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In this article the local stability of the Rabinovich–Fabrikant (R–F) chaotic system with
fractional order time derivative is analyzed using fractional Routh–Hurwitz stability crite-
rion. Feedback control method is used to control chaos in the considered fractional order
system and after controlling the chaos the authors have introduced the synchronization
between fractional order non-chaotic R–F system and the chaotic R–F system at various
equilibrium points. The fractional derivative is described in the Caputo sense. Numerical
simulation results which are carried out using Adams–Boshforth–Moulton method show
that the method is effective and reliable for synchronizing the systems.

� 2013 Elsevier Inc. All rights reserved.
1. Introduction

A wide class of physical phenomena can be described by mathematical models. Simple nonlinear dynamical system and
even piecewise linear system can exhibit complete unpredictable behavior known as chaos, which is an active area of re-
search to the scientific community working in nonlinear sciences, through this has no unified and universal definitions in
the scientific literature. It is described by the set of mathematical equations containing both dynamic and static variables.
Chaotic system is bounded nonlinear deterministic system which has a periodic long-term nature depending on initial con-
dition. Again due to sensitive dependence of chaotic dynamics on initial conditions [1], there is always possibility of expo-
nential spreading of trajectories of the systems emerging from initial conditions during coupling of the systems. Dynamic of
chaos has a very interesting nonlinear effect, which had been intensively studied by Lorenz [2], who found the first canonical
chaotic attractor in the year 1963.

In the last few decades, fractional order modeling has been an active field of research both from the theoretical and the
applied perspectives since they are naturally related to the systems with memory which prevails for most of the physical and
scientific system. Fractional calculus is a field of applied mathematics that deals with derivatives and integrals of arbitrary
orders and have applications in various fields of science and engineering ([3–7]). Fractional differential equations which are
generalizations of classical differential equations describe the memory effect, and it is the major advantage over integer-or-
der derivatives [8]. The chaotic dynamics of fractional order systems is an important topic of study in nonlinear dynamics. In
the last few years this area of research has been growing rapidly [9].
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In the present article the authors have used a simple algorithm that allows the control laws that stabilizes the chaotic sys-
tems around the unstable equilibrium points and synchronized the chaotic system. Since the chaotic systems are very sensi-
tive to initial conditions, so for this reason, chaotic systems are difficult to control and synchronized. Recently, controlling the
chaos and synchronization of chaotic systems of complex dynamical systems has attracted researchers in the field of engi-
neering and science. Research efforts have investigated the chaos control in many physical chaotic systems ([10,11]). Synchro-
nization is a phenomenon occurs when two or more nonlinear systems are coupled, which is nowadays very active area of
research in nonlinear dynamics. Actually synchronization is caused due to transformation of dynamical variables of two cha-
otic systems viz., drive (master) and response (slave) systems. The study of synchronization is extremely needed so that the
trajectories of two systems will converge and they will remain in step with each other to do the structurally stable coupling.

The pioneering works of Ott et al. [12] and Pecora and Carroll [13] introduced a method about chaos control of chaotic
system and synchronization between two identical or non identical systems has attracted a great deal of interest in various
fields and engineering ([14–17]). In recent years, many researchers and engineers have devoted their efforts to chaos control
and synchronization, including stabilization of unstable equilibrium points [18]. There are various schemes to achieve chaos
control and synchronization, such as linear and nonlinear feedback control, adaptive control, active control, sliding mode
control etc. ([19–22]). Among two main approaches for controlling chaos feedback control and non-feedback control, the
first one is especially attractive and has been commonly applied to practical implementation due to its simplicity in config-
uration. In 1997, Bai and Lonngren [23] have proposed Active control method, which has received a lot of attention to the
researchers working in the area of nonlinear dynamics due to its simplicity and easy to implement in applications of syn-
chronization and anti- synchronization of coupling of a pair of chaotic for both standard order and fractional order cases
([24–29]).

