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This paper presents an extended minimal degree optimal Hankel norm approximation
(MDOHNA) based order reduction algorithm using a basis-free descriptor which
circumvents the requirement of computing balanced realized model for order reduction.
Conjunction of system decomposition algorithm (Singh and Nagar, 2004) [21], (Kumar
et al., 2012) [30,31] with MDOHNA is used as extension for order reduction of unstable
systems. The developed algorithm is applicable for stable/unstable, linear time invariant,
minimal/non-minimal, continuous/discrete-time systems as well. Further, effectiveness
of the algorithm over existing techniques is validated with the help of a numerical
example.

� 2013 Elsevier Inc. All rights reserved.
1. Introduction

Modeling strategies often result in dynamical systems of very high dimension. It is then desirable to find systems of the
same form but of lower complexity, whose input–output behavior approximates the behavior of the original system. From a
mathematical and system theoretical point of view, reduction using optimal Hankel norm approximation is among the most
important model reduction techniques today. It is one of the few model reduction algorithms that produce optimal approx-
imate models.

Adamjan et al. [1] introduced a closed-form optimal solution for model reduction with respect to Hankel norm criterion
for the scalar (single input–output) case. The relevance of [1] to model reduction was first mentioned by Kung [2] who later
presented closed-form optimal Hankel norm solution for multivariable systems [3] and developed minimal degree approx-
imation algorithm (MDA). The structure of linear dynamical systems with finite dimension is exploited in [4] to derive
explicit algorithms and simple expressions for the Hankel norm approximation of a high dimensional discrete-time stable
scalar system by a reduced model of any low order. The continuous-time scalar case is independently solved by Bettayeb
et al. [5]. Kung and Genin [6] used a two-variable polynomial approach to rederive the results of [l] and described many
significant properties of the MDA problems. Further Kung et al. [7] presented state space formulation of optimal Hankel
norm approximation problem. Subsequently, Glover [8] investigated characterization of all optimal Hankel norm approxima-
tions that minimize the Hankel norm for multivariable linear systems and derived the frequency response error bound. Char-
acterization of all solutions to the suboptimal Hankel problem using a different approach was also derived by Ball et al. [9,10]
continuous-time and discrete-time systems. Safonov and Chiang [11] suggested an improved representation of the equations
for minimal degree approximation Hankel norm model reduction which completely circumvents the need of balanced state
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space realization, permits the same simple formulas to be used for both the suboptimal and the optimal cases. Further, order
reduction for different class of systems using optimal Hankel norm approximation is investigated by several authors [12–18].

As far as reduction of unstable systems is concerned, several researchers adopted different approaches. The common
approach is to split the system into a stable subsystem and a unstable subsystem, and then apply an existing reduction tech-
nique to reduce the stable part while entirely retaining the unstable part. Hsu and Hou [19] considered the reduction of
continuous-time systems in which the transformed system is directly used for model reduction without complete decou-
pling of system into stable and unstable subsystems. By using bilinear transformation, Chen [20] suggested a method for
decomposition into three parts- stable, oscillatory and unstable subsystems.

In this paper extension of minimal degree optimal Hankel norm approximation (MDOHNA) technique for order reduction
of unstable systems using system decomposition algorithm is proposed. The algorithm used for system decomposition [21–
23] is based on real Schur transformation [24] and it is free from bilinear transformation in such a way that the original
unstable system is decomposed into stable and unstable subsystems. The reduced order model is obtained by simplifying
the stable subsystem and adding it to the unstable subsystem.

The organization of the paper is as follows: Section 2 describes the various steps of the MDOHNA algorithm for order
reduction of stable, minimal/non-minimal, continuous/discrete-time systems. Section 3 investigates the extension of the
algorithm for unstable systems using system decomposition. Finally, the comparative study of proposed method and conclu-
sions are made in Section 4 and 5, respectively.

2. Order reduction algorithm by minimal degree optimal Hankel norm approximation

The development of the optimal Hankel norm approximation [1–3] and the balanced truncation [25] changed the percep-
tion of model reduction techniques significantly. These two techniques ensured almost perfect characteristics as their
reduced order models are stable and also a priori frequency response error bounds. For the systems having uncontrollable
and unobservable states, the balancing transforms are generally singular. This creates practical difficulties while applying
standard Hankel norm approximation theory as balanced state space model is required to be computed first. The minimal
degree optimal Hankel norm approximation (MDOHNA) algorithm [11] completely alleviates the requirement of computing
balanced realized model for the system to be reduced, even when the original system is nearly uncontrollable and/or
unobservable.

