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ABSTRACT

Aims. We construct a new analytical model of a solar coronal loop that is embedded in a gravitationally stratified and magnetically
confined atmosphere. On the basis of this analytical model, we devise a numerical model of solar coronal loops. We adopt this model
to perform the numerical simulations of its vertical kink oscillations excited by an external driver.
Methods. Our model of the solar atmosphere is constructed by adopting a realistic temperature distribution and specifying the curved
magnetic field lines that constitute a coronal loop. This loop is described by 2D, ideal magnetohydrodynamic equations that are
numerically solved by the FLASH code.
Results. The vertical kink oscillations are excited by a periodic driver in the vertical component of velocity, which is acting at the
top of the photosphere. For this forced driver with its amplitude 3 km s−1, the excited oscillations exhibit about 1.2 km s−1 amplitude
in their velocity and the loop apex oscillates with an amplitude in displacement of about 100 km.
Conclusions. The newly devised analytical model of the coronal loops is utilized for the numerical simulations of the vertical kink
oscillations, which match well with the recent observations of decayless kink oscillations excited in solar loops. The model will have
further implications on the study of waves and plasma dynamics in coronal loops, revealing physics of energy and mass transport
mechanisms in the localized solar atmosphere.
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1. Introduction

The solar corona is a magnetically dominated and gravitationally
stratified medium that can alter the scenario of magnetohydro-
dynamic (MHD) waves (e.g., Pascoe 2014). Among a number
of magnetic structures present there, magnetic loops are consid-
ered to be major building blocks of the solar corona. They are
outlined by curved and closed magnetic field lines, which are
rooted in the deep atmospheric layers and are built of denser and
hot plasma.

Coronal loops act as a wave guide for various kinds of
MHD waves and oscillations. Among various modes, the stand-
ing, large-amplitude magnetoacoustic kink waves were detected
in solar coronal loops (e.g., Aschwanden et al. 1999, 2000;
Wang & Solanki 2004; Wang et al. 2008; Verwichte et al. 2009;
Aschwanden & Schrijver 2011; White et al. 2012; Srivastava &
Goossens 2013, and references therein). These transverse (hor-
izontally and vertically polarized) kink waves are modeled by
a number of authors (e.g., Gruszecki et al. 2006; Ofman &
Wang 2008; Ofman 2009; Luna et al. 2010; Selwa et al. 2011;
Antolin et al. 2014, and references therein) who confirmed the
observational data by revealing that these waves decay on a
timescale comparable to the oscillation wave period. Recently,
small amplitude transverse waves were reported by De Moortel
& Nakariakov (2012); Nisticó et al. (2013), and Anfinogentov
et al. (2013) who found decayless oscillations with velocity

� A movie associated to Fig. 4 is available in electronic form at
http://www.aanda.org

amplitude of a few km s−1, displacement amplitude less than
1 Mm, and wave periods within the range of 2.5 to 11 min.

The wave and plasma dynamics of coronal loops are highly
dependent upon their plasma and magnetic field structuring. In
most of the theoretical studies thus far, analytical models of
coronal loops were devised for a gravity-free medium and loop
oscillations were triggered by impulsive sources. Our aim here
is to construct, for the first time, an analytical model of a coro-
nal loop in a gravitationally stratified solar atmosphere. As the
problem is formidable, we limit ourselves to the simplest con-
ceivable case of a two-dimensional (2D) model of a coronal ar-
cade loop. As a result of very long analytical expressions con-
sisting of a few thousand lines, which constitute the analytical
model for the equilibrium mass density and gas pressure, we fo-
cus on the modest case of a loop. On the basis of our analyti-
cal model, we develop a numerical model of a loop. The newly
developed coronal loop model will have several applications in
studies of the properties of excited MHD waves and plasma dy-
namics in these loops. With some modification, the model can
be adopted to a coronal loop to reveal its wave and dynamical
processes. However, as its first application, we study the vertical
kink oscillations evolved into the model loop. These oscillations
are excited by a forced periodic driver in the vertical component
of velocity, which acts at the top of the photosphere.

This paper is organized as follows. The analytical model of
a coronal loop is introduced in Sect. 2. A numerical model and
the results are described in Sect. 3. This paper is concluded by a
short summary in Sect. 4.
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2. The analytical model of a coronal loop

2.1. MHD equations

We consider a coronal plasma that is described by the ideal MHD
equations

∂�

∂t
+ ∇ · (�V) = 0, (1)

�
∂V
∂t
+ � (V · ∇) V = −∇p +

1
μ

(∇ × B) × B + �g, (2)

∂B
∂t
= ∇ × (V × B), ∇ · B = 0, (3)

∂p
∂t
+ V · ∇p = −γp∇ · V, p =

kB

m
�T, (4)

where � is mass density, V represents the plasma velocity, p is
a gas pressure, B is the magnetic field, T is a temperature, kB is
Boltzmann’s constant, γ = 5/3 is the adiabatic index, m is a
particle mass that is specified by mean molecular weight of 0.6,
and g = (0,−g, 0) is the gravitational acceleration. The value of
g is equal to 274 m s−2.

