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Abstract

In this paper, a mathematical model describing the process of non-Fourier heat transfer in biological tissues for generalized
coordinate system during thermal ablation by electromagnetic radiation with Gaussian external heat source is studied. The
boundary value problem governing this process has been solved using hybrid numerical method taking Legendre wavelet basis
function. The result obtained from finite element Legendre wavelet Galerkin method (FELWGM) is compared with exact
analytical solution and shows a good agreement. The effect of variability of time, generalized coordinate system, location of
tumor or cancer, relaxation time and external heat source coefficient on temperature distribution is discussed in detail. It has been
observed that treatment of tumor or cancerous cell is independent of the generalized coordinate system at the thermal ablation
position.
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1. Introduction

The term tumor ablation is defined as the direct application of thermal therapies to a specific tumor in an
attempt to achieve abolition of substantial tumor destruction [1]. The techniques of tumor ablation most
commonly used in current practice are divided into two categories, namely, hyperthermic ablation, in which heat
may be generated by ultrasound or electromagnetic energy (i.e. radiofrequency, microwave, laser), and
cryoablation to destroy tumor by freezing it.
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Thermal ablation has many roles in the palliative treatment of benign and malignant tumors. Cell death is a result
of irreversible coagulation of proteins, including enzymes, intranuclear proteins, DNA proteins, and DNA [2].
Radiofrequency (RF), microwave (MW), laser, and ultrasound (US) ablate tissue by heating tissue to cytotoxic
temperatures. The last few years have seen a rapid expansion in the use and availability of thermal ablation
techniques with a lot of papers published. They studied the different type thermal ablation technique such as
radiofrequency, microwave ablation, ultrasound ablation. Temperatures in excess of 60°C are known to cause
relatively instantaneous cell death, while temperature from 50 to 60°C will induce coagulation and cell death in a
matter of minutes [3]. Successful thermal ablation treatment of tumors requires understanding the attendant thermal
process in both diseased and healthy tissues.

In 1948, Pennes [4] studied the temperature distribution in the forearm skin temperature, which means that the
equation is amenable to analysis by various methods commonly used to solve the heat transfer model for infinite
heat propagation, which is based on heat conduction of classical Fourier i.e.

q(r,t) =—-kVT(r,t)),

where gand VT are heat flux and temperature gradient in same instant time and space.

In fact, heat is always found to propagate with a finite speed within living biological tissues as they have highly
non-homogeneous inner structure. To solve the paradox occurred in the Pennes bio-heat equation, thermal wave
model of bio-heat transfer is introduced which is based on thermal wave constitutive relation given as follows: [5, 6]

q(rit+7,)=—kVT(r,t),

where z, is thermal lagging time. ¢ and v 7 at the same point (r) are in different instant of time. As the value of
T, tends to zero, thermal wave model reduces to Pennes model. Thermal wave model gives a suitable required

thermal data for describing temperature distribution in living biological tissue.

Modified Pennes bio-heat equation is solved using different type of numerical methods which are available in
literature. The finite-decomposition method [7], homotopy perturbation method [8], Galerkin approach with
variation iteration method [7, 8] and finite element Legendre wavelet Galerkin method [9,10]. Kumar et al. [11]
solved analytic solution of both parabolic and hyperbolic bio-heat transfer equation for finite domain. Steady state
bioheat equation is solved by Legendre wavelet collocation method [12].

In the present study, we have obtained the solution of the hyperbolic (thermal wave) bio-heat transfer equation
under metabolic and modified Gaussian external heat source. The hybrid numerical method (FELWGM) is used to
solve the thermal wave model. The approximate solution is verified with exact analytical solution. Semi discrtizing
in space co-ordinate, the problem is converted into a system of second order differential equation (S.0.D.E's) with
initial conditions. This system of S.O.D.E's in unknown variables has been also solved by wavelet Galerkin
approach with Legendre wavelet as basis function. Thus, our problem reduces into Sylvester matrix equation.
Solution of this Sylvester matrix equation gives temperature distribution inside living biological tissue during
thermal ablation.

2. Mathematical formulation of the problem

In thermal ablation, the body tissue, which is initially at a constant temperature Ty (= 37°C) is heated by
electromagnetic radiation with modified Gaussian external heat source using high power antenna. During heating
process the surface of the tissue is always maintained at normal wall temperature. The generalized coordinate system
is considered to study the temperature distribution in the tissue during thermal ablation. In this study, we used
hyperbolic bioheat transfer equation under the above assumptions; the differential equation governing the process of
heat transfer in the tissue can be expressed as
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(i) Cartesian (i) Axisymmetric (iii) Spherical Symmetric

Heating device

Biological tissue

Fig.1 Schematic geometry of one dimensional generalised coordinate system [7, 12].

(l—i-rq ;j(pcaT;:’t)—Qb -0, —ij = rkrgfr[rr aTg’t)j,o <r<L,t>0 (1)
with initial conditions
T(r,0)=T, and 3Tgr’0) —0- 2
t

boundary conditions

70,0)=T, 3)
and symmetric condition

OT(L.1) _y, )
ar

where 7 is the local tissue temperature; r, the space coordinate; t, the time; p, the density; c, the specific heat; I is
the number to classify coordinates i.e., I' = 0,1,2 to indicate cartesian, axisymmetric and spherical symmetric
coordinates, respectively [7, 12].

