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Abstract

In this paper, we have developed a hyperbolic space-fractional bioheat transfer model based on the single-phase-lagging 
constitutive relation. The numerical solution of the present problem has been done using fractional backward finite difference 
scheme and Legendre wavelet Galerkin approach. The effect of fractional parabolic and hyperbolic bioheat transfer model on 
temperature profile within living biological tissues has been studied and compared with their respective standard cases. 
Numerical results are presented graphically in both standard and anomalous case for different values of parameters.
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1. Introduction  

   Fractional calculus and fractals have found applications in improving the modelling accuracy of many phenomena 
in natural sciences. The process of development of models based on fractional order differential system has gained 
lot of attention due to its greater degree of freedom in the model and accurate explanations of physical phenomena. 
Fractional derivatives are non-local in nature as compared to local behaviour of integer derivatives. Fractional space 
derivatives are used to model anomalous diffusion or dispersion. There are some diffusion processes in nature for 
which the Fick’s second law fails to describe the related transport behaviour. This phenomena is called anomalous 
behaviour, it differs according to the order of fractional derivative p. 
   The success of thermal therapy in the treatment of metastatic cancerous cell depends on the precise prediction and 
control of temperature. As a result, several technical areas related to the measurement, generation and modelling of 
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heat inside living biological tissues came under intense studies. The Pennes bioheat transfer model [1] is used most 
commonly for the prediction of thermal data. The conduction term in this model is based on the classical Fourier’s 
law: 
                                                                     ( , ) ( , )q r t k T r t= − ∇ ,             (1) 

which implies unphysical infinite propagation speed of thermal disturbance. In order to overcome this unphysical 
behaviour, a modified constitutive relation was proposed by Cattaneo [2] and Vernotte [3] independently, by 
introducing a phase lag time in Fourier’s law: 
                                                   [ ]( , ) ( , ) 0,1q r t k T r tτ+ = − ∇ ,             (2) 

which is most widely accepted. The phase lag time  captures the micro-scale responses in time.  
   Numerical solution of fractional bioheat transfer equation has been done by many researchers. Singh et al., [4] 
done the solution of fractional bioheat equation by finite difference and homotopy perturbation method. Damor et 
al., [5] solve the space-fractional bioheat transfer equation using finite difference scheme. Jiang and Qi [6] 
analytically solved the thermal wave model of fractional bioheat transfer equation. Wavelet based numerical 
methods are recently developed tool in applied mathematics. It reduces the computational complexity and localizes 
small scale variations of solutions.  Recently, Kumar et al., [7,8] studied the dual-phase-lag model of bioheat 
transfer using finite element wavelet Galerkin method. 
   In this paper, a hyperbolic space-fractional bioheat transfer model has been developed. We use fractional 
backward finite difference scheme and wavelet Galerkin method to solve the present problem.  The dimensionless 
temperature profiles are obtained for parabolic and hyperbolic bioheat transfer model for different order of fractional 
derivative p. Fractional derivative of order p is used in the Caputo sense and defined  for m to be the smallest integer 
that just exceeds p as: 
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Details about the fractional derivatives and their properties can be found in the book by Podlubny [9]. 

2. Mathematical formulation 

   In this paper, the body tissue which is initially at a constant temperature  37o
oT C=  is heated by electromagnetic 

radiation using 1-D Cartesian coordinate and constant temperature boundary condition. The single-phase-lagging 
constitutive relation is used as:      
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The one-dimensional energy equation of the present problem is 
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where , , , ,c T t rρ  represents density, specific heat, temperature, time and distance respectively; α  is the space 

fractional derivative; the subscripts t and b are for the tissue and blood respectively. bω is the blood perfusion rate, 

mQ  is the metabolic heat generation which is assumed to be linear function of temperature in the present problem 

and is defined as: 
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rQ  is the external heat source due to electromagnetic radiation and is defined as: 

                                          exp( ( 0.01)),rQ SP a rρ= −                           (7) 

where S and a are the antenna constants, P is the transmitted power which may be varied according to the 
requirement.  
    Now eliminating q from (4) and (5), we get the hyperbolic space-fractional bioheat transfer equation as follows:  
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With initial condition as  

( , ) oT r o T= ,    
( ,0)

0
T r

t

∂ =
∂

 .                  (9)

Boundary condition 
( , ) wT R t T= ,                    (10) 

and symmetric condition as  
(0, )

0
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r
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∂

 ,                               (11) 

where wT  is the tissue wall temperature.  Eqn. (8) reduces to fractional parabolic bioheat equation by setting 0τ = . 

