farms are connected to the local network, medium or 
high voltage. The injection of wind power into the network has an impact on the voltage magnitude, its flicker, and its 
waveform at the point of common coupling (PCC). The effect on the voltage magnitude of the grid depends on the 
strength of the utility distribution network at the point of the wind generator(s). The strength of the system at the point 
of coupling under consideration is decided by the short-circuit power, called the fault level, at that point. The shot 
circuited power is the product of the short-circuit current, following a three-phase fault at that point, and the voltages of 
the system. 
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Fig. 8 Total availability of grid at Nagda hill 
 

Fig. 6 Yearly variation of capacity utilization factor of wind farm at 
Jamgodrani hills Fig. 5 Total availability of wind generator at Jamgodrani hill 

Fig. 7 Annual average generations per wind electric generator 
(Lac-Units) at Jamgodrani hills 

Fig. 3 Total yearly generation on Jamgodrani hills Fig. 4 Total availability of grid at Jamgodrani hills 
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2. Calculation of by Complex Impedance Matrix Method for Wind Generator 

 
When an inductive load (R-L) is connected across the terminal of three phase self-excited induction generator (SEIG), 
the dynamic equations in the complex differential form with flux linkages as state variables in the arbitrary reference 
frame is given [5] and [6], where ‘s’ denotes the stator and ‘r’ is for rotor:- 
 

 

Where, 

, ,  

, ,  

, , and  

For balanced steady state condition, the variables in d-q reference frames are sinusoidal quantities in all asynchronously 
rotating frames except the fact that in synchronously rotating frames they are constants[7]. Hence, in all synchronously 
rotating frames of references  is the angular frequency of the self-exciting voltages and currents, 

Also steady state value of voltages and current can be obtained by putting time derivative of state variables equal to zero 
(p=0) in equation (1). 
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Fig. 9 Total availability of wind generator at Nagda hill Fig. 10 Annual average generations per wind electric generator (Lac-
Units) at Nagda hill 
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Fig. 11 Yearly variation of capacity utilization factor of wind farm at 
Nagda hill 
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Fig. 12 Power curve of VESTAS V27-225 kW wind turbine 



 Sachin kumar and Priyanka Pandey  /  Energy Procedia   54  ( 2014 )  97 – 104 101

 

On putting determinant of the complex impedance matrix equal to zero, we got the following expression: 
 

                                                                                                                                     (2) 

On equating real part of equation (2), we get equation (3) 

 

On rearranging the above equation, we get 

 

Equating imaginary part equal to zero of equation (2), we get equation (5) 

 

On substituting the value of ‘C’ from equation (4) into equation (5), one can get the following second order equation is 
angular slip frequency‘s’: 

 

On solving equation (6), we got:- 

 

Since‘s’ is small negative quantity in case of SEIG. Therefore only positive sign is considered. 

Hence, self-excitation frequency is given by: 

 

 

 

 

 

 

 

 

 
 
 

 

 
 
 
 
 
 
 
 
 
 
 

 

 

 

 

 

 

 

 

 

 

 

Fig. 13 Flow chart for computation of  
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Fig. 13 shows the flow chart for the computer computation of the minimum self-excitation capacitance of self-excited 
induction generator based on complex impedance matrix method. 

a) Read the machine data ( , prime mover speed, p.f. 0f load, synchronous speed test data etc. 

b) Assume an initial value of angular frequency  and take the value of . 

c) Evaluate  are calculated from (B5-B7). 

d) The value of the angular frequency  is updated using equation (8). 

e) Repeat steps (a) and (b), each time using the updated value of  for evaluating  until the values of 
 in two successive iterations satisfy a specific accuracy. 

f) By getting the value of angular frequency, the value of  is computed directly from equation (4). 

3. Results and Discussions 
The proposed method (4) of determining the minimum excitation capacitance is tested on a wind generator used in our 
case study as shown in Table 3. 
 

Table 3 Wind Turbine Specifications Installed for Case Study 
 

Generator  

Rated power output 225 kW/40 kW 
Type  Dual wound asynchronous 
Voltage  440 V/ 3 phase 
Revolutions  1500/1000 rpm 

Frequency 50 

Total number of wind turbines  58 

Gear-box 

Type  Two stage, parallel shafts 

Gear ratio 1:40 

Number of steps 2 

Tower  

Type  Tubular  

Height  30 m/ 34 m 

Material  steel 

Rotor  

Type  Squirrel cage 

Number of blades 3 

Diameter  3.4 m 

Stator  

Pole  4/6 

Winding  Uniformly distributed 

Stator resistance per phase 0.019 Ω 

Stator reactance  per phase 0.18 Ω 

Rotor 

Rotor resistance per phase 0.019 Ω 

Rotor reactance  per phase 0.345 Ω 

Magnetizing reactance                            4.8 Ω 
 
Overall data 

Cut in wind speed 3.0 m/s 

Cut out wind speed 14 m/s 

Survival wind speed 25 m/s 

Rotor speed 1500 rpm@225 kw& 
1000rpm@40 kw 
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The induction generator specifications in terms of per unit values are: , , 

, , , , , ,  
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Fig. 15(b) corresponding change in maximum frequency 
(Hz) for purely resistive load 
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Fig. 14 (a) Variation of minimum capacitance μ  
withspeed (rpm) for (R-L) load 
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4. Conclusions 
 
In this paper a detailed study of various performance indices necessary to determine the reliability and performance of a 
particular wind farm i.e. wind farm situated at Jamgodrani hills and Nagda hill is presented as a case study. Latter, it 
introduces the complex impedance matrix method to calculate minimum excitation capacitance  required for 
successful voltage buildup across the terminal of three phase SEIG used as wind generator in our case study. The study 
of performance indices is very essential, as it determines the reliability and site matching of wind generator for a 
particular wind farm. Also a simple and direct formula based on complex impedance matrix method is also being used 
to determine the variation in minimum excitation capacitance  and corresponding maximum frequency  
for different operating conditions of load and speed. the results obtained from complex impedance matrix are verified 
by theoretical results. 
 
References 
 
[1] M. Godoy Simoes and F.A.Farret. Renewable Energy Systems: Design and Analysis with Induction Generators 2004. 
[2] Ion Boldea. Variable Speed Generators; The Electric Generator Handbook 2004. 
[3] R.C.Bansal, T.S.Bhatti and D.P. Kothari: A bibliographical survey on induction generators for application of non-conventional energy systems: 

IEEE Transactions on Energy Conversion, September 2003; 18 (3):433-439. 
[4] S.S. Murthy, B.P. Singh, C. Nagamani, and K.V.V. Satyanarayna: Studies on the use of conventional induction motors as self-excited induction 

generator: IEEE Transaction on Energy Conversion, December1988; 3:842-848. 
[5] R.J. Harrington and F.M.M. Bassiouny: New approach to determine the critical capacitance for self-excited induction generator: IEEE 

Transactions on Energy Conversion, 1998; 13(3):244-249. 
[6] Sachin Kumar, Sovit Pradhan and Rudra Narayan, Excitation Capacitance Requirements of Three Phase Self Excited Induction Generator for 

Wind Mill Application: IEEE International Conference on Energy Efficient Technologies for Sustainability, Tamil Nadu, India, April 10th -12th , 
2013:365-370. 

[7] S.N. Mahato, S.P. Sing and M.P. Sharma. Capacitors required for maximum power of a self-excited single-phase induction generator using a 
three-phase machine: IEEE Trans. on Energy Conversion, 2008; 23(2);372-381. 

 
 

 