The term Q) represents heat source due to blood perfusion, it may be expressed as [7, 8]

0, =w,p,c¢, (Ta - T)’
where 7, is a constant arterial blood temperature.

For more practical purposes, metabolic heat generation can be approximated as a linear function of local tissue
temperature as observe by Mitchel et al., which is given as follows [8]

T -T
= 1+ ——2 >
0, Qmo( 0 j

where 0., is constant metabolic heat source.

Heat transfer in tissues when external heat source is taken as a modified Gaussian heat source [9] i.e.
2 r—r 2
QS (r,t) — QrO e’”n(’ 0) ,
where Q= pSP , S is antenna power; P is transmitted power, a, is the scattering parameter and 7, is the

location of tumor, where the heating power is applied.

3. Solution of the problem

Introducing the non-dimensional variable and similarity criteria
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Firstly, we descrtized Eqgs. (6) - (9) in space coordinate; the equations are converted into system of second order
ordinary differential equation with initial conditions i.e.
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2
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8(0)=0 and dH(O)zo, (11)

dF,
where 0(F,) and B are nX 1 matrix; A be the tridigonal matrix of order n.

3.1 Legendre Wavelet Galerkin Method.:

Let us assume that

d70(F,) _ v , (12)
dFr Cy(F,)
where CTY(Fy) = $25, TM28 Cpm W m (Fo) and (13)
1
Cnm = fo f(Fo)I»bn,m (Fo)dF,. (14)
Cand (F,) are 2K71M X 1 matrices given by
T

C=[610:Cr15e 5 Clarm15Co05 o -5 Copgis Cypt (Copt yaev s Cypon g | and (15)
l/)(Fo) = [lrbl.O(Fo)' lpl,l (FO)' “-llpl,M—l(Fo)' lpr,O (Fo)' ﬂlpz,M—l(Fo)’ ey wzk—{o (Fo)
lpzk—l,l(Fo)l "-'lpzk—llm_l(Fo)]T- (16)

The Legendre wavelets ¥, 1, (Fo) = Y(k, A, m,Fy),A=2n—1, n=1,2,...,2%" kisany positive integer, m
is the order of Legendre polynomials and ‘F,” is defined on the interval [0, 1) by

k ~ -1 A+1
Yo (Fo) ={ (m+1/2)22 B2 =R, S <Fo <, a7)
0, otherwise
wherem=0,1,...,M-landn= 1,2,..., 2K Here P, (F,) is the well known Legendre polynomials i.e. Py(F,) =
1, P,(F,) = E,, Py, (F,) =222 el A (F Y= P, () m=123.. M-I (18)
Integrating Eq. (12) with respect to F, from O to F,, we have
dO(F) ., (19)
2 ) TPy (F,) "
i v (F,)

where P is 271M x 2k~ M, operational matrix of integration given in ([13])

1303



1304

Dinesh Kumar et al. / Procedia Engineering 127 (2015) 1300 — 1307

r 1
1 NG 0 0 0 0
- L 9
S o
0o = 0o L
1 V15 -1 V35 0 0
P=%1% o W o0 : (20)
0 2M=3
0 O 0 (2M-3)V2M—1
0 0 0 0 __ VML 0
L (2M-1)\V2M=3 |
Again integrating Eq. (19) with respect to F, from 0 to F,, we have
0(F,) = C"P*Y(F,) . e2))
Substituting d 6 (F,), d0(F,) and 6(F,) in Eq. (10), we get
dF} dF,
ACTBT —Cc"™ + D =0, (22)

oq og” m0

whereB:(Pz(F I’1+(1+Fqu/2—F P d)P—(Pmod_sz)Pz)_l)T’

-1
D=M,'Bd/ (Foqln + (1 +F, P} - FqumOd)P — (P} +P,,d)P’ ) .
where [, is identity matrix of order n and d; =/1,;0,;0,;0,0,0;0;...n-times]. Solving Sylvester matrix Eq. (22), we
obtain value of C. Substituting the values of C in equation (21), then it gives required tissue temperature.

4. Numerical computation and analysis

In this work, the temperature distribution in biological tissues obtained from thermal wave model is studied
under modified external heat source as a Gaussian heat source and the most generalized coordinate system. We are
also taking temperature dependent metabolic heat source and blood perfusion in tissue. The short term heating (4-6
min.) process is known as thermal ablation. During this therapy, the tumors are killed immediately. The computation
has been made using MATLAB (R2012a) software and results are presented graphically. Only the parameters whose
values different from reference value are indicated. The selected reference values for temperature distribution in
living biological tissue in finite domain are taken as follows:

p=1000kgm=3,C =418%x 103 kg~* K™, T,=37°C, T, =37°C, L=0.05m, T, =37°C, L =0.05m,
Qro =7.85X10°Wm™3, Qo = 1.091X103Wm™3, k=05Wm™, W, =05kgm™3, ay=1X10""m™1,
10 =0.025m, 7, =20s,t = 6min., I'=0,1,2.