Consider the transfer function matrix GðsÞ ¼ CðsI � AÞ�1Bþ D and the associated standard realization of a linear time
invariant (LTI) dynamical system as,
_xðtÞ ¼ AxðtÞ þ BuðtÞ; ð1aÞ

yðtÞ ¼ CxðtÞ þ DuðtÞ; ð1bÞ
where A 2 Rn�n; B 2 Rn�q; C 2 Rp�n and D 2 Rp�q: The number of state variables n is known as the order of the system. We
are interested in computing a reduced-order LTI system,
_̂xðtÞ ¼ Âx̂ðtÞ þ B̂ûðtÞ; ð2aÞ

ŷðtÞ ¼ Ĉx̂ðtÞ þ D̂ûðtÞ; ð2bÞ
of order r; r << n; such that the transfer function matrix ĜðsÞ ¼ ĈðsI � ÂÞ
�1

B̂þ D̂; approximates original system GðsÞ:
The Hankel norm represents the energy transferred from past inputs to the future outputs through the system

G ¼ fA;B; C;Dg 2 H1: If the input uðtÞ ¼ 0 for t P 0; and the output is yðtÞ; then Hankel norm [8] is defined as:
kGðsÞkH ¼ sup
u2L2ð�1;0Þ

kykL2ð0;1Þ

kukL2ð�1;0Þ
: ð3Þ
The associated Hankel operator [11] can be represented as,
HG : L2ð�1;0� ! L2ð0;1� : ðHGuÞðtÞ ¼
Z 0

�1
Gðt � sÞuðsÞds: ð4Þ
Bettayeb et al. [5] showed that HG has singular value decomposition which can be determined directly from state space
realization of GðsÞwith any order n P m; where m is the McMillan degree of GðsÞ: Further, m non-zero Hankel singular values
(HSV) of the system can be obtained by finding the square root of the eigenvalues of product of P and Q.
HSV ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
kiðPQÞ

p
such as r1 P r2 P :::: P rm > 0; ð5Þ
where kiðMÞ denotes the ith eigenvalue of M and P and Q are controllability and observability Gramians which can be defined
as,
P ¼
Z 1

0
esABB�esA�ds; ð6Þ
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and
Q ¼
Z 1

0
esA�C�CesAds; ð7Þ
By considering the corresponding matrix differential equations it is easily verified that P and Q satisfy the following
Lyapunov equations:
AP þ PA� þ BB� ¼ 0; ð8aÞ

A�Q þ QAþ C�C ¼ 0; ð8bÞ
where ‘⁄’ indicates the conjugate transpose of a matrix.
For a given positive number a > 0; the minimal degree optimal hankel norm approximation (MDOHNA) problem is to

compute a state space model of minimal degree ĜðsÞ [11] such that largest Hankel singular value of the modeling error
system HG�Ĝ; is at most a: Any rational GðsÞ; the approximant by minimal degree optimal hankel norm approximation
ĜðsÞ is called minimal degree approximant GðsÞ; Minimal degree [1] is precisely equal to the number of Hankel singular
values greater than a; i.e. the minimum degree is given by,
k :¼ max|ffl{zffl}
i

fijri > ag ð9Þ
Further, for the optimal case a ¼ rkþ1; [8, Theorem 9.7] every kth order minimal degree approximant of GðsÞ can be defined
for a constant matrix D0 as
G� Ĝ� D0

��� ���
1

:¼ sup|{z}
x

�r ¼ GðjxÞ � ĜðjxÞ � D0

� �
6

Xn

i¼kþ1

ri ð10Þ
For computation of minimal degree optimal Hankel norm approximant of kth order, a basis free descriptor system repre-
sentation is used. The steps for computing MDOHNA reduced model for GðsÞ consist of following steps:

Step 1. For rk > a P rkþ1; form the descriptor C, such that:
C ¼ QP � a2I; ð11Þ
and
Cs� A B

C D

" #
¼ a2AT þ QAP QB

CP D

" #
ð12Þ
Step 2. Take singular value decomposition of descriptor C and partition the result by applying the appropriate permutation
such that Gramians [8] become:
P ¼ Q ¼
R

rrþ1Il

� �
; ð13Þ
where rrþl has multiplicity l with,
r1 P r2 P :::: P rk P rkþl P rkþlþ1 P :::rm > 0; l P 1 ð14Þ
and
C ¼ UE1 UE2½ �
RE 0
0 0

� �
VT

E1

VT
E2

" #
: ð15Þ
Step 3. Apply the transformation to the descriptor state-space system above we have
A11 A12