2.2. Equilibrium conditions

We assume that the above system is invariant along the hori-
zontal coordinate, z (∂/∂z = 0) and set the z-components of the
velocity, Vz, and magnetic field, Bz, to zero.

In this 2D model, the solar atmosphere is in static equilib-
rium (V = 0) with the Lorentz force balanced by the pressure
gradient and gravity forces, and the divergence-free magnetic
field,

1
μ

(∇ × B) × B − ∇p + �g = 0, (5)

∇ · B = 0. (6)

2.2.1. Hydrostatic atmosphere

A hydrostatic atmosphere corresponds to the magnetic-free
(B = 0) case in which the gas pressure gradient is balanced by
the gravity force

∇ph = �hg. (7)

With the use of the ideal gas law given by Eq. (4) and the vertical
y-component of Eq. (7), we express the hydrostatic gas pressure
and mass density as

ph(y) = pref exp

(
−

∫ y

yr

dy′

Λ(y′)

)
, �h(y) =

ph(y)
gΛ(y)

, (8)

where

Λ(y) =
kBT (y)

mg
, (9)

is the pressure scale-height, and pref denotes the gas pressure at
the reference level yr which we set and hold fixed at yr = 10 Mm.

We adopt a realistic plasma temperature profile given by
the semiempirical model of Avrett & Loeser (2008), which is
extrapolated into the solar corona (Fig. 1). In this model, the
temperature attains a value of about 4300 K at the bottom of the
chromosphere (y ≈ 0.6 Mm), and 7×103 K at the top of the chro-
mosphere (y ≈ 2.0 Mm). At the transition region, which is lo-
cated at y � 2.1 Mm, T exhibits an abrupt jump (Fig. 1), and it

Fig. 1. Profile of hydrostatic solar atmospheric temperature vs. height y.

enhances up to about 0.7×106 K in the solar corona at y = 8 Mm.
Higher in the solar corona, the temperature grows very slowly,
tending to its asymptotic value of about 1.6 MK. The temper-
ature profile uniquely determines the equilibrium mass density
and gas pressure profiles, which fall off with the height (not
shown here).

2.2.2. Magnetic atmosphere

The solenoidal condition of Eq. (6) is automatically satisfied if
we express the equilibrium magnetic field with the use of mag-
netic flux-function (A(x, y)) as

B = ∇ × Aez, (10)

where ez is a unit vector along z-direction. Setting

p = p(x, y) = p(y, A), (11)

from Eqs. (5) and (10), we get

�(y, A)g = −∂p(y, A)
∂y

· (12)

Hence we infer the hydrostatic condition along the magnetic
field line, which is specified by the equation A = const. From
the x- and y-components of Eq. (5), we obtain the equilibrium
equation for a system with translational symmetry (Low 1975;
Priest 1982),

∇2A = −μ∂p(y, A)
∂A

, (13)

where ∇2 =
(
∂2

∂x2 +
∂2

∂y2

)
is the Laplacian.

We assume now that the flux-function A(x, y) is known.
Therefore, from Eqs. (12) and (13), we find the following ex-
pressions for � and p (Solov’ev 2010; Kraśkiewicz et al. 2015;
Kuźma et al. 2015):

� = �h +
1
μg

⎡⎢⎢⎢⎢⎢⎣ ∂∂y
⎛⎜⎜⎜⎜⎜⎝
∫
∂2A
∂y2

∂A
∂x

dx +
1
2

(
∂A
∂x

)2⎞⎟⎟⎟⎟⎟⎠ − ∂A∂y∇2A

⎤⎥⎥⎥⎥⎥⎦ , (14)

p = ph − 1
2μ

(
∂A
∂x

)2

− 1
μ

∫
∂2A
∂y2

∂A
∂x

dx. (15)

A22, page 2 of 6

http://dexter.edpsciences.org/applet.php?DOI=10.1051/0004-6361/201424684&pdf_id=1


K. Murawski et al.: Coronal loop models

2.3. A coronal loop

For a coronal loop, we make the following choice:

A(x, y) = S 1 log
[
k2x2 + k2(y + y00)2

]

+ εS 1
k2x2

1+{k2[x2 + a(y + y00)2−x2
0 − b(y0+y00)2]}2 ,

(16)

where k is the inverse scale-length, −y00 is the vertical co-
ordinate of the singularity in the magnetic field, and a, b, ε,
x0, y0, and y00 are dimensionless parameters. We set them as
a = b = 0.85, k = 1 Mm−1, x0 = y0 = 4 Mm, y00 = 1 Mm,
S 1 ≈ 11.4 Gauss Mm, and hold them constant. These loop pa-
rameters are chosen to have a small-size loop (averaged radius
≈5 Mm), which significantly simplifies numerical simulations.
Vectors of magnetic field, resulting from Eq. (16) are illustrated
in Fig. 2 (top). As a result of the symmetry, the right-hand side
of the system is displayed only, and the magnetic field vectors
consist the arcade with a singularity at (x = 0, y = −y00) Mm.

