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Abstract In the present paper, an asymptotic approach is used to analyse the main features of

weakly nonlinear waves propagating in a compressible, inviscid, nonideal gas in the presence of

magnetic field. An evolution equation, which characterizes the wave process in the high frequency

domain and points out the possibility of wave breaking at a finite time, is derived. The growth equa-

tion governing the behaviour of an acceleration wave is recovered as a special case. Further, we con-

sider a sufficiently weak shock at the outset and study the propagation of the disturbance given in

the form of a sawtooth profile. It is observed that the non-idealness of the gas causes an early decay

of the sawtooth wave as compared to ideal case however the presence of magnetic field causes to

slow down the decay process as compared to non-ideal non-magnetic case. A remarkable difference

in wave profiles for planar and cylindrically symmetric flows has been observed. The effect of non-

idealness, in the presence of magnetic field, on the formation of shock is more dominant in case of

cylindrical symmetry as compared to planar case.
� 2014 Faculty of Engineering, Ain Shams University. Production and hosting by Elsevier B.V. This is an

open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/3.0/).
1. Introduction

Discontinuity waves, also known as shock waves, acceleration
waves and weak waves are characterized by discontinuity in

the normal derivative of the flow variable rather than the var-
iable itself. Therefore, for nonlinear systems, the analysis of
these waves has been the subject of great interest both from

mathematical and physical point of view. For the physical
phenomenon modelled by a system of quasi linear hyperbolic
partial differential equations, it is theoretically possible to find
the progressive wave solution. Choquet-Bruhat [1] used the

perturbation method to determine a shockless solution of sys-
tem of quasi linear hyperbolic partial differential equations
that depend upon single phase function. Germain [2], Fusco
[3], Fusco and Engelbrecht [4], and Sharma et al. [5], used

the same technique to analyse the nonlinear wave propagation
in various gasdynamic regimes. Hunter and Keller [6] pre-
sented a method, known as ray method, to determine a

small-amplitude high frequency wave solution of hyperbolic
system. Jena and Singh [7] studied the problem of evolution
of an acceleration wave and a characteristic shock for the sys-

tem of partial differential equations describing one dimen-
sional, unsteady, axisymmetric motion of transient pinched
plasma. A detailed discussion on the method and application
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of asymptotic expansions can be seen in Miller [8] and Sharma
[9]. Singh et al. [10] used perturbation scheme to study the
propagation of weak shock waves in non-uniform radiative

magnetogasdynamics. Singh et al. [11] have studied the prob-
lem of propagation of acceleration waves along the character-
istic path by using the characteristics of the governing system

as the reference coordinate system. Arora et al. [12] used the
method of multiple timescales to obtain the asymptotic solu-
tions to the planar and non-planar flows into a non-ideal

gas. Sharma and Venkatraman [13] studied the asymptotic
decay laws for planar and non-planar shock waves and the first
order associated discontinuities that catch up with the shock.

In the present work, we deal with the study of propagation

of weakly nonlinear waves in a nonideal gas permeated by a
transverse magnetic field with infinite electrical conductivity.
An evolution equation, characterizing the wave process in

the high frequency domain, is derived. The growth equation
for an acceleration wave is recovered as a special case. The
propagation of a sawtooth profile that ends in a tail shock

can be analysed in similar manner.

2. Governing equations

The fundamental equations for one dimensional unsteady
motion of a non-ideal gas in the presence of a transverse mag-
netic field may be written as [14–16].

qt þ mqx þ qmx þ qmmx�1 ¼ 0; ð1Þ

mt þ mmx þ q�1ðpx þ hxÞ ¼ 0; ð2Þ

pt þ mpx þ qd2ðmx þmmx�1Þ ¼ 0; ð3Þ

ht þ mhx þ 2hðmx þmmx�1Þ ¼ 0; ð4Þ

where q is the density, m is the fluid velocity, p is the pressure,
d= (cp/q(1 � bq))1/2 is the speed of sound in non-ideal gas
with c as the adiabatic index, b is the Van der Wall’s constant,

h= lH2/2 is the magnetic pressure with H as the magnetic
field strength, l is the magnetic permeability, t is the time,
and x is the spatial coordinate. Here subscripts denote partial
differentiation unless stated otherwise. The letter m takes val-

ues 0 for planar and 1 for cylindrically symmetric motion.
In matrix notation, Eqs. (1)–(4) can be written as

Ut þ AUx þ B ¼ 0; ð5Þ

where

U ¼

q

m

p

h

2
6664
3
7775; A ¼

m q 0 0

0 m q�1 q�1

0 cp
1�bq m 0

0 2h 0 m

2
6664

3
7775; B ¼

qmmx�1

0
cp

1�bqmmx�1

2hmmx�1

2
66664

3
77775:

ð6Þ

Eq. (5) can be written as

Ui
t þ AijUj

x þ Bi ¼ 0; i; j ¼ 1; 2; 3; 4; ð7Þ

where Ui, Aij, and Bi are components of column vector U,
matrix A and column vector B respectively.

