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This paper deals with a mathematical model describing the inward solidification of a melt of phase
change material within a container of different geometrical configuration like slab, circular cylinder
or sphere under the most generalized boundary conditions. The thermal and physical properties of
melt and solid are assumed to be identical. To solve this mathematical model, the finite difference
scheme is used to convert the problem into an initial value problem of vector matrix form and further,
solving it using the Legendre wavelet Galerkin method. The results thus obtained are analyzed by
considering particular cases when one might impose either a constant/time varying temperature or
a constant/time varying heat flux or a constant heat transfer coefficient on the surface. The whole
analysis is presented in dimensionless form. The effect of variability of shape factor, condition posed
at the boundary, Stefan number, Predvoditelev number, Kirpichev number, and Biot number on di-
mensionless temperature and solid-layer thickness are shown graphically. Furthermore, a comparative
study of time for complete solidification is presented.

Key words: Moving Boundary Problem; Predvoditelev Number; Biot Number; Kirpichev Number;
Finite Element Legendre Wavelet Galerkin Method (FELWGM).

1. Introduction

Modern technology demands to prepare a high
strength material with exceptionally superior tensile
properties, but at low cost. The most attractive method of
producing such materials is through unidirectional so-
lidification. A desired type of microstructure can be ob-
tained by controlling the freezing conditions and adding
a small quantity of impurity elements. The microstruc-
ture of eutectic alloys also depends on the rate of freez-
ing. When ZrO2-MgO eutectic freezes [1] at a growth
rate of 8.9 cm/h, a cellular structure is formed whereas
at a growth rate of 1 cm/h, the microstructure of ZrO2-
MgO eutectic is fully aligned with MgO rods in a cubic
ZrO2 matrix. At slow growth rates, Al2O3-UO2 forms
a rod eutectic, but at higher growth rates, the UO2 rods
tend to form a lamellar structure. The rate of freezing
which controls the structure depends on a number of
parameters. In order to determine the effect of these pa-
rameters on the rate of freezing, it is desirable to de-
velop a generalized theoretical model which may pre-
dict transport phenomena during the solidification.

Industrial thermal processes where energy availabil-
ity and its utilization are not coincident require a means
of matching the use of energy with its availability. One
can include the sensible and latent heat concepts of en-
ergy storage. Because of the large storage capacity and
constant charge and discharge temperature, the latent
heat concept is more attractive. The cool thermal stor-
age systems include liquid–solid phase change mate-
rials encapsulated in containers of different geometri-
cal shape. Understanding the thermal behaviour during
phase change in the container, it is important to design
efficient storage systems. The solidification which has
immense technological importance mathematically oc-
curs in a class of problems commonly known as mov-
ing boundary problems. The study of these problems
is not simple as the freezing front is not known in ad-
vance, and along the freezing front temperature gradi-
ents are discontinuous. A good account of the analyt-
ical and numerical solutions of these problems can be
found in a book by Crank [2].

Tien and Geiger [3], Carslaw and Jaegar [4],
Ozisik [5], Hill [6], Viskanta [7] and Barry and
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Goodling [8] also studied solidification problems from
a heat transfer point of view. None of these authors
studied inward solidification within a container filled
with melt of phase change material. Goodling and
Khader [9] obtained numerical solutions for the one-
phase one-dimensional inward solidification problem
with radiation-convection boundary condition. Gupta
and Arora [10] obtained analytical and numerical so-
lutions of the inward spherical solidification of a su-
perheated melt with radiative-convective heat trans-
fer and density jump at the freezing front. Yan and
Huang [11] used a perturbation solution for one-phase
slab problems. Shih and Chou [12] presented an it-
erative method of successive approximations to study
the solidification process inside a spherical geometry.
Rai and Rai [13] used the finite difference method
to solve a problem of inward solidification of slabs,
cylinder, and sphere. The solution of this problem is
found in terms of eigenvalues and spectral compo-
nent of the operator. Hill and Kucera [14] developed
a semi-analytical method to study the solidification in-
side spherical containers taking into account the ef-
fects of heat radiation on the container surface. They
estimated the time for complete solidification of the
sphere. Ismail and Henriquez [15] presented a numer-
ical study of the solidification of phase change ma-
terial (PCM) enclosed in a spherical shell. Bilir and
Zafer [16] investigated the inward solidification prob-
lem of PCM encapsulated in cylindrical or spherical
containers. Chan and Tan [17] carried out an experi-
mental study of the solidification of an n-hexadecane
inside a spherical container. In case of inward solidifi-
cation, the effect of shape factor of the container con-
taining the melt and the condition posed on the bound-
ary are not discussed in detail.