For approximate numerical solution of thermal wave model, we have used the finite element Legendre wavelet
Galerkin method (FELWGM). The numerical scheme is based on Legendre wavelet that combines the multi-
resolution and multi-scale computational property of Legendre wavelet with element wise analysis. Multi-resolution
analysis of Legendre wavelet localizes small scale variation of solution and fast switching of functional bases in the
case of thermal wave model. FELWGM minimizes error and produces higher degree of accuracy [9, 10]. When the

lagging time 7 .= 0 and absence of modified Gaussian external heat source then the bioheat transfer equation is
solved by analytically (Laplace transfer technique), which is given as follows:
cosh (P, (x - 1))} g 2xR(SIF) cosh (Vsi-pi(x-1)),

+

cos(P,) NN sinh(\/Sf—P/z)

where s, = | Pr—(4n+ 1)%1;0," Z 0.1, .0 The approximate solution (FELWGM) has compared with

analytical solution (Laplace transform technique) and shows good agreement, which is shown in Fig.2.

Thermal ablation (high temperature hyperthermia) is a technique to treat cancerous cells in the short time at high
temperature. The high temperature occurs at the target region for 4 to 6 min during the thermal ablation process [14].
In this process the mechanism of killing cells are protein denaturation / coagulation and ablation / vaporization. Fig.

0(x,F,)=(P}6,+P, ){sz -
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3 shows the effect of time on temperature with respect to space coordinate. We observed that temperature increases
from 54 to 70 °C as the time increases to 4-6 min for the value of Q,o = 7.85X10°Wm™3, Q,,, = 1.091X
103W m™2 during thermal ablation. So, the time duration affects the treatment process.

374 : : : E— 75 ‘
—F —t=6 min.
37.35) ] 707 [\ |~ t=4min.
[
P | =65 [ t=5 min.
e % FEWGM Solution 5
i) 37.25 — Exact Solution | ] B ‘\60 [
S g
= 372 B E 55¢
=
= £
g 3715 1 2501
£ £
£ 371t 1 245t
37.05} / 1 40+
37 L - L L 35 I I L L
0 100 200 300 400 500 0 0.01 0.02 0.03 0.04 0.05
Time, s, [t] Space coordinate, m, [r]
Fig.2 plot of temperature vs. time of FELWGM Fig.3 plot of temperature vs. space coordinate for
solution and Exact solution. different times.

The effect of generalised coordinate system (I' = 0,1,2) on the treatment of tumor during thermal ablation has
shown in Fig. 4. We observed from this figure, that the temperature distribution is independent of coordinate
systems at the thermal ablation position, while it plays an important role in heating region.

Fig. 5 shows the heating position (#=0.025 m) where the tumor exists. In this figure, heating position is changed
according to the existence of tumor. If we identified the tumor in living biological tissue and organ then the value of
parameter is fixed accordingly. Thus, the parameter (1) is important in treatment of tumor.

The comparison of temperature distribution in Pennes and thermal wave models of bioheat transfer are shown in
Fig. 6. We observed that temperature profile in thermal wave model is less than in comparison to Pennes model.

As Q.o increases, temperature increases which is shown in Fig. 7. According to the estimation of Q,,
temperature is taken in the range of thermal ablation. Thus, we can say that the external heat source plays an
important role in treatment.

As 7, -0, temperature distribution obtained for Pennes model (7 P 0 s) and thermal bioheat transfer model (
7,=0.01s) coincides mutually. So, in limiting case (i.e. T p -0), thermal wave model reduces to Pennes model

which is shown in Fig.8. I hope, this study will prove very beneficial for the clinical therapeutic application in
treatment of cancerous cells.
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5. Concusion

We have presented FELWGM for the solution of thermal wave bioheat transfer model in presence of
temperature dependent metabolic heat source and modified Gaussian external heat source. The multi-resolution
analysis of Legendre wavelet in case of present problem localizes small scale variations of solution and fast
switching of functional bases. FELWGM has the capability to minimize error and produce higher degree of
accuracy. FELWGM results are compared with analytical results in a particular case and gives good accuracy (Fig.
2). Temperature at the site of tumor increases as time increases (suggested from the Fig. 3). Treatment process is
independent of coordinate system (I" = 0,1,2 ) at thermal ablation position (Fig. 4). Treatment at specific thermal

ablation position can be done fixing the source parameter »y accordingly, which is shown in Fig. 5. The temperature
in thermal wave model is less in comparison to Pennes model at thermal ablation position (Fig. 6). The value of

external heat source parameter (QrO) increases as temperature increases also (Fig. 7). So, we produce the require

temperature at the thermal ablation position. The source parameters allow us to specific heating () and control of
temperature (Q,,) at thermal ablation position. In limiting case (i.e. 7, 0), thermal wave model reduces to

Pennes model which is shown in Fig. 8. The relaxation time affects significantly in treatment during thermal
ablation. So, our study will give thermal treatment a new future direction in clinical therapeutic applications.
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