The system of Eq. (7) is hyperbolic and eigenvalues of
the coefficient matrix A are m� c; m; m and m + c. Here
c= (d2 + e2)1/2 is the magneto sonic speed with d =
(cp/q(1 � bq))1/2 as the speed of sound in nonideal gas and
e= (2h/q)1/2 the Alfvén speed. The left and right eigenvectors
of A corresponding to the eigenvalue m + c are

l ¼ ð0; qc; 1; 1Þ; rT ¼ ð1; c=q; d2; e2Þ; ð8Þ

where a superscript means transposition.

3. Progressive wave solution

Let us consider the asymptotic solution of Eq. (7) which exhib-
its the feature of progressive waves. Consider the following
asymptotic expansion

Uiðx; tÞ ¼ Ui
0 þ eUi

1ðx; t; nÞ þOðe2Þ; ð9Þ

where Ui
0 is a known constant solution of Eq. (7) such that

Bi(U0) = 0. The remaining terms of Eq. (9) are of progressive
wave nature. The choice of e depends upon the physical prob-
lem to be studied. Let sch be the characteristic timescale for the

medium and sa be the attenuation time, then we define a
parameter e = sch/sa� 1. The variable n is a ‘‘fast variable’’
defined as n = f(x, t)/e, where f(x, t) is a phase function to

be determined later. It may be noticed that the case e� 1,
which corresponds to the situation in which the characteristic
frequency of the medium is very large than the attenuation fre-
quency of the signal, characterizes a high frequency propaga-

tion [17].
Introducing the Taylor’s series expansion of Aij and Bi in

the neighbourhood of the known constant solution Ui
0 and

using Eq. (9), we get

Aij ¼ Aij
0 þ e

@Aij

@Uk

� �
0

Uk
1 þOðe2Þ; ð10Þ

Bi ¼ Bi
0 þ e

@Bi

@Uk

� �
0

Uk
1 þOðe2Þ: ð11Þ

Substituting Eqs. (9)–(11) in Eq. (7) and cancelling the coeffi-

cient of e0 and e1, we get

Aij
0 � kdi

j

� � @Uj
1

@n
¼ 0; ð12Þ

Aij
0 � kdi

j

� � @Uj
2

@n
þ @Ui

1

@t
þ Aij

0

@Uj
1

@x

� �
f�1x

þUk
1

@Aij

@Uk

� �
0

@Uj
1

@n
þ f�1x Uk

1

@Bi

@Uk

� �
0

¼ 0; ð13Þ

where k ¼ �ft=fx; di
j is the Krönecker delta and the subscript 0

means the quantity involved is evaluated at constant state U0.
Eq. (12) yields the characteristic polynomial k2ðk2 � c20Þ ¼ 0,

providing nonzero eigenvalues ±c0 of A0. Considering the
velocity k ¼ c0 the corresponding left and right eigenvectors
of A0 are given by Eq. (8) with subscript 0. From Eq. (12)

we see that oU1/on is collinear to r0 and therefore U1 may be
written as

U1ðx; t; nÞ ¼ aðx; t; nÞr0 þWðx; tÞ; ð14Þ

representing a solution of Eq. (12). Here a(x, t, n) is the ampli-

tude factor to be determined and the Wi (the components of
the column vector W) are integration constants which are
not of progressive wave nature and therefore can be taken as
zero. Now the phase function f(x, t) is determined by
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ft þ c0fx ¼ 0; ð15Þ

if fðx; 0Þ ¼ x� x0; then

fðx; tÞ ¼ ðx� x0Þ � c0t: ð16Þ

Multiplying Eq. (13) by li0; and substituting Eq. (15) in the
resulting equation we obtain, the following evolution equation

for a

@a
@s
þ P0a

@a
@n
þQ0a ¼ 0; ð17Þ

where @
@s ¼ @

@t
þ c0

@
@x

is the ray derivative taken along the ray

direction and

P0 ¼ rk0
@ðmþ cÞ
@Uk

� �
0

¼ ðcþ 1Þd20 þ 3e20ð1� bq0Þ
2c0q0ð1� bq0Þ

> 0; ð18Þ

Q0 ¼
lj0r

k
0

li0r
i
0

@Bj

@Uk

� �
0

¼ mc0
2x

: ð19Þ

Here Q�10 has the dimension of time and may be taken as hav-

ing attenuation time sa characterizing the medium. Eq. (17) is
hyperbolic one and its characteristic curves can be obtained in
the following form

n¼
n0þ sP0/ðx0;n0Þ; form¼ 0;

n0þ2P0/ðx0;n0Þðx0=c0Þfð1þ c0s=x0Þ1=2�1g; form¼ 1:

(

ð20Þ

The existence of an envelope of the characteristics given by Eq.