The first term on the right side of Eq. (16) corresponds to
the potential magnetic arcade in which the magnetic field varies
as 1/r, where r is a radial distance from the axis of symmetry,
placed beneath the photosphere, at the location of the singularity.
This potential magnetic field does not alter the hydrostatic state
of the solar atmosphere and the equilibrium mass density and a
gas pressure remain equal to �h(y) and ph(y), respectively.

Since a purely potential arcade does not lead to any loop
structure, we implement the small, nonpotential correction (sec-
ond) term in Eq. (16), which highlights in the body of the mag-
netic arcade a narrow loop of its radius

r0 =

√
x2

0 + y
2
0. (17)

This correction term is chosen to have the integral in Eq. (15)
evaluated analytically. However, the analytical expressions for
the equilibrium mass density, �(x, y), and a gas pressure, p(x, y),
derived by the symbolic package MAXIMA from Eqs. (14)
and (15), are too long to be displayed here.

Within the coronal loop, the plasma parameters are signifi-
cantly different from those in the ambient corona. The correction
results in mass density enhancement within the loop. The mass
density (�) within the loop is about twice as large at the loop apex
and ten times as large at the loop footpoint as the ambient coro-
nal mass density (Fig. 2). This loop is about four times warmer at
its apex and ten times hotter at x ≈ 3 Mm and y ≈ 3.5 Mm than
the ambient plasma (Fig. 2, bottom). Below the denser strandlike
structure, which occupies the top layer of the loop, there is the
layer of rarefied strandlike plasma at the lower side (Fig. 2, top).
The whole strandlike structure is about 500 km wide and the
loop is about 15 Mm long with its major radius of about 5 Mm.
It should be noted that loop length, width, and major axis, etc.,
are the free parameters, and the model can yield the range of loop
morphology. We can simply mimic the various kinds of coronal
loops with different radius of curvature and height, with different
magnetic field strength, and confined plasma with given density
and temperature. However, here we only choose the small size
of the model loop to avoid computationally extensive numerical
calculations. Our main aim is to introduce our new coronal loop
model with a simple example of vertical kink oscillations. Its
various applications and other parametric studies will be taken
up in future projects.

Fig. 2. Top panel: vectors of equilibrium magnetic field, expressed in
units of ≈11.4 Gauss, and log(�) (color maps). The mass density, �, is
given in units of 10−12 kg m−3. Bottom panel: logarithm of temperature
(expressed in units of 1 MK) profile. Only the right-hand side of the
system (which is symmetric about the vertical x = 0 axis) is displayed.
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Fig. 3. Blocks system used in the numerical simulations.

3. Numerical model for vertical kink oscillations

To solve the 2D, ideal MHD equations numerically, we use
the FLASH code (Fryxell et al. 2000; Lee & Deane 2009; Lee
2013), in which a third-order, unsplit Godunov-type solver with
various slope limiters and Riemann solvers as well as adap-
tive mesh refinement (AMR; MacNeice et al. 1999) are imple-
mented. Among a number of options, we choose the minmod
slope limiter and the Roe Riemann solver (e.g., Tóth 2000).

We set the simulation box as (−7.5 Mm, 7.5 Mm) ×
(0.5 Mm, 8.0 Mm) and impose time-dependent boundary condi-
tions for all plasma quantities at all four boundaries; at these
boundaries we set all plasma quantities to their equilibrium val-
ues; the only exception is the bottom boundary, where we addi-
tionally place the periodic driver as

Vy(x, y, t) = AV exp

[
− x2 + (y − yd)2

w2

]
sin

(
2π
Pd

t

)
, (18)

where AV is the amplitude of the driver, (0, yd) is its spatial po-
sition, w denotes its width, and Pd is its period. We set AV =
3 km s−1, yd = 0.5 Mm, w = 1 Mm, Pd = 300 s, and hold them
fixed. The driving period Pd = 300 s corresponds to the aver-
age lifetime of a solar granule, as the granules (together with
a random coronal flows, which we do not explore here) can be
regarded as a real physical driver of decayless coronal loop os-
cillations (Valery Nakariakov, priv. comm.).

In our present work, we use an AMR grid with a minimum
(maximum) level of refinement set to 3 (8). We performed the
grid convergence studies by refining the grid by a factor of two.
As the numerical results remained essentially same for the grid
of maximum block levels 7 and 8, we adopted the latter levels to
obtain our results.