The Rabinovich–Fabrikant (R–F) equations introduced by Mikhail Rabinovich and Anatoly Fabrikant [30] are a set of three
coupled ordinary differential equations. For certain values of parameters the system is chaotic and for others it tends to a
stable periodic orbit. Danca and Chen [31] predicted that due to the presence of quadratic and cubic terms, it is hard to ana-
lyze the system. The stochastic nature of the system arising from the modulation instability is found in non-equilibrium dis-
sipative medium [32].

In the present article the authors have studied the dynamical behavior, chaos control and synchronization of fractional
order R–F system. It is found that the chaotic attractor exists in the fractional-order R–F system. Furthermore, fractional
Routh–Hurwitz conditions [33] are used to study the stability conditions in the fractional-order R–F system and the condi-
tions for linear feedback control have been obtained for controlling chaos in the considered system. The authors have used
the active control method for synchronization between fractional order chaotic and chaos controlled R–F system. Using the
Adams–Boshforth–Moulton method ([34,35]), numerical simulation is carried out for different particular cases.

2. Some preliminaries and stability condition

2.1. Fractional calculus
Definition 1. A real function f ðtÞ, t > 0, is said to be in the space Cl; l 2 R, if there exists a real number p > l, such that
f ðtÞ ¼ tp f 1ðtÞ, where f1ðtÞ 2 Cð0;1Þ, and it is said to be in the space Cn

l if and only if f ðnÞ 2 Cl; n 2 N.
Definition 2. The Riemann–Liouville fractional integral operator (Jat ) of order a > 0, of a function f 2 Cl; l P �1, is defined
as
Jat f ðtÞ ¼ 1
CðaÞ

Z t

0
ðt � nÞa�1f ðnÞ dn; a > 0; t > 0; ð1Þ
where Cð:Þ is the well-known gamma function.
Definition 3. The fractional derivative Da
t of f ðtÞ; in the Caputo sense is defined as
Da
t f ðtÞ ¼ 1

Cðn� aÞ

Z t

0
ðt � nÞn�a�1f ðnÞðnÞdn; ð2Þ
for n� 1 < a < n; n 2 N; t > 0; f 2 Cn
�1:

The important reason of choosing Caputo derivatives for solving initial value fractional order differential equations is that
the Caputo derivative of a constant is zero, whereas the Riemann–Liouville fractional derivative of constant is not equal to
zero.
2.2. Stability of the system

Consider a three-dimensional fractional order system



M. Srivastava et al. / Applied Mathematical Modelling 38 (2014) 3361–3372 3363
Da
t xðtÞ ¼ f1ðx; y; zÞ;

Da
t yðtÞ ¼ f2ðx; y; zÞ;

Da
t zðtÞ ¼ f3ðx; y; zÞ;

ð3Þ
where 0 < a < 1 and Da
t is Caputo derivative. The Jacobian matrix of the system (3) at the equilibrium points is
J ¼

@ f 1
@x

@ f 1
@y

@ f 1
@z

@ f 2
@x

@ f 2
@y

@ f 2
@z

@ f 3
@x

@ f 3
@y

@ f 3
@z

0
BBB@

1
CCCA: ð4Þ
Theorem (Matignon [36]). The system (3) is locally asymptotically stable if all the eigenvalues of the jacobian matrix evaluated
at its equilibrium point satisfy
j argðkÞj > ap=2: ð5Þ
The characteristic equation of the jacobian matrix (4) evaluated at their equilibrium points is given by the polynomial:
PðkÞ ¼ k3 þ a1k
2 þ a2kþ a3; ð6Þ
and its discriminant is given by
DðPÞ ¼ 18a1a2a3 þ ða1a2Þ2 � 4a3a3
1 � 4a3

2 � 27a2
3: ð7Þ
The fractional order Routh–Hurwitz conditions for the stability of the system is given as

(a) If DðPÞ > 0; then the necessary and sufficient conditions for the equilibrium point to be locally asymptotically stable, is
a1 > 0; a3 > 0; a1a2 � a3 > 0:

(b) If DðPÞ < 0; a1 P 0; a2 P 0; a3 > 0; then the equilibrium point is locally asymptotically stable for a < 2=3. However, if
DðPÞ < 0; a1 < 0; a2 < 0;a > 2=3; then all roots of Eq. (6) satisfy the condition j argðkÞj < ap=2:

(c) If DðPÞ < 0; a1 > 0 ; a2 > 0 ; a1a2 � a3 ¼ 0; then the equilibrium point is locally asymptotically stable for all 0 < a < 1.
(d) The necessary condition for the equilibrium point, to be locally asymptotically stable is a3 > 0:

3. Description of the system and its stability

3.1. The Rabinovich–Fabrikant chaotic system

The fractional order Rabinovich–Fabrikant system is given by
dax
dta
¼ yðz� 1þ x2Þ þ ax;

day
dta
¼ xð3zþ 1� x2Þ þ ay;

daz
dta
¼ �2zðbþ xyÞ; 0 < a < 1:

ð8Þ
For the parameters a ¼ 0:87 ; b ¼ 1:1; the system (8) exhibits chaotic attractor for the initial conditions [�1, 0, 0.5] at
a ¼ 0:99; which is depicted through the Figs. 1 and 2.

3.2. Stability of equilibrium points

To obtain the equilibrium points, let us consider the equations as
yðz� 1þ x2Þ þ ax ¼ 0;
xð3zþ 1� x2Þ þ ay ¼ 0;
2zðbþ xyÞ ¼ 0;

8><
>: ð9Þ
After solving Eq. (9) for a ¼ 0:87; b ¼ 1:1; we get five equilibrium points as E1ð0;0; 0Þ; E2ð�1:4797;0:7434;0:5422Þ,
E3ð1:4797;�0:7434;0:5422Þ, E4ð0:5182667;�2:12246;0:94384Þ and E5ð�0:5182667;2:12246;0:94384Þ.

The Jacobian matrix for the system (8) at an equilibrium point �Eð�x; �y;�zÞ is given as
Jð�EÞ ¼
aþ 2�x�y �z� 1þ �x2 �y

3�zþ 1� 3�x2 a 3�x

�2�y�z �2�z�x �2b� 2�x�y

0
B@

1
CA: ð10Þ
The characteristic polynomial of the Jacobian matrix (10) for a ¼ 0:87 ; b ¼ 1:1 is given by
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Fig. 2. Plots of xðtÞ; yðtÞ and zðtÞ of the controlled system (15) stabilizing the equilibrium point E1 for (a) k1 ¼ 1; k2 ¼ 4; k3 ¼ �2: (b) k1 ¼ 1; k2 ¼ 10; k3 ¼ �1.
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PðkÞ ¼ k3 þ 0:46k2 þ ð�4�x2 þ 3�x4 � 6:14�x�y� 4�x2�y2 þ 2�zþ 6�x2�zþ 2�y2�z� 3�z2 � 2:0711Þkþ 3:86518� 8:8�x2

þ 6:6�x4 þ 7:3418�x�y� 8�x3�yþ 6�x5�yþ 3:48�x2�y2 þ 4:4�z� 5:22�x2�z� 12�x3�y�z� 1:74�y2�z� 6:6�z2 þ 6�x�y�z2: ð11Þ
At the equilibrium point E1ð0;0;0Þ; the Eq. (11), becomes
PðkÞ ¼ k3 þ 0:46k2 � 2:0711kþ 3:86518: ð12Þ
The eigenvalues of the Eq. (12) are k1 ¼ �2:2; k2;3 ¼ 0:87� i:. Here k1 is negative real number and absolute value of
argðk2;3Þ is 0:8548: So E1ð0;0;0Þ is stable for a < 0:544186:

At the equilibrium point E2ð�1:4797;0:7434;0:5422Þ; the Eq. (11) becomes
PðkÞ ¼ k3 þ 0:46k2 þ 13:3914kþ 7:45725: ð13Þ
The eigenvalues of the Eq. (13) are k1 ¼ �0:554694; k2;3 ¼ 0:0473469� 3:66629i: Here k1 is negative real number and
absolute value of argðk2;3Þ is 1:55788: So E2ð�1:4797;0:7434;0:5422Þ is stable for a < 0:991: Similarly the equilibrium point
E3ð1:4797;�0:7434;0:5422Þ is stable for a < 0:991:

At the equilibrium point E4ð0:5182667;�2:12246;0:94384Þ; the Eq. (11) gives
PðkÞ ¼ k3 þ 0:46k2 þ 8:2249k� 12:9813: ð14Þ
The eigenvalues are k1 ¼ 1:25201; k2;3 ¼ �0:856� 3:104i: Here k1 is positive real number. So
E4ð0:5182667;�2:12246;0:94384Þ is unstable for 0 < a < 1:

Similarly the equilibrium point E5ð�0:5182667 ; 2:12246 ; 0:94384Þ is unstable for 0 < a < 1:
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4. Control of Chaos

The controlled Rabinovich–Fabrikant system with fractional order time derivative is given by
dax
dta
¼ yðz� 1þ x2Þ þ ax� k1ðx� �xÞ;

day
dta
¼ xð3zþ 1� x2Þ þ ay� k2ðy� �yÞ;

daz
dta
¼ �2zðbþ xyÞ � k3ðz� �zÞ;

ð15Þ
where k1; k2; k3 are control parameters and ð�x; �y;�zÞ is the equilibrium point of the system (8).
The Jacobian matrix of the system (15) at an equilibrium point �Eð�x; �y;�zÞ is given as
Sð�EÞ ¼
aþ 2�x�y� k1 �z� 1þ �x2 �y
3�zþ 1� 3�x2 a� k2 3�x

�2�y�z �2�z�x �2b� 2�x�y� k3

0
B@

1
CA ð16Þ
and the corresponding characteristic polynomial for a ¼ 0:87; b ¼ 1:1 is given by
PðkÞ ¼ k3 þ ð0:46þ k1 þ k2 þ k3Þk2 þ ð�2:071þ 1:33k1 þ 1:33k2 þ k1k2 � 1:74k3 þ k1k3 þ k1k2 � 4�x2 þ 3�x4

� 6:14�x�yþ 2k1�x�y� 2k3�x �y� 4�x2�y2 þ 2�zþ 6�x2�zþ 2�y2�z� 3�z2Þkþ 3:86518� 1:914k1 � 1:914k2 þ 2:2k1k2

þ 1:7569k3 � 0:87k1k3 � 0:87k2k3 þ k1k2k3 � 8:8�x2 � 4k3�x2 þ 6:6�x4 þ 3k3�x4 þ 7:3418�x�y� 1:74k1�x�y

� 6:14k2�x�yþ 2k1k2�x�yþ 1:74k3�x�y� 2k2k3�x �y� 8�x3�yþ 6�x5�yþ 3:48�x2�y2 � 4k2�x2�y2 þ 4:4�zþ 2k3�z

� 5:22�x2�zþ 6k1�x2�z� 12�x3�y�z� 1:74�y2�z� 6:6�z2 � 3k3�z2 þ 6�x�y�z2: ð17Þ
In view of fractional order Routh–Hurwitz conditions, we have
a1 ¼ 0:46þ k1 þ k2 þ k3;

a2 ¼ �2:071þ 1:33k1 þ 1:33k2 þ k1k2 � 1:74k3 þ k1k3 þ k1k2 � 4�x2 þ 3�x4 � 6:14�x�y

þ2k1�x �y� 2k3�x�y� 4�x2�y2 þ 2�zþ 6�x2�zþ 2�y2�z� 3�z2;

a3 ¼ 3:86518� 1:914k1 � 1:914k2 þ 2:2k1k2 þ 1:7569k3 � 0:87k1k3 � 0:87k2k3

þk1k2k3 � 8:8�x2 � 4k3�x2 þ 6:6�x4 þ 3k3�x4 þ 7:3418�x�y� 1:74k1�x�y� 6:14k2�x�y

þ2k1k2�x �yþ 1:74k3�x �y� 2k2k3�x�y� 8�x3�yþ 6�x5�yþ 3:48�x2�y2 � 4k2�x2�y2 þ 4:4�z