In present paper, a model describing the solidifica-
tion of a melt within a container of geometrical config-
uration like slab, circular cylinder or sphere when its
surface is subjected to the most generalized boundary
conditions is presented. Initially, the melt is at its freez-
ing temperature. Several assumptions have to be taken
at the surfaces from which solidification commences.
Such as constant/time varying container surface tem-
perature, constant/time varying heat flux at the con-
tainer surface, and constant convective heat transfer
coefficient between the container surface and the sur-
rounding medium. To solve this model, we have used
the finite element Legendre wavelet Galerkin method
(FELWGM) for finding the temperature and position of

the moving interface. Furthermore, the effect of param-
eters such as Predvoditelev number, Kirpichev number,
Biot number, and Stefan number on the moving layer
thickness is discussed in detail.

2. Formulation of the Problem

A liquid phase change material contained either in
a finite slab of thickness 2R or a cylinder or a sphere
of diameter 2R is initially at its freezing temperature
Tf. After time t > 0, the boundary is cooled by impos-
ing on it the boundary condition of first kind or second
kind or third kind. Namely, one might assume either
a constant temperature Tw < Tf (suscript w stands for
wall and f stands for freezing) or a constant heat flux q
or a constant heat transfer coefficient α . It is supposed
that: (i) heat transfer occurs only in the r-direction; (ii)
the container walls are so thin and of a so conductive
material that the thermal resistance through the walls
is negligible, the fact which is confirmed experimen-
tally by Tan and Leong [18]; (iii) the mass densities of
solid and liquid phases are equal. The melt freezes in-
ward and the solidification shell grows in a symmetric
manner. The finite region is divided into two regions
separated by the solidification front r = λ0(t). The first
region λ0(t) < r < R is in frozen form while the re-
gion 0 < r < λ0(t) is in liquid form. The dynamics of
freezing can be described by the following equations:

∂T
∂ t

=
a

rΓ

∂

∂ r

(
rΓ ∂T

∂ r

)
, 0 < r < R, t > 0 , (1)

where T is the temperature, a the thermal diffusiv-
ity, r the position of the solidification material, and
Γ = 0,1,2 for a slab, cylinder, and spherical configura-
tion, respectively. The initial condition and associated
boundary conditions are

T (r, t) = Tf, t = 0 , (2)

A0
∂T
∂ r

+B0T = f0(t), r = R , t > 0 , (3)

where

(i) A0 = 0 , B0 = 1 , f0(t) = Tw ,
(ii) A0 =−K , B0 = 0 , f0(t) = q ,
(iii) A0 =−K , B0 = α , f0(t) =−αT∞ ,

are defined in first, second, and third kind of boundary
condition, respectively. K is the thermal conductivity,
q the heat flux at the wall, and α the convective heat
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transfer coefficient. The energy balance at the solid-
liquid interface is

d(λ 0(t))
dt

=
K
ρL

∂T
∂ r

, r = λ0 (t) , (4)

λ0 (t) = 0 , r = R , (5)

T (r, t) = Tf , r = λ0 (t) , (6)

where ρ is the density, L the latent heat of fusion, and
λ0(t) the thickness of moving layer.

3. Solution of the Problem

Introducing the dimensionless variables and similar-
ity criteria defined as

x =
r
R

, S =
C∆T

L
, λ =

λ0 (t)
R

,

Fo =
at
R2 , θ =

(T −T0)
∆T

,

(7)

where

(i) ∆T = Tf−Tw , T0 = Tw , (8)

(ii) ∆T =
ql
K

, T0 = Tf−∆T , (9)

(iii) ∆T = Tf−T∞ , T0 = T∞ , (10)

in first, second, and third kind of boundary conditions,
respectively. x is the dimensionless space coordinate, S
the Stefan number, λ the dimensionless phase change
front, Fo the solidification time, and θ the dimension-
less temperature. Further

A′ =
A0

R
, B′ = B0 , θc (Fo) =

Fo(t)−B0T0

∆T
.