Note that small-size blocks of numerical grid occupy the al-
titude up to y ≈ 5 Mm, below the solar transition region and in
the neighborhood of the loop (Fig. 3), and every numerical block
consists of 8 × 8 identical numerical cells. This results in an ex-
cellent resolution of steep spatial profiles, and greatly reduces
the numerical diffusion in these regions.

Fig. 4. Temporal evolution of �(x, y) at t = 550 s (top) and t = 700 s
(bottom), expressed in units of 10−12 kg m−3. Arrows represent plasma
velocity, given in units of 1 km s−1. (Online movie)

Figure 4 shows the spatial profiles of �(x, y) at two
timespans. We only display the right-hand part of the sim-
ulation region. As a result of the driver, essentially fast
magnetoacoustic-gravity waves are excited in the system. The
fast magnetoacoustic waves are quasi-isotropic and they propa-
gate upward across the curved magnetic field lines. At t = 550 s
(top) and t = 700 s (bottom), the plasma is moving downward
(upward) and the apex of the loop attains approximately its low-
est (highest) position of ≈4.6 Mm (≈4.7 Mm), oscillating with
the amplitude of about 100 km. It should be noted that the verti-
cal kink oscillations of a curved coronal loop are fundamentally
different from horizontal kink modes, since they are confined to
the loop plane and can lead to the change of its length. These
oscillations are seen in Fig. 5, which illustrates the time signa-
ture of � (top) and Vy (bottom) collected at the point (x = 0,
y = 4.5) Mm, settled just below the apex. From this figure, we
clearly see that the quasi-periodic oscillations are present in the
system, and the wave period of these oscillations is equal to the
driving period, Pd = 300 s. Indeed, from wavelet spectra of
these time signatures, we infer that the velocity time signature
is a combination of globally distributed 5 min and 3 min wave
periods, but the 5 min wave period is predominant. The peri-
odogram analyses (Scargle 1982; bottom-panels) also show that
the presence of significant (>99%) power peaks around 5 min
wave period in both mass density as well as velocity time pro-
files, which do match with the wavelet power spectral analyses.
The amplitude of these oscillations in Vy is about 1.1 km s−1

(Fig. 5, bottom). The phase difference between velocity and
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Fig. 5. Time-signatures of � (top) and Vy (bot-
tom) collected at (x = 0, y = 4.5) Mm, and their
wavelet spectra with 5.0 min global period.

density variations with o is π/4 (quarter period), which is a typ-
ical property of the fundamental kink oscillations excited in a
loop.

4. Summary

In the present paper, we have presented for the first time the an-
alytical and numerical models of a solar coronal loop, which
is embedded in a gravitationally stratified solar corona. These
models are based on the analytical models of Solov’ev (2010).
The Kraśkiewicz et al. (2015) and Kuźma et al. (2015) reports
can also be referred for detailed mathematical formulation of
the analytical and numerical models. Using these models, we
performed the 2D numerical simulations of the vertical kink os-
cillations of this loop excited by the forced periodic driver that
acts at the top of the photosphere, centrally below the apex of
the loop.

The numerical simulations adapt the realistic model of the
hydrostatic solar atmosphere in the FLASH code and a slightly
modified potential magnetic field. Our model exhibits the forma-
tion of the quasi-periodic vertical oscillations of their wave pe-
riod equal to the driving wave period of 300 s and their velocity

amplitude is about 1.2 km s−1, while the loop apex oscillates with
its amplitude of 100 km. These values match the recent observa-
tional findings of Nisticó et al. (2013) and Anfinogentov et al.
(2013).

The implemented driver mimics a downdraft associated with
a solar granule as the driving period is set to the lifetime of a
granule, which is 300 s, and its amplitude is 3 km s−1. However,
the value of 3 km s−1 seems to be larger by a factor of about
3 than the downdraft speed. We have verified by numerical ex-
periments that a lower amplitude of the driver resulted in fewer
pronounced oscillations (not shown). Moreover, to simplify nu-
merical simulations we have chosen the coronal loop to be only
about 15 Mm long, which is at least an order of magnitude
shorter than a typical coronal loop. In the case of a typical loop,
the fast magnetoacoustic waves would experience more spatial
spreading while propagating from the launching place upward
toward the typical loop apex and covering a long distance. As a
result, this apex would be affected by a less energetic signal and
it would experience lower amplitude oscillations. In this case, a
larger amplitude of the periodic driver would be required or a
driver can be set higher up, somewhere in the solar corona, mod-
eling its random velocity field. Qualitatively, we can state that
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the oscillation amplitude should decline with the loop length and
it should grow with the amplitude of the forced driver. These
parametric studies would be important for impulsively excited
waves with the non-forced drivers, which will be the subject of
a future study using the newly developed coronal loop model.
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