(20) gives evidence of the formation of a shock. It is evident
that the shock is formed for s > 0 only by those characteristics
for which o//on0 < 0. The shock formation time for plane

(m= 0) and cylindrical (m = 1) compressive waves turns out
to be

ssh¼

min P0j@/=@n0jð Þ�1; for plane waves:

min
h
ðx0=c0Þfð1þ c0=

2x0P0j@/=@n0jÞÞ2�1g
� i

; for cylindrical waves:

8>>><
>>>:

ð21Þ

where the minimum is evaluated over an appropriate range of
the quantities x0, n0.

4. Acceleration waves

We can use the aforementioned analysis to study acceleration
waves for the system of Eqs. (1)–(4). Let us suppose that

f(x, t) = 0, represents the acceleration front. Across such a
front the velocity is continuous but its first and higher order
derivatives undergo finite jump discontinuities. In the neigh-

bourhood of the front, the velocity m may be represented by
an expansion

m ¼ em1ðx; t; nÞ þOðe2Þ; ð22Þ

where m1 = 0 for n < 0, and m1 = O(n) for n > 0. Now m1 as
an element of the column vector U1 is given by Eq. (14), so
we have [2]

aðx; t; nÞ ¼
0; if n < 0;

nbðx; tÞ þOðn2Þ; if n > 0;

�
ð23Þ
with b = (q0/c0)r, where r = [om/ox] denotes the jump in

velocity gradient across the acceleration front.
Substituting Eq. (23) in Eq. (17), and evaluating the

resulted equation at the front f(x, t) = 0, i.e., at the front

n = 0, we obtain a Bernoulli type equation

dr
dt
þQ0rþ

Y
0
r2 ¼ 0; ð24Þ

whereY
0
¼ 1

2
c� 2þ ðcþ 1Þbq0 þ 3wf gw�1; ð25Þ

with w ¼ 1þ e20=d
2
0, the Alfvén number, Q0 = mc0/2x, and the

derivative d/dt of any quantity, which is supposed to be

expressed on the front f(x, t) = 0, is the ordinary time deriva-
tive of the quantity. The solution of Eq. (24), can be written as
[18].

r ¼
r0=ð1þ r0

Y
0
tÞ; for m ¼ 0;

r0ð1þ c0t=x0Þ�1=2K�1; for m ¼ 1;

(
ð26Þ

where

K ¼ 1þ 2
Y

0
=c0 1þ c0t=x0ð Þ1=2 � 1
� �

r0x0

n o
ð27Þ

and r0 is the value of r evaluated at t = 0.

5. Weak shock

The above analysis shows that a compression pulse always
evolves in a shock in a finite time, however weak it may be

in the beginning. The flow and field variables ahead and
behind the shock designated respectively by the subscripts 0
and 1 and introducing the shock strength parameter

d = (q1 � q0)/q0, satisfy the following shock conditions for
the non-ideal magnetogasdynamics case which are given as [15]

q1 ¼ q0ð1þ dÞ; m1 ¼ dG=ð1þ dÞ; h1 ¼ h0ð1þ dÞ2; p1
¼ p0 þ q0dG

2ð1þ dÞ�1 � h0dð2þ dÞ; ð28Þ

where the shock strength parameter d and the shock velocity G
are related by

G2 ¼ 2ð1þ dÞ d20 þ e20 ð1� bq0dÞ 1þ d
2

� ���

� ðc� 1Þ d
2
ð1þ bq0Þ

��
� 2ð1� bq0dÞ � dðc� 1Þð1þ bq0Þf g�1: ð29Þ

For a weak shock d� 1 and therefore we have the first
approximation to the equations in Eqs. (28) and (29) as

q1 ¼ q0ð1þ dÞ; m1 ¼ c0d; p1 ¼ p0ð1þ cdð1þ bq0ÞÞ; h1

¼ h0ð1þ 2dÞ;G ¼ c0 1þ d
Y

0
=2

h i
: ð30Þ

The conditions derived in Eq. (30) will be used in subsequent

analysis.

6. Behaviour of sawtooth profile

The shock waves, after travelling a long distance from the
source become weak enough so that we can apply the weak
shock relations (Eq. (30)). Therefore we assume a shock, which
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is weak enough at the beginning and investigate the propaga-
tion of the fluid velocity disturbance given in the form of a
sawtooth profile as shown in Fig. 1 [19].