A21 A22

� �
¼

UT
E1

UT
E2

" #
a2AT þ QAP
� �

VT
E1 VT

E2

h i
; ð16aÞ

B1

B2

� �
¼

UT
E1

UT
E2

" #
QB � CT
h i

; ð16bÞ

½C1 C2� ¼
CP

�aBT

� �
½VT

E1 VT
E2�; ð16cÞ

D1 ¼ D: ð16dÞ
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Step 4. From the parameters of above transformation of Eq. (16), the equivalent state-space model can be defined as:
~A ~B
~C ~D

" #
¼ R�1

E ðA11 � A12A?22A21Þ R�1
E ðB1 � A12A?22B2Þ

C1 � C2A?22A21 D1 � C2A?22B2

" #
ð17Þ
where M? denotes pseudoinverse of M. Now, additive decomposition of above state-space realization ~G ¼ f~A; ~B; ~C; ~Dg is
obtained, such that ~G ¼ ð~G� þ ~GþÞ; where ~G� is stable and ~Gþ is antistable. Then Gr hna ¼ ~G� is minimal degree optimal Hankel
norm approximation with rth order of original system G, which can be defined as:
Gr hna ¼ Dhna þ ChnaðsI � AhnaÞ�1Bhna: ð18Þ
The reduced model by MDOHNA technique is represented by fAhna;Bhna;Chna;Dhnag as,
Gr hna ¼
Ahna j Bhna

Chna j Dhna

� �
: ð19Þ
3. Minimal degree optimal Hankel norm approximation for reduction of unstable systems

In this section extension of minimal degree optimal Hankel norm approximation technique for order reduction of unsta-
ble systems is proposed using system decomposition algorithm. System decomposition algorithm is originally developed by
Nagar & Singh [21] and they computed reduced model for a higher order unstable system using balanced truncation. Later
Kumar et al. [30,31] explored this algorithm using balanced singular perturbation approximation technique. MDOHNA based
order reduction algorithm can be used for reduction of unstable systems after decomposition of original unstable system as
below:

3.1. Unstable system decomposition

The decomposition algorithm developed in this section is inspired from [21,30,31] and contains two stages of transfor-
mations. In first stage, the block form of real Schur transformation is used whereas, in second stage of transformation,
the generalized Lyapunov equation has been solved for obtaining decomposed stable and unstable subsystems. The decom-
position algorithm consists of following steps:

Step 1. Consider the system represented by Eq. (2) be an unstable system. Transform this system using an unitary matrix U
in block diagonal upper Schur form [26], such that the eigenvalues of the transformed system are arranged in
increasing order of its real components in case of continuous-time systems (in increasing order of its absolute value
in case of discrete-time systems).

If x denotes the original system states, then the first stage transformation matrix U (the unitary matrix) and the trans-
formed system states xt may be related as x ¼ Uxt : Thus, the first stage transformed system is,
ð20Þ
where n denotes order of the system, m denotes the number of stable eigenvalues and n�m denotes the number of unstable
eigenvalues.
Step 2: The transformed system of step (1), contains a coupling term At12: To bring transformed system into completely

decoupled form, solve the general form of Lyapunov equation:
At11S� SAt22 þ At12 ¼ 0 ð21Þ
Obtain the value of S and proceed for second stage of transformation using xt ¼WX; where X is the final stage transformed
state and W is the final stage transformation matrix. The second stage transformation matrix W is given as,
W ¼
Im : S

::: : :::

0 : In�m

2
64

3
75; ð22Þ
where Im and In�m are identity matrix of size m and n�m;, respectively. The important property of W is that W�1 can be
obtained simply by replacing S with �S. i.e.,
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W�1 ¼
Im : �S

::: : :::

0 : In�m

2
64

3
75: ð23Þ
Thus, W�1 always exists and hence never found ill-conditioned. Using W, completely decoupled system (Gd) can be
obtained as,
ð24Þ
where At ¼ U0AU;Bt ¼ U0B and Ct ¼ CU are obtained from step (1). This transformed model may be decomposed into stable
and unstable as,
Gd ¼
A11 j B1

C1 j D

� �
þ A22 j B2

C2 j 0

� �
¼ Gsðstable subsystemÞ þ GuðUnstable subsystemÞ ð25Þ
3.2. Reduced order model by Hankel norm approximation for decomposed stable system

The rth order minimal degree optimal Hankel norm approximated (MDOHNA) reduced order model for stable subsystem
Gs can be obtained from the Section 2, using Eqs. (11)–(18) and it can be represented as,
Gsr hna ¼
Ashna j Bshna