The system of (1) – (6) reduce into the dimensionless
form as follows:

∂θ

∂Fo
=

a
xΓ

∂

∂x

(
xΓ ∂θ

∂x

)
,

0 < x < 1 , Fo > 0
(11)

A′
∂θ

∂x
+B′θ = θc (Fo) , x = 1 , Fo > 0 , (12)

θ (x,Fo) = 1 , x = λ (Fo) , (13)

dλ (Fo)
dFo

= S
∂θ

∂x
, x = λ (Fo) , (14)

λ (0) = 0 , (15)

θ (x,0) = 1 . (16)

Replacing the domain [1,0]× [0,∞] by a rectangular
grid of points (xi, Foi). We first deal with the discretiza-
tion in the space variable by using central differences,
then (11) – (13) and (16) can be written in vector ma-
trix form as follows:

dθ

dFo
= Aθ +B , (17)

and the initial condition is

θ(0) =
[

1 1 · · · · · · 1
]T

. (18)

Here

θ(Fo) = [ θ1 θ2 · · · · · · θk ]T ,

A =
1

2Sh2

·



13A′
(

Γ h
x1
−2
)

(20hB′−21A′) −4
17A′

(
Γ h
x1
−2
)

(20hB′−21A′) +
(

Γ h
x1

+2
) −9A′

(
Γ h
x1
−2
)

(20hB′−21A′) 0 0 0(
−Γ h

x2
+2
)

−4
(

Γ h
x2

+2
)

0 . . . 0 0

0
(
−Γ h

x3
+2
)

−4
(

Γ h
x3

+2
)

0 0

0 0
(
−Γ h

x4
+2
)

−4 0 0
...

. . .
...

0 0 0 0 −4
(

Γ h
xk−1

+2
)

0 0 0 0 . . .
(

Γ h
xk

+2
)

−4


,

B =
1

2Sh2

[
20h

(
−Γ h

x1
+2
)

θc(Fo)

20hB′−21A′ 0 0 . . . . . .
(

Γ h
xk

+2
) ]T

.
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4. Finite Element Legendre Wavelet Galerkin
Method

To solve the differential equation (17) under initial
condition (18), let us assume that

dθ

dFo
= Xψ , (19)

where X is an unknown 2k−1M× 2k′−1M′ (M′ ≤ M,
k′ ≤ k) matrix, and ψ is a 2k−1M×1 matrix defined as

Ψ (Fo) =
[
Ψ10 (Fo) ,Ψ11 (Fo) , · · ·Ψ1M−1 (Fo) ,Ψ20 (Fo) ,

· · ·Ψ2M−1 (Fo) , · · ·Ψ2k−10 (Fo) . . .Ψ2k−1M−1 (Fo)
]T

.
(20)

The Legendre wavelets [19] ψnm (τ) are defined as

ψnm (τ) =


√(

m+ 1
2

)
2

k
2 Pm

(
2kτ− n̂

)
,

n̂−1
2k ≤ τ ≤ n̂+1

2k ,

0 , otherwise ,

(21)

where k = 1,2,3. . ., n = 1,2, . . .,2k−1, n̂ = (2n−1), m
is the order of Legendre polynomial, and τ is the nor-
malized time. They are defined on the interval [0,1].
Pm(τ) is denoted by Legendre polynomials of order m
which are orthogonal with respect to the weight func-
tion w(τ) = 1, τ ∈ [−1,1].

Integrating the above differential equation from 0 to
Fo and the using initial condition, we get

θ = θ (0)+XPψ , (22)

where P is an operational matrix of order 2k−1M ×
2k−1M. The operational matrix of integration [20] is
defined as∫

τ

0
ψ (s)ds = Pψ (τ) , τ ∈ [0,1] , (23)

P =
1
2k



L O O . . . O
0 L O . . . O
0 0 L . . . O
...

...
...

. . .
...

0 0 0 . . . O
0 0 0 . . . O


, (24)

where O and L are M×M matrices given by

O =


2 0 . . . 0

0
... . . .

...
...

...
. . .