þ2k3�z� 5:22�x2�zþ 6k1�x2�z� 12�x3�y�z� 1:74�y2�z� 6:6�z2 � 3k3�z2 þ 6�x�y�z2;

DðPÞ ¼ 18a1a2a3 þ ða1a2Þ2 � 4a3a3
1 � 4a3

2 � 27a2
3:

8>>>>>>>>>>>>><
>>>>>>>>>>>>>:

ð18Þ
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Fig. 3. Plots of xðtÞ; yðtÞ and zðtÞ of the controlled system (15) stabilizing the equilibrium point E2 and E3 for k1 ¼ 1; k2 ¼ 10; k3 ¼ 14.
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4.1. Stabilizing the point E1

Substituting the value of E1 in Eq. (18) and considering k1 ¼ 1; k2 ¼ 4 and k3 > �2:2; we have DðPÞ > 0; a1 > 0;
a3 > 0; a1a2 � a3 > 0: Here all the eigenvalues of Eq. (17) are real with negative sign. So the system (15) is locally asymptot-
ically stable for 0 < a < 1: Also if k1 ¼ 1; k3 ¼ �1 and �1 < k2 < 1:5; we have DðPÞ < 0; a1 > 0; a2 > 0; a3 > 0: Moreover if we
choose a ¼ 0:9; all eigenvalues satisfy Eq. (5).
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Fig. 5. Plots of state trajectories of drive system (19) and response system (20) between state vectors and between error vectors for the fractional order
derivatives qi ¼ 0:98ði ¼ 1;2;3Þ at k1 ¼ 1; k2 ¼ 4 and k3 ¼ �2.
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4.2. Stabilizing the points E2 and E3

Substituting the value of E2 in Eq. (18) and suppose k1 ¼ 1; k2 ¼ 10 and k3 > 13:79, then we have DðPÞ > 0; a1 > 0;
a3 > 0; a1a2 � a3 > 0; and all eigenvalues of the system (17) are real with negative sign. So the system (15) is locally asymp-
totically stable for 0 6 a < 1: Similarly for k1 ¼ 1; k2 ¼ 10 and

k3 > 13:79; the system (15) is locally asymptotically stable for 0 6 a < 1 at the equilibrium point E3:
4.3. Stabilizing the points E4 and E5

Substituting the value of E4 in Eq. (18) and suppose k1 ¼ 1; k2 ¼ 10 and 0 < k3 < 4, then we have a1 > 0; a3 > 0; a3 > 0;
and all the eigenvalues of the Eq. (17) are negative real number and complex numbers with negative real parts. So E4 is lo-
cally asymptotically stable for 0 6 a < 1:

Similarly for k1 ¼ 1; k2 ¼ 10 and 0 < k3 < 4; the system (17) is locally asymptotically stable for 0 < a < 1 at the equilib-
rium point E5:
5. Simulation and results

In numerical simulations, the parameters of the Rabinovich–Fabrikant system are taken as a ¼ 0:87; b ¼ 1:1. Time step
size is 0.01 and initial value of the system is taken as [�1, 0, 0.5].
5.1. Simulation for the point E1

At k1 ¼ 1; k2 ¼ 4 and k3 ¼ �2; eigenvalues are k1 ¼ �2:748; k2 ¼ �0:512 and k3 ¼ �0:199. So the system (15) is asymp-
totically stable at E1ð0;0;0Þ: The simulation result is depicted through Fig. 2(a). When k1 ¼ 1; k3 ¼ �1 and k2 ¼ 0:5; then
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Fig. 6. Plots of state trajectories of systems (19) and (20) between state vectors and between error vectors for qi ¼ 0:98ði ¼ 1;2;3Þ at k1 ¼ 1; k2 ¼ 10 and
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eigenvalues are k1 ¼ �1:199; k2 ; 3 ¼ 0:119978� 0:968267i: In this case though integer order system is unstable, but the frac-
tional order system (15) is asymptotically stable at E1ð0; 0;0Þ: The simulation result is depicted through Fig. 2(b).