3. Solution of the Problem 

   Introducing the dimensionless variables and similarity criteria as 
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The system of Eqns.(8)-(11) reduces in the following form
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With initial condition as  
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boundary condition 
(1, ) ,o wFθ θ=                                 (15) 

and symmetric condition as 
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In order to establish the numerical approximation scheme, let , ( 0,1, 2... )ix ih i n= =  be the space direction and 

1
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n
≤ ≤ = > 0 is the grid size. The value of θ  at grid point ix  is denoted by ( )i oFθ . We take the shifted-

Grunwald backward finite difference scheme for space fractional derivative
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Where [ ]11, , ( 1) ,j
o jg g p g F p j= = − = − and it is defined as  
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Applying eqn. (17) in Eqns. (13)-(16), we can write the eqns. by taking n = 10, h = 0.1 in the vector matrix form as  
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3.1 Legendre Wavelet Galerkin Method 

Let us assume that 
2

2
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 where  and 

                                     (21) 

C and  are 12 1k M− ×  matrices given by 

1 1 11,0 1,1 1, 1 2,0 2,1 2, 1 2 ,0 2 ,1 2 , 1
[ , , , , , , , , , ]k k kM M M

C c c c c c c c c c− − −− − −= … … …  and                                (22) 

                       (23)  
The Legendre wavelets [10] 

             (24) 

where m is the order of Legendre polynomials , ,  n = 1, 2,…, 2k-1 ,  k is any positive integer and  is 
defined on the interval [0, 1]. Here Pm is the well known Legendre polynomials of order m and is given as: 

 m =1,2,3,…, M-1                              (25) 

Integrating equation (20) with respect to  from 0 to  , we have 
( )

( )To
o

o

d F
C P F

dF

θ ψ= ,                               (26) 

where P is an operational matrix of integration(Razzaghi and Yusufi [11] ) of order M and is given 
as follow: 
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P =   .                       (27) 

Again integrating   Eq. (26) with respect to  from 0 to ,   we have 
            .                    (28) 

Substituting the values of 
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d
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 and θ  in Eqn.(19), we get 
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Solving Sylvester matrix Eqn. (29), we obtain value of C, which in turns gives dimensionless temperature. 

4. Results and discussion 

   Unless otherwise mentioned, the following thermo-physical properties for living biological tissue are used in 
numerical analysis:  

3 1 1 3 1 11000 , 0.5 , 4.18 10Kgm k Wm K c JKg Kρ − − − − −= = = × .Blood temperature and its thermo-physical properties are: 
3 1 1 3 3 137 , 3.5 10 , 0.5 10o

b b bT C c JKg K Kgm sω− − − −= = × = × . Basal metabolic heat generation rate is 31091moQ Wm−= ; 

thickness of tissue is R = 0.05m; initial temperature is 37o
oT C=  and wall temperature is 37o

wT C= . The source 

term parameter values are taken as: 1 111.5 , 140 , 30S Kg a m P W− −= = − = . In order to take account of effects of 

finite heat propagation speed, values of phase lag time τ has been taken in the range of 0-20s. Some parameter 
values are possibly adjusted for comparison and discussion and are noted in each figure. MATLAB 2011a software 
has been used for all computational work. 
Dimensionless temperature profiles at different time have been shown in Fig. 1. As time increases from 15 min. to 
25 min., the temperature at the hyperthermia position (x = 0.9) rises from 41o C  to 46o C , which is required range 
for thermal treatment. 
   Fig. 2 and  3 show temperature profile in case of Parabolic and Hyperbolic model of bioheat transfer for different 
values of p. It can be seen from these figures that as p increases, the temperature at the hyperthermia position 
decreases in both cases. Moreover, Fractional bioheat models causes greater temperature rise as compared to 
standard bioheat models in both parabolic and hyperbolic cases. 
   The phase lag time τ is the inherent property of living biological tissues. Fig. 4 shows that for fractional bioheat 
models as phase lag time τ increases, temperature decreases at the hyperthermia position.  
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     Fig.1 Plot of dimensionless temperature                                                             Fig. 2 Plot of dimensionless temperature     
                vs. distance at different time levels.                                                   vs. distance for fractional parabolic                                                     

                                    bioheat equation at different values of p. 

Fig.3. Plot of dimensionless temperature vs.                                             Fig.4.  Plot of dimensionless temperature vs. 
          distance for fractional hyperbolic bioheat                                        distance for fractional bioheat equation at 
          equation at different values of p.                                          different values of phase lag time. 

5. Conclusion 

   The hyperbolic space-fractional bioheat transfer model is derived and their effect is shown in thermal therapy 
applications. It can be concluded from the above study that the fractional bioheat models causes greater temperature 
rise as compared to standard bioheat models in both parabolic and hyperbolic cases. Standard parabolic and 
hyperbolic bioheat models show normal diffusion, whereas fractional bioheat model shows anomalous diffusion. 
Increase in phase lag time τ results in decrease of temperature at hyperthermia position.  
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