...
0 0 . . . 0


and

L =



1 1√
3

0 0 0 0
−1√

3
0 1√

15
0 . . . 0 0

0 −1√
15

0 1√
35

0 0

0 0 −1√
35

0 0 0
...

. . .
...

0 0 0 0 0
√

2M−3
(2M−3)

√
2M−1

0 0 0 0 . . . −
√

2M−1
(2M−1)

√
2M−3

0


.

Substituting this value of θ(Fo) in the differential
equation (17), we get

Xψ = A(θ (0)+XPψ)+B, (25)

AXPψ−Xψ +Aθ (0)dT
ψ +BdT

ψ = 0, (26)

where dTψ = 1.
The above equation reduces in the form of

AXP−X +(Aθ (0)+B)dT = 0 . (27)

Let N = (Aθ (0)+B)dT, then the above system reduces
to

AXP−X +N = 0 . (28)

We look for the generalized time Fo in which the in-
terface moves a distance λ (Fo). The region (1−λ ,1)
is divided into k equal subregions. Assuming a fix
Fo∗ = Fo > 0, the elements of matrix X are computed
by solving the Sylvester equation (28). The interface
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condition (14) is used to evaluate the generalized time
Fo∗. By replacing the space derivative by its average
value and then integrating with respect to Fo from 0 to
Fo, we obtain

λ (Fo) =
1

20h

·
∫ Fo

0
(21−13θk−17θk−1 +9θk−2)dFo .

(29)

5. Numerical Computation and Discussion

The above solutions are of interest as they describe
the inward solidification process of a melt in different
geometries such as slab, circular cylinder or sphere
when the surface is subjected under most generalized
boundary condition. To analyze the solution, we
consider particular cases of technical importance.
In general, it is categorized into the following three
different modalities:

Case 1. The surface is subjected to a boundary condi-
tion of first kind. In this case, we take

A′ = 0 , B′ = 1 ,

(I) θc (Fo) = 0 , (II) θc = PdFo ,
(30)

where Pd is the Predvoditelev number defined as
Pd = bR2

a∆T .

Case 2. The second kind boundary condition consists
in assigning heat flux at the surface. In this case, we
take

A′ = 1 , B′ = 0 ,

θc (Fo) = Ki(Fo) = Kie(−PdFo) ,
(31)

where Ki is the Kirpichev number defined as Ki = ql
k∆T .

Case 3. The third kind boundary conditions generally
characterize the law of convective heat transfer be-
tween the surface of a body and its surrounding for
a constant heat flux. In this case, we take

A′ = 1 , B′ = Bi ,

θc(Fo) = 0 .
(32)

where Bi is the Biot number defined as Bi = αR
K .

The computation has been made and the results
are presented in tables and eighteen figures. On the

figures presented in this study, only the parameters
whose values are different from the reference values
are indicated. The selected reference values include
Pd = 1.0, Ki = 1.0, Bi = 1.0, Fo = 1.0. The dimen-
sionless temperature θ , at the end of solidification pro-
cess, as a function of space coordinate for slab, cir-
cular cylinder, and sphere for boundary condition of
first and second kind are shown in Figures 1 – 4, re-
spectively. In third kind of boundary condition the
temperature θ for slab, circular cylinder, and sphere
are arranged in Table 1. The solid region thickness as
a function of generalized time Fo for different Γ un-
der boundary condition of first and second kind are de-
picted in Figures 5 and 6, respectively. A slab takes
time Fo = 0.0578, a circular cylinder Fo = 0.0644,
and a sphere Fo = 0.0736 when the surface is sub-
jected to boundary conditions of first kind. When the

Fig. 1 (colour online). Temperature distribution in boundary
condition of first kind (I).

Fig. 2 (colour online). Temperature distribution in boundary
condition of first kind, Pd = 1.0 (II).
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Fig. 3 (colour online). Temperature distribution in boundary
condition of second kind, Ki = 1.0 (I).

surface is subjected to boundary conditions of second
kind, slab takes Fo = 0.50, cylinder takes Fo = 0.82,
and sphere takes Fo = 0.90. When the surface is sub-
jected to boundary conditions of third kind as shown
in Table 1, slab takes time Fo = 0.88, cylinder takes
Fo = 0.90, and sphere takes Fo = 0.92. In basic equa-
tion of heat conduction in a simple body like an infi-
nite plate, circular cylinder or sphere, the term ∂T

∂ t rep-

Table 1. Effect of temperature (θ ) for third kind of boundary
condition.