5.2. Simulation for the points E2 and E3

At k1 ¼ 1; k2 ¼ 10 and k3 ¼ 14; then eigenvalues are k1 ¼ �11:8071; k2 ¼ �10:2235 and k3 ¼ �3:42924. So the system
(15) is asymptotically stable at E2ð�1:4797;0:7434;0:5422Þ: The simulation result is depicted through Fig. 3(a). Fig. 3(b)
shows that system (15) is asymptotically stable at E3ð1:4797;�0:7434; 0:5422Þ

5.3. Simulation for the points E4 and E5:

At k1 ¼ 1 ; k2 ¼ 10 and k3 ¼ 1; then eigenvalues are k1 ¼ �8:92352; k2;3 ¼ �1:76824� 2:72589i. So the system (15) is
asymptotically stable at E4ð0:5182667;�2:12246;0:94384Þ: The simulation result is depicted through Fig. 4(a). Fig. 4(b)
shows that system (15) is asymptotically stable at E5ð�0:5182667;2:12246;0:94384Þ:

6. Synchronization between fractional order chaotic and chaos controlled R–F systems

In this section the synchronization behavior between chaotic R–F system and unchaotic R–F system is made. We assume
that chaos controlled fractional order R–F system, which is unchaotic, drives the chaotic R–F system. Therefore, unchaotic
R–F system is taken as master system and chaotic R–F system as a slave system.

The master system is given by (15) as
Fig. 7.
k3 ¼ 14
dax1

dta
¼ y1ðz1 � 1þ x2

1Þ þ ax1 � k1ðx1 � �xÞ;

day1

dta
¼ x1ð3z1 þ 1� x2

1Þ þ ay1 � k2ðy1 � �yÞ;

daz1

dta
¼ �2z1ðbþ x1y1Þ � k3ðz1 � �zÞ:

ð19Þ
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Plots of state trajectories of systems (19) and (20) between state vectors and between error vectors for qi ¼ 0:98ði ¼ 1;2;3Þ at k1 ¼ 1; k2 ¼ 10 and
.
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The slave system is given by (8) as

x

(t
),

x
(t

)
z

(t
),

z
(t

)

Fig. 8.
k3 ¼ 1:
dax2

dta
¼ y2ðz2 � 1þ x2

2Þ þ ax2 þ u1ðtÞ;

day2

dta
¼ x2ð3z2 þ 1� x2

2Þ þ ay2 þ u2ðtÞ;

daz2

dta
¼ �2z2ðbþ x2y2Þ þ u3ðtÞ; 0 < a < 1 ;

ð20Þ
where three active control functions u1(t), u2(t) and u3(t) are introduced in Eq. (8). Our goal is to investigate the synchroni-
zation of systems (19) and (20). We define the error states as e1 ¼ x2 � x1; e2 ¼ y2 � y1 and e3 ¼ z2 � z1: Then the correspond-
ing error dynamics can be obtained by Eqs. (19) and (20) as
dq1 e1
dtq1 ¼ ae1 � e2 þ y2z2 � y1z1 þ x2

2y2 � x2
1y1 þ k1ðx1 � �xÞ þ u1ðtÞ;

dq2 e2
dtq2 ¼ e1 þ ae2 þ 3x2z2 � 3x1z1 � x3

2 þ x3
1 þ k2ðy1 � �yÞ þ u2ðtÞ;

dq3 e3
dtq3 ¼ �2be3 � 2x2y2z2 þ 2x1y1z1 þ k3ðz1 � �zÞ þ u3ðtÞ:

8>><
>>:

ð21Þ
Then we define the active control inputs u1(t), u2(t), and u3(t) as
u1ðtÞ ¼ �y2z2 þ y1z1 � x2
2y2 þ x2

1y1 � k1ðx1 � �xÞ þ v1ðtÞ;
u2ðtÞ ¼ �3x2z2 þ 3x1 z1 þ x3

2 � x3
1 � k2ðy1 � �yÞ þ v2ðtÞ;

u3ðtÞ ¼ 2x2y2z2 � 2x1y1z1 � k3ðz1 � �zÞ þ v3ðtÞ;