Cshna j Dshna

� �
: ð26Þ
3.3. Overall reduced order model for original unstable system

The overall reduced model of original unstable system by proposed algorithm is obtained by adding the reduced model of
decomposed stable part obtained by Eq. (26) and decomposed unstable subsystem from Eq. (25) as,
Gr hna ¼ Gsr hna þ Gu: ð27Þ
The reduced model by minimal degree optimal Hankel norm approximation (MDOHNA) technique is given by
Gr mdohna ¼ fAhna;Bhna;Chna;Dhnag as,
Gr mdohna ¼
Ahna j Bhna

Chna j Dhna

� �
: ð28Þ
4. Numerical example

In this section an 8th order linear model of the longitudinal dynamics of a forward swept wing aircraft [19,27] is consid-
ered. The wings are swept forward at angle 30� and model flight velocity is 1000 ft/s at sea level. One pair of complex poles
are lightly damped phugoid mode, two real poles represent the divergent short period mode and two other sets of complex
poles correspond to the two second order structural modes: wing bending mode with natural frequency 60 rad/s and the
wing torsional mode with natural frequency 212 rad/s. The equations of motion [28] are developed in state variable form
Table 1
State variables of forward swept wing aircraft.

State variables vðtÞ Velocity ft/s
aðtÞ Angle of attack rad
hðtÞ Pitch attitude rad
qðtÞ Pitch rate rad/s
N1ðtÞ Wing tip deflection ft
_N1ðtÞ Wing tip rate ft/s

N2ðtÞ Wing rotation rad
_N2ðtÞ Wing rotation rate rad/s

Input control vector f ðtÞ Flaperon deflection rad
cðtÞ Canard deflection rad

Output vector aðtÞ Angle of attack rad
hðtÞ Pitch attitude rad
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with body-fixed coordinate system. The state space equations of the model are of the form given in Eq. (1). The state vector
xðtÞ; input control vector uðtÞ and output vector yðtÞ are tabulated in Table 1.

The �A; �B; �C matrices of the model are
A ¼

5:26� 10�4 0:0928 �0:562 �0:254 �1:41� 10�3 0:00151 0:0479 3:46� 10�7

�3:69� 10�3 �2:88 �4:67� 10�4 1:01 4:37 �0:0469 �1:49 �1:08� 10�5

0 0 0 1 0 0 0 0
1:16� 10�4 79:6 1:48� 10�5 �0:831 �60:5 1:01 25 1:46� 10�3

0 0 0 0 0 1 0 0
�0:944 �544 �1:18� 10�6 1:16 �3:62� 104 �20:6 �490 6:73� 10�4

0 0 0 0 0 0 0 1
0:192 7:51� 101 �1:56� 10�5 �0:643 �4:37 �0:0466 �4:52� 104 �0:0360

2
666666666666664

3
777777777777775

B ¼
0:102 �0:463 0 �19:4 0 �108 0 1:34

0:0164 �0:511 0 61:3 0 4:92 0 65

� �T

; C ¼
0 1 0 0 0 0 0 0
0 0 1 0 0 0 0 0

� �

The eigenvalues of the above system are �10:255� j189:9;�10:99;�2:84� 10�5 � j0:046; �0:018� j212:6 (stable) and

7:1881 (unstable). Following the proposed algorithm, we obtain the stable subsystem Gs ¼ fAs;Bs;Cs;Dsg and unstable sub-
system Gu ¼ fAu;Bu;Cu;Dug where
As ¼

�10:99 4:944 �678:5 �171:5 73:22 14:84 66:46

6:998� 10�12 �212:2 3:486� 104 8793 587:88 �747:8 �3362

�8:395� 10�13 �2:205 191:7 98:42 �1:105� 104 �4:843 �20:99

�2:579� 10�12 1:633� 10�11 �2:218� 10�9 �198:4 4:383� 104 2:893 6:373

1:052� 10�12 �3:198� 10�13 �6:005� 10�12 �1:929 198:3 0:01829 0:05224

�4:413� 10�12 �3:356� 10�13 1:921� 10�11 4:024� 10�12 �1:05� 10�11 0:01341 0:5663

2:698� 10�13 �2:597� 10�13 3:525� 10�11 8:539� 10�12 1:92� 10�11 �0:004113 �0:01347

2
666666666666666664

3
777777777777777775

Bs ¼
4:486 108:2 1:033 �1:277 �0:006218 0:3742 1:185
�29:94 �5:954 15:66 �62:97 �0:2829 �0:9131 �1:731

� �T

;

Cs ¼
0:1242 0:002108 0:07722 0:01921 �2:143� 10�5 �0:004816 �0:01862
0:0899 0:001253 0:09037 0:02263 �4:307� 10�5 0:0206 0:9914