The left portion of the profile which was situated initially at
x0, travels with the magnetosonic speed c0 of the undisturbed
fluid, whereas the shock at the right portion situated initially

at xs0 moves faster. Suppose L0 is the length of the sawtooth
profile in the beginning. Suppressing the subscript 1 notation,
let us denote by m and c the state at the rear side of the shock,

which at time t is located at xs(t) = x0 + c0t + L(t), where
L(t) is the length of the sawtooth profile at any time t. Then

G ¼ dxs

dt
¼ c0 þ

dL

dt
: ð31Þ

Also, from the second and fifth equation of Eq. (30), we obtain

G ¼ c0 þ m
Y

0

.
2: ð32Þ

The fluid velocity m in the sawtooth course with constant om/ox
can be described as

m ¼ rLðtÞ; ð33Þ

where r ¼ ð@m=@xÞx�x0¼c0t, the slope of the profile at any time t,
is given by (26).

Substituting Eq. (33) in Eq. (32) and comparing the result-

ing equation with Eq. (31), we obtain

dL

dt
¼ rL

Q
0

2
: ð34Þ

Let r0, L0 and G0 be the value of r, L and G, respectively at

t= 0. Then Eqs. (32) and (33) give the following relation con-
necting r0, L0 and G0

r0 ¼ 2ðG0 � c0Þ= L0

Y
0

� �
: ð35Þ

From Eq. (34), we have the following relation for the length of
the sawtooth profile

L

L0

¼ 1þ r0

Y
0
t

� �1=2
; for plane waves;

K1=2; for cylindrical waves;

8<
: ð36Þ

where K is given by Eq. (27). Substituting Eqs. (26) and (36) in
Eq. (33), we obtain the relation for the velocity of sawtooth
profile as

m
m0
¼

ð1þ r0

Y
0

tÞ�1=2; for plane waves;

ð1þ c0t=x0Þ�1=2K�1=2; for cylindrical waves;

8><
>: ð37Þ

where m0 is the value of m evaluated at t= 0.
ν

x

( )L  t

0L
0x

0sx

Figure 1 Decay of a sawtooth profile with a weak shock.
7. Result and discussion

Eqs. (36) and (37) govern the variation in the length and veloc-
ity of the sawtooth wave with time respectively. The length L/

L0 and velocity m/m0 are computed using Eqs. (36) and (37),
after non-dimensionalizing, for various values of parameter
of non-idealness �b ¼ bq0 and magnetic field strength w for pla-

nar and cylindrically symmetric flows and presented in Figs. 2–
5 respectively. In case of an ideal magnetogasdynamics the
results are in close agreement with [5].
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Figure 4 Velocity of sawtooth profile with time in non-magnetic

case.
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It is observed that the length L/L0 of sawtooth profile
increases with time, whereas the velocity decreases with time

which is expected. It is observed from Figs. 2–5 that the effect
of increasing values of parameter of non-idealness �b is to
increase the length of sawtooth profile whereas the same effect

produces a decreasing trend in the velocity of the sawtooth
profile. This implies that the non-idealness of the gas causes
an early decay of the sawtooth wave as compared to ideal case.

From Figs. 2 and 3 it may also be noted here that the effect of
non-idealness in the presence of magnetic field is to slow down
the decay process as compared to non-ideal non-magnetic case.
Also, the effect of non-idealness is more dominant in case of

cylindrical symmetry as compared to plane case. From Eq.
(25) we also observe that for c = 2 the magnetic field effect
contributes in decay behaviour of sawtooth profile in non-ideal

magnetogasdynamics which is in contrast to ideal magnetogas-
dynamics [5].

8. Conclusion

In the present study, a progressive wave analysis is used to
determine the asymptotic solution of the system of nonlinear

hyperbolic partial differential equations governing the non-
ideal magnetogasdynamic flow. The analysis leads to an evolu-
tion equation, which characterizes the wave process in the high

frequency domain and points out the possibility of wave
breaking at a finite time, is derived. The growth equation gov-
erning the behaviour of an acceleration wave is also recovered
as a special case. Further, we consider a sufficiently weak

shock at the outset and study the propagation of the distur-
bance given in the form of a sawtooth profile. It is observed
that the non-idealness of the gas causes an early decay of the

sawtooth wave as compared to ideal case however the presence
of magnetic field causes to slow down the decay process as
compared to non-ideal non-magnetic case. The effect of non-

idealness, in the presence of magnetic field, on the formation
of shock is more dominant in case of cylindrical symmetry
as compared to planar case. Also as an important case for
c = 2, the magnetic field effect contributes in decay process

of the sawtooth profile in non-ideal magnetogasdynamics
which is in contrast to ideal magnetogasdynamics case.
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