Γ 0 1 2
Fo 0.88 0.90 0.92
x θ θ θ

0 1 1 1
0.1 0.77751 0.78181 0.78613
0.2 0.55521 0.56137 0.56760
0.3 0.33328 0.33887 0.34448
0.4 0.11190 0.11449 0.11684
0.5 0.10873 0.11160 0.11528
0.6 0.10628 0.10937 0.11412
0.7 0.10454 0.10778 0.11335
0.8 0.10348 0.10683 0.11299
0.9 0.10309 0.10652 0.11305
1.0 0.0958 0.0958 0.0958

Table 2. Effect of Bi on moving layer thickness λ ,S = 1.0.

Γ 0 0 0 1 1 1 2 2 2
Bi 0.2 0.4 0.6 0.2 0.4 0.6 0.2 0.4 0.6
Fo λ λ λ λ λ λ λ λ λ

0.00 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000
0.01 0.22019 0.22022 0.22026 0.21465 0.21468 0.21472 0.20916 0.20920 0.20923
0.02 0.44092 0.44099 0.44106 0.42985 0.42992 0.42999 0.41890 0.41896 0.41903
0.03 0.66210 0.66221 0.66232 0.64552 0.64562 0.64572 0.62911 0.62920 0.62929
0.04 0.88366 0.88380 0.88394 0.86158 0.86170 0.86183 0.83971 0.83983 0.83995

Fig. 4 (colour online). Temperature distribution in boundary
condition of second kind, Ki = 1.0, Pd = 1.0 (II).

resents the rate of change of temperature with respect
to time and can be replaced by δTt

t . Similarly, ∂T
∂x rep-

resents the rate of change of temperature with respect
to x and can be replaced by δTR

x . The term ∂ 2T
∂x2 is the

square rate of change of T with respect to x, and it can
be replaced by δTR

x2 , where the suffixes t and R denote
the time rate and space rate change in temperature T .
Therefore, the heat conduction equation reduces to

δTt

t
= a

(
δTR

R2 +
Γ

R
δTR

R

)
, (33)

i.e

1
(1+Γ )

δTt

δTR
=

at
R2 . (34)

The right hand side of this equation, being a dimen-
sionless quantity, is called Fourier number or solidifi-
cation time Fo = at

R2 . Thus, the Fourier number is de-
fined as the ratio of time rate change in temperature
with the space rate change in temperature, i.e.

Fo =
1

(1+Γ )
δTt

δTR
. (35)
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Fig. 5 (colour online). Moving layer thickness λ (Fo) for
boundary condition of first kind, S = 1 (I).

Fig. 7 (colour online). Effect of Pd on moving layer thickness
λ (Fo) for boundary condition of first kind, S = 1 (II).

Thus, the ratio of time rate change in temperature with
the space rate change in temperature increases as shape
factor Γ and Fourier number increase. This ratio is
highest in a sphere and lowest in a plate. The tem-
perature in a sphere is highest and in a plate is low-
est in all types of boundary conditions. It is evident
from Figures 5 and 6 that the moving layer thickness
in a slab is highest while in a sphere is lowest and be-
cause of this the time taken for complete freezing in
a slab is lowest and in a sphere is highest. In Case 3,
when the surface is subjected to boundary condition of
third kind, as Biot number increases, the temperature
of the solid region decreases (Tab. 1) while the solid
layer thickness increases (Tab. 2). The Biot number
provides a way to compare the conduction resistance
within a solid body with the convection resistance ex-
ternal to that body for heat transfer. It provides a way

Fig. 6 (colour online). Moving layer thickness λ (Fo) for
boundary condition of second kind, S = 1 (II).