8><
>: ð22Þ
which leads to
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Fig. 9. Plots of state trajectories of systems (19) and (20) between state vectors and between error vectors for qi ¼ 0:98ði ¼ 1;2;3Þ at k1 ¼ 1; k2 ¼ 10 and
k3 ¼ 1:
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dq1 e1
dtq1 ¼ ae1 � e2 þ v1ðtÞ;

dq2 e2
dtq2 ¼ e1 þ ae2 þ v2ðtÞ;

dq3 e3
dtq3 ¼ �2be3 þ v3ðtÞ;

8>><
>>:

ð23Þ
The synchronization error system (23) is a linear system with active control inputs v1; v2ðtÞ and v3ðtÞ: Next we design an
appropriate feedback control which stabilizes the system so that e1, e2, e3 converge to zero as time t tends to infinity, which
implies that the system (19) and (20) are synchronized with feedback control. There are many possible choices for the con-
trol inputs v1; v2ðtÞ and v3ðtÞ: We choose
v1ðtÞ
v2ðtÞ
v3ðtÞ

2
64

3
75 ¼ A

e1

e2

e3

2
64

3
75 ð24Þ
where A is a 3 � 3 constant matrix. In order to make the closed loop system stable, the matrix A should be selected in such a
way that the feedback system has eigenvalues ki which satisfies the condition j argðkiÞj > 0:5pq; i ¼ 1;2;3: There is not a un-
ique choice for such matrix A, a good choice can taken be as follows:
A ¼
�ðaþ 1Þ 1 0
�1 �ðaþ 1Þ 0
0 0 2b� 1

0
B@

1
CA ð25Þ
Then the error system is changed to
Dq1
t e1 ¼ �e1; Dq2

t e2 ¼ �e2; Dq3
t e3 ¼ �e3: ð26Þ
Here all eigenvalues ki of matrix A are �1, which satisfy the condition j argðkiÞj > qp=2; for 0 < q 6 1: Therefore, the linear
system (26) is stable and thus we get the required synchronization.
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7. Simulation and results

For the purpose of numerical simulations, the parameters of the R–F system are taken as a = 0.87, b = 1.1. The initial val-
ues of the systems (19) and (20) are considered as [�1, 0, 0.5] and [�0.5, �0.2, 1.2], respectively. Thus, the initial conditions
of error system become [0.5, �0.2, 0.7].

7.1. Synchronization at the point E1

See Fig. 5.

7.2. Synchronization at the point E2

See Fig. 6.

7.3. Synchronization at the point E3

See Fig. 7.

7.4. Synchronization at the point E4

See Fig. 8.

7.5. Synchronization at the point E5

See Fig. 9.

8. Conclusion

There are three important goals that the authors have achieved in the present article. First one is the local stability of the
R–F chaotic system with fractional order time derivative is analyzed. Second one is employing the control function of frac-
tional order R–F chaotic system with different equilibrium points. The stability of the equilibrium points using the fractional
Routh–Hurwitz criterion and the sufficient conditions for control of the fractional order R–F system by linear feedback con-
trol have been studied. It is observed that the R–F system can be controlled to its equilibrium points. The stability theorems
of fractional-order systems guarantee that the chaos control occurs if the necessary conditions are satisfied. Simulation re-
sults show that the feedback control is easy to implement even for controlling the fractional order chaotic systems. Thirdly,
authors have applied the powerful active control method which provides us a simple way to synchronize a pair of chaotic
systems and finally investigate the synchronization between fractional order chaotic and non-chaotic R–F system. Numerical
simulations are used to verify the efficiency, effectiveness and validity of the proposed method. The chaos control of chaotic
systems and synchronization between pair of fractional order chaotic systems assume considerable significance in the study
of nonlinear dynamics. The outcome of this research work would be appreciated and could be utilized by those researchers
involved in the field of mathematical modeling of fractional order dynamical systems.
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