" #

Ds ¼
0 0
0 0

� �
;Au ¼ ½7:188�; Bu ¼ ½�2:866 7:131�;Cu ¼ ½0:4466 0:623�T and Du ¼

0 0
0 0

� �
;

where the eigenvalues of stable subsystem ðGsÞ are �10:255� j189:9; �2:84� 10�5 � j0:046; �10:99; �0:018� j212:6 and
the eigenvalues of unstable system ðGuÞ are 7:1881: Thus, the eigenvalues of the original system are retained in decomposed
subsystems. The reduction of unstable system is carried out as described in Section 3. The HSVs of decomposed stable
subsystem are 1:88� 104; 0:2125;7:236� 10�4; 0:022209; 0:022208; 1:883� 104 and 7:975� 10�4 and the Bar chart of
HSVs is plotted in Fig. 1. From the HSVs and bar-chart it is clear that only the first two singular values are significant. Thus,
the 2nd order model is suitable for reduction of 7th order decomposed stable subsystem.

Reducing the stable part to 2nd order reduced model by minimal degree optimal Hankel norm approximation technique
as described in Section 2 and adding it to decomposed unstable part, the overall reduced model of the original unstable
system by proposed algorithm is computed using Eqs. (25) and (27) as
For a comparison, if we reduce stable part by balanced truncation technique [25] and adding it to unstable part, we get
the reduced model of original unstable system as
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and if we reduce stable part by balanced singular perturbation approximation (BSPA) technique [29], the final reduced model is
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and if we reduce decomposed stable part by Hsu and Hou’s method [19], then the final reduced order model is
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The step responses of models and the modeling errors transfer functions are plotted in Figs. 2–5, respectively. The singu-
lar value plots of models and the modeling errors transfer functions are plotted in Fig. 6–8, respectively. Frequency domain
H1 norm bounds of models and modeling error transfer functions are tabulated in Table 2.

The computed values of the error bounds in Table 2 may be directly read and verified from the plots of Fig. 8. Reduced
model by Hsu’s method [19] deviates much from the plot of original system whereas reduced model by proposed algorithm
preserves characteristics of original system which is observed from the plots of Fig 2–8 and Table 2. MDOHNA model
possesses lesser frequency domain error in high-frequency region as in case of BT model [25], on the other hand the case
is reverse in low-frequency region where BSPA model possess low-frequency error. From the Table 2 and Fig. 8, it is observed
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Table 2
Frequency domain computations for models.

S.N. Frequency domain computations kG(z)k1 = 3.766125 � 104 Reduced model type Reduced model order, r = 3

1. H1 norm (peak value of bode or singular value plot of frequency response) ¼ kGrðzÞk1 (a) MDOHNA 3:76610119� 104

(b) BT [25] 3:76610119� 104

(c) BSPA [29] 3:7661251� 104

(d) Hsu [19] 3:7661457� 104

2. Actual norm error bound in modeling = kGr(z) � G(z)k1 (a) MDOHNA 0.42505
(b) BT [25] 0.42505
(c) BSPA [29] 0.45739
(d) Hsu [19] 0.55927

3. Actual relative error bound = Actual Error Bound
kGðzÞk1

(a) MDOHNA 1:12861� 10�5

(b) BT [25] 1:12861� 10�5

(c) BSPA [29] 1:21449� 10�5

(d) Hsu [19] 1:48501� 10�5
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that reduced model by MDOHNA possesses least actual H1 norm error bound in modeling and thus least actual relative error
bound in comparison of other existing methods.
5. Conclusion

In this paper minimal degree optimal Hankel norm approximation (MDOHNA) technique is discussed for order reduction
of minimal/non-minimal systems using a basis free descriptor which eliminates the requirement of computing balancing
transform of original system for reduction. Further, extension of MDOHNA technique is proposed for reduction of unstable
systems using system decomposition algorithm. The reduced order model is obtained by reducing the stable subsystem
using MDOHNA algorithm and adding it to decomposed unstable subsystem. With the help of numerical examples, it has
been observed that (1) reduced order model obtained by minimal degree optimal Hankel norm approximation technique
preserves characteristics of original system almost in time and frequency domains both. (2) The proposed algorithm is free
from two fold error generally occurring in bilinear transformation-based methods in discrete to continuous and then back
conversions. (3) The reduced model obtained by proposed algorithm generate better results than Hsu [19], Deepak et al.
[22]. (4) Proposed algorithm produce least actual H1 norm error bound in modeling.
Appendix A. Supplementary data

Supplementary data associated with this article can be found, in the online version, at http://dx.doi.org/10.1016/
j.apm.2013.11.012.
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