Fig. 8 (colour online). Effect of Pd on moving layer thickness
λ (Fo) for boundary condition of first kind, S = 1 (II).

to use a proper method of analysis for appropriate sit-
uations. The process is fastest in the boundary condi-
tion of first kind in comparison to boundary condition
of second and third kind. It is due to the fact that in
the boundary condition of first kind, Bi is infinity, in
boundary condition of second kind Bi = 1

θ
, while in

boundary condition of third kind, it is finite. The dy-
namics of propagation of the freezing front during the
freezing process for Bi infinite are different from those
in the process where Bi is finite. In a freezing process
with infinite Bi, the front starts advancing into the liq-
uid with infinite speed, whereas in a freezing process
with finite Bi, the front starts advancing into the liquid
with a vanishing front speed. This is the reason why
the freezing process is fastest in boundary condition of
first kind in comparison to boundary conditions of sec-
ond and third kind.
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Fig. 9 (colour online). Effect of Pd on moving layer thickness
λ (Fo) for boundary condition of first kind, S = 1 (II).

Fig. 11 (colour online). Effect of Pd on moving layer thick-
ness λ (Fo) for boundary condition of second kind, Ki = 1.0,
S = 1 (II).

Fig. 13 (colour online). Effect of Ki on moving layer thick-
ness λ (Fo) for boundary condition of second kind, Pd = 1.0,
S = 1.

Fig. 10 (colour online). Effect of Pd on moving layer thick-
ness λ (Fo) for boundary condition of second kind, K = 1.0,
S = 1 (II).

Fig. 12 (colour online). Effect of Pd on moving layer thick-
ness λ (Fo) for boundary condition of second kind, Ki = 1.0,
S = 1 (II).

Fig. 14 (colour online). Effect of Ki on moving layer thick-
ness λ (Fo) for boundary condition of second kind, Pd = 1.0,
S = 1.
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Fig. 15 (colour online). Effect of Ki on moving layer thick-
ness λ (Fo) for boundary condition of second kind, Pd = 1.0,
S = 1.

Fig. 17 (colour online). Effect of Stefan number on mov-
ing layer thickness λ (Fo) for boundary condition of second
kind.

As the Stefan number increases, the dimensionless
solid layer thickness increases, and the time of com-
plete solidification decreases. This time is minimum in
slab and maximum in sphere. When the Stefan num-
ber decreases and approaches zero, the dimensionless
solid layer thickness also decreases and is tending to
zero. The Stefan number signifies the importance of
sensible heat relative to the latent heat. A higher value
of heat capacity or higher ∆T (in boundary condition of
first kind ∆T = Tf−To, in boundary condition of sec-
ond kind ∆T = ql

K , in boundary condition of third kind
∆T = Tf−T∞) or a lower value of latent heat acceler-
ates the freezing process as shown in Figures 16 – 18,
respectively. As the Stefan number increases, the time
required for complete solidification decreases and ap-
proaches zero. In such situations the solidification pro-
cess may be so rapid that liquid molecules have no time

Fig. 16 (colour online). Effect of Stefan number on moving
layer thickness λ (Fo) for boundary condition of first kind.

Fig. 18 (colour online). Effect of Stefan number on moving
layer thickness λ (Fo) for boundary condition of third kind.

to rearrange themselves into the usual crystal structure
and instead form an amorphous solid structure that is
reminiscent of the liquid phase. For this reason solid
formed from a supercooled liquid have been referred
to as liquid of pause [21].

6. Conclusion

A continuum model for the inward solidification of
a melt in different geometries under most generalized
boundary conditions has been presented. The finite el-
ement Legendre wavelet Galerkin method (FELWGM)
has been used to obtain the solution of this moving
boundary problem. It can be seen that the proposed
method is efficient and accurate to determine the so-
lution of the moving boundary problem. In view of
the excellent convergence of the Legendre wavelet se-
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ries, only a few terms of the series are needed to give
satisfactory results. The finite element method mini-
mizes the error at each point. The exceptional accuracy
prompts us to conclude that FELWGM may be an ex-
cellent alternative of other methods for solving bound-
ary value problems containing two nonlinearities. Our
simulation show that

• during solidification the dimensionless temperature
is highest in a sphere and lowest in a slab while it is
in between them in a cylinder;

• the solidification process is fastest in a slab and
slowest in a sphere while it is in between them in
a cylinder;

• the solidification process is fastest in boundary con-
ditions of first kind in comparison to boundary con-
ditions of second and third kind;

• the solidification process increases as the Pred-
voditelev number Pd decreases;

• the solidification process increases as the Kirpichev
number Ki or the Biot number Bi increases;

• the solidification process increases as the Stefan
number increases.
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